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Abstract: Signals from global navigation satellite systems (GNSS) can be utilized as signals of
opportunity in remote sensing applications. Geophysical properties of the earth surface can be
detected and monitored by processing the back-scattered GNSS signals from the ground. In
the literature, several airborne GNSS-based passive radar experiments have been successfully
demonstrated. With the advancements in small unmanned aerial vehicles (UAVs) and their
applications for environmental monitoring, we want to investigate whether GNSS-based passive
radar can provide valuable geospatial information from such platforms. Low-cost GNSS reflectometry
sensors, developed using commercial of the shelf components, can be mounted onboard UAVs and
flown to sense environmental parameters. This paper presents the results of a preliminary study to
investigate the feasibility of utilizing data collected by UAV-based GNSS-R sensors to detect surface
water for a potential application in supporting flood monitoring operations. The study was conducted
in the area surrounding the Avigliana lakes in Northern Italy. The results show the possibility of
detecting small water surfaces with few tens of meters resolution, and estimating the area of the lake
surface with 92% accuracy. Furthermore, it is proved through simulations that the use of multi-GNSS
increases this accuracy to about 99%.

Keywords: GNSS; GPS; reflectometry; GNSS-R; passive radar; UAVs; geospatial data; flood
monitoring; signals of opportunity

1. Introduction

Remote sensing has been used in studying floods for more than 40 years [1], where data from
air- and space-borne optical, thermal and microwave sensors [2] are exploited to support the different
stages of flood risk management [3]. Each of the sensors categories has advantages and disadvantages,
and thus the selection of the most appropriate type of devices and data for the monitoring of the
specific events can be not easy.

Space-borne data are widely used for flood monitoring providing different spatial and temporal
resolutions. Satellite optical images, although the most straightforward to interpret, are usually not
available during floods because of the cloud cover during these events [4]. Synthetic aperture radar
(SAR) techniques on the other hand overcome this weather limitation, and also provide day/night
visibility [5], but are challenged to detect inundations in urban areas [6] and under vegetation [7].
The latter is overcome with passive microwave sensors in low microwave frequency which have
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better penetration through dense vegetation [8]. GNSS-R falls in the latter category of passive low
frequency radars, and had proven successful in detecting wetlands during floods (e.g., [9]). In general,
space-borne remote sensing data for flood monitoring have the disadvantage of long revisit time
(>2.5 days) [10] and thus they do not provide enough repeating visits needed during these events,
and in worst cases they even miss the peak of the event [11] like in flash flooding (for example [3]).
Also, the satellites with short revisit times have low resolution (in kilometers), which make them
not sensitive enough to detect the details needed for floods [12]. Moreover, even the meter level
space-borne resolution sensors are challenged in delineating inundation in headwater regions which
require sub-meter image resolution [7].

From a general perspective, aircraft flights are able to overcome the weather limitations of
optical sensors and the resolution and revisit limitation of space-borne remote sensing, but they are
expensive and sometimes, due to the need of runways and the difficult topology of the areas, they
are not feasible [13]. Moreover, they are not able to provide the temporal resolution provided today
by space-borne sensors that scan the earth continuously. In fact, today hybrid data from different
space- and air-borne sensors are fused together to complement each other and provide the different
aspects of global flood monitoring, local detailed inundation maps, temporal data availability and
quick data availability of floods [14,15]. From this point on, this paper will focus on GNSS-R sensors.
For comprehensive literature on floods remote sensing using the various platforms and sensors refer
to [1–3,5,7,10].

The processing of GNSS signals that are back-scattered from the ground allows for using GNSS-R
in monitoring the parameters of the Earth’s surface. It is a passive radar where all the GNSS satellites are
the transmitters, and any sensor capable of processing their reflected GNSS signals is the receiver [16].

GNSS-R advantages include, beside penetration of vegetation cover and resilience to clouds and
smoke, the frequent global coverage of the transmitters from multiple constellations which avoids the
limitation of current active remote sensing techniques that rely on a single transmitting satellite [17].
Also, the low cost of the receivers and the small size of the antennas regardless of the targeted
resolution, makes GNSS-R an interesting sensing technique.

A wide range of applications has been reported in the literature for GNSS-R including: water
basins detection (e.g., [18,19]), river level monitoring (e.g., [20]), estimation of the surface roughness and
wind retrieval (e.g., [21,22]), measurement of the soil moisture (e.g., [23–27]), altimetry (e.g., [28,29]),
monitoring the presence of vegetation (e.g., [30,31]), and estimation of snow/ice thickness (e.g., [32]).

GNSS-R sensors have been deployed onboard spaceborne platforms, for example the GPS
reflectometry experiment onboard the UK-Disaster Monitoring Mission (UK-DMC) [33], the Cyclone
Global Navigation Satellite System (CYGNSS) [34], the International Space Station (ISS) [35] and the
UK TechDemoSat-1 mission [36]. They proved to be a valuable source of remote sensing data for
both land [37–40] and ocean [36] remote sensing. However, space-borne GNSS-R have few limitations.
As of today they provide 0.5–1.0km resolution which is not satisfactory for detailed inundation maps.
Also, due to the nature of the flight trajectories of satellites, the measurements they produce are in
form of surface tracks rather than instantaneous images [17]. These two limitations can be overcome
by air-borne GNSS-R, and they are addressed in this paper by flying a GNSS-R onboard a UAV.

The diffusion of Unmanned Aerial Vehicles today is a result of the great positive impact it
has proven in modern societies [41]. UAVs are offering solutions for a broad range of applications
including support after natural disasters operations [42] such as floods (e.g., [43]), monitoring of
environmental pollution, security and surveillance, and critical infrastructures diagnostic. UAVs
can be equipped with several types of remote sensing sensors like hyperspectral and optical cameras
(e.g., [44]), Synthetic Aperture Radar (SAR) (e.g., [45–47]), and GNSS-R sensors.

GNSS-based passive radars on-board commercial UAVs introduce constraints on the size, weight
and power consumption of the GNSS-R sensor, especially if a small commercial quad- or hex- copter
carries out the experiment. Many designs for airborne GNSS-R sensors have been presented in the
literature. For example the sensor presented by Troglia Gamba et al. [48] implements a SDR based
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GNSS-R on an ODROID–X2 microprocessor able of receiving both the left-hand circular polarized
(LHCP) and the right-hand circular polarized (RHCP) reflected signals using two front–ends streams.
Esterhuizen and Akos [49] also presented a miniaturized receiver based on two GPS L1 front ends
and a Nano-ITX Single Board Computer (SBC) to store raw signal samples, which were analyzed in
post-processing [50]. Marchan-Hernandez et al. [51] on the other hand, designed an FPGA-based
GNSS reflectometery that is capable of computing the Delay Doppler Maps (DDMs), with update rate
of 1 ms.

The majority of the GNSS-based passive radar sensors in the literature are composed of (1) a zenith
pointing RHCP antenna for the reception of the direct GNSS signals, and (2) a nadir-pointing antenna
to receive the ground reflected GNSS signals. The latter can be LHCP, assuming the reflected signal
underwent a complete polarization flip, or dual polarized.

In this article, we present the results of a preliminary study we did under the I-REACT project [52].
This project investigates solutions that can help improving the response of decision makers and also
rescuers to extreme events. The overall objective of this study is to investigate the feasibility of using
data collected by UAV-based GNSS-R sensors to support flood monitoring operations. In particular,
in this paper we show the ability to detect the presence of various water bodies on ground using
a custom made UAV-based GNSS-R sensor.

In this paper, we extend the preliminary results presented in Imam et al. [53] with twofold objective:

1. Investigate the possibility to equip small UAVs with GNSS-based passive radar capabilities, to be
used for water detection in post-mission assessments.

2. Estimate the performance of the GNSS-based passive radar developed by Troglia Gamba et al. [48]
in monitoring water surfaces on ground, when it is mounted on board a small UAV. This
assessment could set-up a further source of geospatial data for the system developed in the
I-REACT project [52].

The rest of the paper is organized as follows. In Section 2 we describe the data collection campaign,
giving brief description of the sensor mounted on the UAV, and the methodology followed in post
processing analysis. In Section 3 we discuss a selection of results, which have been categorized into
three case studies in order to highlight the potential of detecting floods-like water presence. Finally,
in Section 4 we conclude the paper, remarking the value of data from GNSS-based passive radars for
environmental studies.

2. UAV-Based Data Collections and Processing

To investigate the feasibility of detecting water surfaces using GNSS-based passive radar carried
on small UAVs, we implemented a GNSS-R sensor complying with the strict requirements of a UAV
payload in terms of weight, size and power consumption. In post-processing, we targeted water
surfaces detection, and for that we optimized all the parameters needed in order to increase the
reliably of water detection from GNSS signals. GNSS signals are transmitted with RHCP, and the
carrier frequency is in the order of 1 GHz ( 1.150–1.620 GHz). Their polarization is reversed when
a smooth surface reflects them becoming LHCP. If the reflecting surface is non-specular, the reflected
signal will be a mixture of LHCP and RHCP signals. Thus, it is necessary to use antennas capable of
discriminating between the two kinds of polarization, and selecting the desired one. The synchronous
recording of both the direct and the reflected GNSS signals acts as an accurate geo-referencing
mechanism for the GNSS-R measurements, which is important for post mission assessments. Figure 1
shows the sensor (left) and a photo from one of the data collection campaigns showing the sensor
mounted on-board a UAV (right). In the following subsections, we will describe the sensor used for
data collection, then we will explain the data collection campaigns, after that we will detail the signal
processing procedure, and finally we will introduce the data sets processed in this paper.
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(a) The sensor (b) The sensor mounted onboard a UAV

Figure 1. The global navigation satellite systems (GNSS)-R sensor used in this study, and a picture
from one of the data collection campaigns.

2.1. The GNSS-Reflectometry Sensor

In this section, the original version of the GNSS-Reflectometry sensor used for data collection is
described, then the modifications introduced to achieve the low-complexity version are explained.
The complete details of the sensor were published in [48], however it is presented briefly here for sake
of clarity of the experimental setup and the post-processing methodology.

The original sensor was designed with the aim of detecting water surfaces and land water
content. It is intended for small UAVs with weight of 3 kg and memory limit able to store 30 min
of data collection. The sensor receives both direct and reflected GNSS signlas using three separate
antennas: (1) an up-looking RHCP antenna, (2) a down-looking LHCP antenna and (3) a down-looking
RHCP antenna.

The sensor features four synchronized RF channels connecting the direct signal and the LHCP
reflected signal to a front end, while the RHCP reflected signal with the direct signal are connected
to another front end. Both front-ends down convert the direct signals to baseband (BB), while the
reflected signals are down converted to an intermediate frequency (IF) in sake of low noise levels
for the already weak reflected signals. An embedded microprocessor controls the flow of the digital
samples of all channels.

In this work, in order to reduce the total mass of the payload, a simplified version of the sensor
that embeds (1) the RHCP antenna for the direct signal and (2) the LHCP antenna for the reflected ray,
was used.

2.2. Data Collection Campaign

The data collection flights were over different types of water surfaces (rivers, lakes, ponds, etc.)
selected to test the sensor in detecting well known water surfaces. Nevertheless, these data were
considered valuable by this study to challenge the sensor in detecting flood-similar water presence.
The criteria for water detection were defined as being able to detect small water surfaces, distinguish
narrow water flows and estimating water surfaces area. With that in mind, three test cases were chosen
from the data campaign area:

1. A 0.89 km2 lake with a known basin where we could challenge the ability to estimate the area
covered by water and its boundary.

2. A river stream to challenge detecting narrow water streams.
3. Small ponds of water to challenge the detection of small and unexpected water content on ground.

Being not flood events, we were able to overlap the GNSS-R measurements on available
orthophotos without the need for field measurements or satellite images taken on the same dates and
time of the test flights.
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2.3. Post Processing Methodology

Figure 2 shows the block diagram of the post-processing steps. First, we processed the digital
samples of the direct RHCP signal using a GNSS software receiver. Here we extracted the UAV
trajectory. We also retrieved the list of satellites in view during the data collection campaign, as shown
in the upper chain of Figure 2. Then, we calculated the lines of specular points on the ground for all the
visible satellites for the whole flight duration, utilizing the receiver trajectory extracted in the previous
step, and the known satellites positions, as shown in the middle chain of Figure 2. We calculated the
specular points using the algorithms in [16,28].

Figure 2. Block diagram of the post-processing steps.

We processed samples of the LHCP signal to measure the power reflected by the surfaces,
as shown in the bottom chain of Figure 2. We estimated the reflected power for all the visible
satellites, by evaluating the cross-ambiguity function (CAF) [54] over a reduced search space [55].
The CAF is generally computed and compared to a threshold to detect the presence of a GNSS satellite
signal, and in our case the detection of a GNSS signal reflected by a ground surface. The CAF was
evaluated over a set of Doppler-delay values that define the search space where the reflected signal was
cross-correlated with a local replica of the code. Figure 3a shows an example of the CAF of a visible
satellite using the direct signal, and Figure 3b shows the CAF for the same satellite at the same time
using the reflected signal. It can be noticed that the direct signal as expected has a peak that is well
separated from the noise floor, while the CAF associated to the reflected signal shows a weaker peak
but it is still visible.

We choose the peak-to-noise-floor separation αmean [56] as a measure of the reflected
signal strength:

αmean =
RP
Mc

where RP is the correlation peak value, and Mc is the mean value of the correlation noise. Mc was
calculated from the peak values of the search space obtained cross-correlating the received signal with
an orthogonal code not used by the constellation for the whole flight duration. The non-coherent
integration time was fixed to 10 ms, and the coherent integration time was 1 ms i.e., we averaged
10 consecutive coherent integrations of 1 ms long. We evaluated the CAF at various rates: 1, 10 and
20 Hz, which corresponded to different levels of resolution along the lines of specular points. In this
paper we are interested in understanding if this peak corresponds to reflection from a water surface.
As will be shown later, when the signal is reflected from water, αmean will generally be above the
threshold we used to discriminate the presence of reflections.
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(a) Using the direct signal

(b) Using the reflected signal

Figure 3. Examples of the search space for a visible satellite when (a) evaluated from the direct signal,
and (b) evaluated from the reflected signal.

2.4. The Data Sets

In this article, we processed two data sets collected during different flights, with different passes
over the test area in different days and different seasons. The first flight was in December, 2013 and the
second flight was in the following May. We processed both flight data using the same methodology,
comparing the results for what concerns water detection on ground. In this section, we describe the
data sets used.

Figure 4 shows the peak-to-noise-floor separation αmean of data set (1) and data set (2), in dB,
for a subset of the visible pseudo-random noise (PRN) codes. We computed αmean at a rate of 20 Hz
and we used a first order low pass digital Butterworth filter with a cutoff frequency of 1 Hz to smooth
the measurements. The x-axis reports the time, in seconds, from the beginning of the data set. It can be
noticed that αmean has a time-variant trend. Focusing on data set (1), some epochs are characterized by
αmean values greater than 5 dB (e.g., 0–400 s), indicating potential signal reflections. Other epochs, such
as those associated to PRN 32 in 600–820 s, have small values that hardly reach 2 dB. Variations can be
observed among satellites, as noticeable for example between 900 s and 1200 s, where αmean values
related to PRN 32 are lower than the values associated to PRN 19 and 3. The same can be observed on
the plot referencing to data set (2) which, however, had higher reflection values through out the whole
flight duration.

In the next section, we reference each of these reflections to their ground reflecting points,
with focus on reflections generated from water.
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Figure 4. Peak-to-noise-floor separation αmean of the reflected signal for a subset of visible GPS satellites
during (a) flight (1) December 2013 and (b) flight (2) May 2014.

3. Results and Discussion

In this section we are going to present three case studies, that we have chosen to emphasise
particular features and highlight the potential of UAV based GNSS-R for monitoring surface water.
The first case describes detecting the Avigliana lakes which are two adjacent lakes in Northern Italy.
We took them as reference for calibrating both the GNSS–R sensor and the post–processing algorithms.
The other two cases relate to smaller and narrower water surfaces, where the performance of the
technique is challenged in detecting unexpected water contents on ground and in recognizing narrow
river streams.

3.1. Case-Study I: Lakes

The UAV flew over the Avigliana lakes, which are wide water bodies convenient for validating
the sensor and the post–processing algorithms. The approximate dimensions of the largest lake is
970 m on the widest east–west direction, and 1200 m on the north–south direction. The sensor passed
over the lakes three times: north–south, south–north, and west–east. The average height of the UAV
was 450 m over the lake surface with average speed of 50 ms−1.

In data set (1) that originated Figure 4a, these passes correspond to epochs 170–230 s, 330–390 s
and 1560–1620 s. Reflections were observed, as expected, during these epochs, as shown in Figure 5a,
which is a zoom view into the epochs corresponding to the passes over the lakes. The figure shows that
for some PRNs the values of αmean increase up to roughly 10 dB and remain constant for many seconds.
This trend can be noticed for the satellites that have specular points falling on the lakes and it confirms
detecting GNSS signals reflected from the lakes. The periods of these reflections depend on the lake
width, the sensor speed and the satellite-sensor geometry. Indeed, the value of αmean stays high as long
as the specular points are on water. It can be noticed also that the reflection value corresponding to
water detection differs by some dBs for the different satellites. This is due to the different received
power from the different satellites on the first place, which when reflected correspond to different
surface properties. The same reflections can be noticed looking at data set (2) where the flight, again,
passed over the lakes three times: north–south, south–north and west–east. The corresponding passes
are 600–700 s, 800–860 s and 1190–1240 s as reported in Figure 4b and zoom-viewed in Figure 5b.
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Figure 5. Comparison of the peak-to-noise-floor separation of the reflected signal for (a) data set (1),
and (b) data set (2), when the sensor crossed the lakes on the different passes: north to south (top),
south to north (middle), and west to east (bottom).

This concept can be appreciated in Figure 6a,b, which show the specular points lines of all the
PRNs in view, superimposed into orthophotomaps. These maps correspond to data set (1) and data set
(2) respectively. The flight trajectory is represented by the black dots and it is displayed at a rate of
1Hz. The colored lines are the specular points of the satellites which showed enhanced values of αmean.
The colors of the specular points reflect on the values of αmean associated to them. From Figure 6, it
can be noticed that the boundary between land and water is clearly distinguishable and it correlates
with the orthophotomap. Concentrating on the area between the two lakes, the steep increments
and decays in the values of the peak-to-noise-floor separation along time, that were commented in
Figure 5, actually correspond to the water–land boundaries. The resolution of the water edge detection
is at the order of tens of meters, as expected and reported in similar investigations available in the
scientific literature. This demonstrates the suitability of the GNSS-R onbaord UAVs in detecting water
at a resolution space-borne GNSS-R are not able to provide at the moment. Note that we processed
these measurements at 20 Hz rate, with an integration time of 10 ms only. The measurements rate
could be set up to 100 Hz to provide an even higher resolution.

Now that we know which reflections were from the lake, we want to have an insight on the
reflected power as a function of the satellite elevation. The reflected power depends on many
factors: the transmitted power by the satellite, the satellite elevation, the receiving antenna pattern,
the properties of the reflecting surface, among others. Figure 7 reports the elevation angle for the
reflections observed over the lake. Each point is averaged from five consecutive seconds during which
the specular points were falling on the lakes. We used samples from both data sets (1) and (2) to
create this graph. We also reported the PRN associated to each of these data points. It can be noticed
that the reflected power from water roughly increases linearly with the incident angle (the satellite
elevation). It can also be noticed that although we did not set a cut-off for the elevation angle, the useful
measurements i.e., the measurements from water, were for angles greater than 30 degrees in our data
collection. Measurements from satellites with less then 30◦ simply did not fall on the lakes during this
data collection, and thus did not show significant reflections.
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The previous results and discussion prove the possibility of detecting the presence of water using
our low cost, software radio GNSS-R sensor. They also prove that the edges of water are well detected.
In the following sub-sections, we are investigating the collected data to extract information about the
area of the detected water surfaces. Then, we are analyzing the benefit of multi-GNSS for GNSS-R,
by investigating the improvement in water surface area estimation when multi-GNSS are considered.

(a) data set (1)

(b) data set (2)

Figure 6. GNSS signals specular reflection points superimposed into an orthophotomap.
The colorgrades indicate the measured reflected power αmean.
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Figure 7. The reflected power from the lake αmean VS. satellite elevation.

Water Surface Area Estimation and Benefit of Multi-GNSS

Figure 8 reports the lines of specular points for which the value of αmean exceeded 6 dB. Here,
we superimposed the specular points into the orthophotomap of the upper lake and we linked the
extreme points in order to form a polygon. This roughly creates an estimation of the water surface
using GNSS-R. This particular encircled area is 0.822 km2. It is marginally smaller than the true surface
of the lake which is approximately 0.89 km2 as reported in [57].

This estimate of the surface water area is about 7.5% less than the true area. But, since we are
processing only the reflected GPS signals, the accuracy of such an estimate could be enhanced by
taking advantage of multi-GNSS signals.
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Figure 8. Estimation of the Northern Avigliana lake surface area using GNSS-R. The red dotted lines
represent the estimated boundary of the lake from the GNSS signals reflected from the water surface.

In order to investigate the improvement introduced by Galileo, GLONASS and BeiDou signals,
we simulated a realistic flight trajectory and evaluated the increase in the number of specular points on
the Northern lake. Figure 9a reports the sensor trajectory we choose for the simulation. It passes the
Northern lake roughly in the middle, both on the north–south and west–east directions. We calculated
the lines of specular points for the satellites belonging to the various constellations. We evaluated this
trajectory at 100 and 200 m heights above the Earth surface, which are typical values for small UAV
flights. The reason for simulating two heights is to ensure that the simulated height of the flight is not
biasing the results we obtain, due to the fact that we are measuring a specific lake area; since the flight
height should be proportional to the size of the targeted water body.

Figure 9b–e show samples of the results, with clear enhancement in the number of specular points
lines when constellations are added. Here we report the results of the 200 m flight height above the
Northern lake only. The advantages of considering multi-GNSS reflectometry were also quantified
in terms of the accuracy of the estimation of the surface area of the Northern lake, evaluated as the
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ratio between the estimated area and the true area. Figure 9f reports the estimation accuracy versus
the number of visible satellites, which improves when adding more GNSS signals. It can be seen that
the accuracy of the estimation using GPS only remains at about 80% for the two heights considered for
the UAV, but increases to 90% when including Galileo. It further improves when GLONASS is added,
and reaches 98% when Beidou is added. Notice that the curves for the different heights follow the same
trend which supports our conclusion that the more satellites, the better the area estimation accuracy.

(a) (b) GPS only

(c) GPS and Galileo (d) GPS, Galileo, GLONASS (e) GPS, Galileo, GLONASS, BEIDOU

(f)

Figure 9. Simulation results of multi-GNSS reflections: (a) the sensor trajectory considered, (b–e) the
specular points lines using the different GNSS constellations, (f) the ratio between the estimated and
the real area of the Northern Avigliana lake versus the number of satellites in view, two different
heights of the sensor are considered.
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In fact, the high–end multi-constellation GNSS receivers, are already the state-of-the-art for the
majority of the civil applications and their use on–board UAVs is growing. Indeed, the results presented
in this sub–section refer to a particular case study (and thus they rely on the properties of this water
body). Nevertheless, they demonstrate the expected advantages of processing reflected multi-GNSS
signals. Processing multi-GNSS signals allows increasing the number of specular reflection points
over a certain area. As an example, by, adding Galileo, we expect to double the number of visible
satellites compared to what we could have if we were using GPS alone. At mid latitudes, the number
of visible satellites can be greater than 40 when GLONASS and Beidou are considered too. This results
in increasing the number of polygon vertices and therefore creates a more accurate estimation of the
water surfaces.

Undoubtedly, the method presented here is an effective and simple way for estimating surface
water. It can be integrated with other sources of data, or even to be used when orthophotos or maps are
not available. Surely any reduction or expansion in the water surface can be detected when comparing
against historic data. Indeed, utilizing UAV-based GNSS-R sensors, combined with ad hoc processing
routines, proves to be an innovative tool for water monitoring. The results shown here were obtained
computing the specular points at a rate of 20 Hz, but finer resolutions are attainable with a moderate
increase in the complexity.

3.2. Case-Study II: River Stretches

The second case study presents detecting and measuring the Dora river stretches, which have
widths that vary between few meters and tens of meters.

The values of αmean for PRN 1 and PRN 32 from data set (1) are reported in Figure 10a, for one
pass crossing the river course. These PRNs have been selected because they show an evident increment
of αmean in the observed time window. Using the same approach followed for the previous case study,
we superimpose the lines of specular points to an orthophotomap in Figure 10b. Again, the black
points show the flight trajectory displayed at a rate of 1 Hz. The colored lines are the specular points
displayed with a rate of 20 Hz. The values of αmean associated to these specular points are indicated by
the colors of the lines. The reflected signals recorded from the river can be appreciated from Figure 10b,
where the boundaries between land and water correlate well with the orthophotomap, particularly the
reflections from the specular points associated to PRN1 (see the left part of Figure 10b). The width
of the river where the specular points are red is approximately 30 m. However, differences in the
reflected power can be noticed by observing αmean values for different satellites. Here, the values of
αmean for PRN32 are lower compared the values associated to PRN1. This is reasonably due to the
different features of the reflecting surface. While for PRN1 the line of specular points crosses a portion
of the river with sharp transitions between land and water, the same ways as in case study 1 (i.e.,
the red portion in the figure), the line of specular points related to PRN32 falls on a portion of the
river following an artificial dam. Here the roughness of the water is different than the other section of
the river crossed by PRN1 mentioned above, with low water depth and stones outcropping on the
river level.

Figure 11 reports the reflections from another portion of the river. These were measured from data
set (2). The width of this water channel is approximately 12 m. The sensor and the post-processing
methodology are the same, so is the result (i.e., water channel detection): boundaries of the river
stretch can be detected, and its width eventually estimated.
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Figure 10. Example of river width detection taken from data set (1).
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Figure 11. Example of water channel width detection taken from data set (2).
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3.3. Case-Study III: Small Artificial Water Basins

The third case study presents the detection of the presence of small water surfaces, a small
lake in the backyard of building and two small adjacent artificial ponds in a golf court. Starting
with the golf court water basins, Figure 12a shows the presence of reflected signals, in terms of
peak-to-noise-floor separation for PRN 11 and PRN 32. These showed an increment of the values that
could be associated to reflections. Following the same approach used for the previous case studies,
the specular points lines were overlapped to the orthophotomap. Figure 12b shows that the edges of
the pond approximately correspond to the increase (decrease) of the peak-to-noise-floor separation.
The width of the upper pond is approximately 120 m while the smaller pond is approximately 35 m.
This indicates that GNSS-R, in addition to the monitoring of lakes and rivers, can enable the detection
of small water surfaces.
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Figure 12. Example of the detection of an artificial pond taken from data set (1).
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The reflections from the small backyard lake of Figure 13 were recorded on flight (2).
The approximate width of this lake is 45 m. Like in the case of the golf court basin, the presence
of the pond was clearly detected and the width of the lake is clearly distinguishable processing PRN13.
These types of detection can provide valuable data to the potential application of supporting operations
performed after floods, especially for post-mission analysis and in case images from satellites are
not available.
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(b) Map display of the backyard-pond, with the specular points superimposed on it. The colorgrade
indicates the peak-to-noise-floor separation αmean of the reflected signal.

Figure 13. Example of the detection of an backyard pond taken from data set (2).

4. Conclusions

This paper presents the preliminary results of investigating the feasibility of using data from
UAV-based GNSS-R sensors for water detection and with a potential application in supporting flood
monitoring operations. The GNSS-R sensor used in this paper is a custom made sensor, built using
low cost commercial of the shelf components. It allowed for collecting samples of ground-reflected
GNSS signals, which revealed the presence of water surfaces on ground when post processed.

Three different case studies were investigated through the processing of two different data sets
collected in different seasons. The case studies are: a lake, a river and artificial water basins. These cases
were selected because they challenged the sensor in detecting flood-like water presence. Performing
the data collections over the lakes (and in general over large water surfaces), we were able to detect
the boundaries between ground and water with few tens of meters accuracy and to estimate the
extension of the water surface. Moreover, It was shown that the multi-GNSS approach (i.e.: processing
of GPS, Galileo, GLONASS and Beidou signals) could even improve the estimation accuracy, without
extra costs on the sensor hardware, but at the expenses of a moderate increase in the complexity of
the software used in the off-line analysis. The data collections from the UAV based GNSS-R and
the consequent signal processing demonstrated to be effective also for the detection of narrower
water surfaces, like river stretches and water channels. In addition to that, small unexpected water
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presence on the ground were localized including an artificial pond in a golf court and a backyard pond.
The experiments reported in this paper confirmed that the use of GNSS-R onboard UAVs is a valid
remote sensing tool to be used for water detection, and potentially for flood monitoring operations.
However, to extend these results to flood monitoring, weather conditions affecting both the UAV
operations and the water surface roughness need to be further analyzed. The UAV stability, attitude
and orientation are to be considered because the geo-referencing of the measurements is affected when
the RHCP and the LHCP antennas might be no longer pointing at Zenith and Nadir respectively.
Moreover, investigation of the roughness and wind speed from small and narrow water bodies could
be of interest, in a similar way as GNSS-R has been used for ocean surface roughness and wind speed
measurements e.g., in [18,19,21,22]. Furthermore, since flight trajectory optimization is a common
practice in UAV-based data collections, we recommend investigating how GNSS-R measurements
will perform in an optimized data collection scenario. Also investigating the optimization of the
UAV trajectory and the data collection time of the day to achieve optimum multi-GNSS reflectometry
measurements is suggested. Finally, for flood detection in the future, we recommend also investigating
the possibility to integrate data from the digital elevation model of the terrain with data coming from
GNSS-R sensors. Indeed, GNSS-R should be considered as a valuable source of geospatial data after
floods, for UAV-based reconnaissance of remote areas and for environmental monitoring.
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