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Abstract: The main purpose of this paper is to use ensembles techniques of functional tree-based
bagging, rotation forest, and dagging (functional trees (FT), bagging-functional trees (BFT), rotation
forest-functional trees (RFFT), dagging-functional trees (DFT)) for landslide susceptibility modeling
in Zichang County, China. Firstly, 263 landslides were identified, and the landslide inventory map
was established, and the landslide locations were randomly divided into 70% (training data) and 30%
(validation data). Then, 14 landslide conditioning factors were selected. Furthermore, the correlation
analysis between conditioning factors and landslides was applied using the certainty factor
method. Hereafter, four models were applied for landslide susceptibility modeling and zoning.
Finally, the receiver operating characteristic (ROC) curve and statistical parameters were used to
evaluate and compare the overall performance of the four models. The results showed that the area
under the curve (AUC) for the four models was larger than 0.74. Among them, the BFT model is
better than the other three models. In addition, this study also illustrated that the integrated model is
not necessarily more effective than a single model. The ensemble data mining technology used in this
study can be used as an effective tool for future land planning and monitoring.

Keywords: landslide susceptibility mapping; ensemble techniques; functional trees; bagging;
rotation forest; dagging

1. Introduction

A landslide is a complex natural phenomenon [1]. It is influenced by many geological
environmental factors, such as topography, landform, geology, land use, and vegetation [2]. A landslide
is one of the most familiar and disastrous geological hazards with great destructiveness, which always
poses a serious threat to human life, property, and living environment, and restricts human progress and
development, especially when geological environments are increasingly affected by human engineering
activities [3]. Therefore, landslide prediction is of great significance for landslide prevention and
control [4,5]. One of the greatest tasks of landslide disaster and risk mitigation is to prepare landslide
susceptibility maps [6].

With the development and progress of the geographic information system (GIS), its application
in spatial analysis of landslides is becoming more and more popular. With proper use of GIS,
most of the landslide susceptibility mapping methods can realize the automation of evaluation
and standardization of data management technology, and enable us to build more efficient and
accurate maps [7,8]. This is because these technologies can obtain, query, store, analyze, manipulate,
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and display a set of spatial and non-spatial data about landslide conditioning factors [8–10]. Landslide
susceptibility zoning mapping technology includes a variety of statistical techniques and statistical
methods, including Dempster–Shafer [11–13], entropy [14–16], logistic regression [17–19], certainty
factors [20–22], statistical index [23,24], analytic hierarchy process [25–27], frequency ratio [20,28],
weight of evidence [29–32], index of entropy [20,33], multivariate adaptive regression spline [34–36],
and evidential belief function [37–39].

Landslide susceptibility mapping is a typical complex nonlinear problem in a large area of a
landslide research area [5]. Thus, the results obtained by statistical techniques and statistical methods
may not be able to achieve satisfactory accuracy [5,40]. Later, many researchers proposed a large number
of machine learning techniques for evaluating the susceptibility of landslides, which usually have
high prediction accuracy and better performance in data-driven models, such as naive Bayes [41–43],
random forests [2,44–46], artificial neural networks [47–50], kernel logistic regression [51,52], support
vector machine [53,54], and decision trees [55,56]. However, the performance of machine learning
methods is generally influenced by the quality and quantity of training data, and the dependence
on modeling parameters is very high [5,57]. So far, it is not clear which method is most suitable for
landslide susceptibility mapping [5].

In recent years, hybrid technology is considered to be more effective than single technology [58].
In order to explore more reasonable and perfect research results, a variety of integrated algorithms
have been developed for landslide susceptibility modeling [6], such as adaptive neuro-fuzzy inference
system [59,60], artificial neural networks-Bayes analysis [61], and Evidential Belief Function-fuzzy
logic [62]. The important capability of the integrated model is that the method is more accurate in
identification and greatly improves the prediction ability compared with the single machine learning
model [6].

The purpose of this study is to propose and validate the ability and effect of ensemble techniques
in landslide susceptibility modeling, and functional trees are selected as the base classifier to ensemble
with bagging, rotation forest, and dagging models in Zichang County (China). Receiver operating
characteristics (ROCs) and statistical parameters were used to evaluate and compare the overall
performance of the four models.

2. Study Area and Data Used

2.1. The Study Area

Zichang County is located in the north of Yan’an City, Shaanxi Province, China, between longitudes
109◦11′58” E and 110◦01′22” E and between latitudes 36◦59′30” N and 37◦30′00” N, with a total area
of 2405 km2 (Figure 1). Zichang County is a typical hilly and gully region of the Loess Plateau.
The terrain is tilted from northwest to southeast, with an elevation of 933 to 1574 m. Zichang County
prevails a warm temperate semi-arid continental monsoon climate, with low temperature and large
temperature difference. The annual average temperature within the territory is 9.1 ◦C, the annual
average precipitation is 514.7 mm. The rivers in the territory belong to the Yellow River system, which
is divided into three tributaries: Qingjian River, Wuding River, and Yanhe River.

2.2. Data Preparation

The quality of landslide inventory is very significant for landslide susceptibility modeling, and
an accurate landslide inventory map is the foundation of landslide susceptibility modeling [63,64].
In this study, three techniques were used to improve the reliability and accuracy of the landslide
inventory map: historical report, aerial photo interpretation, and field survey using Global Navigation
Satellite Systems (GNSS). According to the landslide inventory map in this area, 263 landslides were
identified, and 184 landslide locations (70%) were randomly sampled as the training data and the other
79 landslide locations (30%) were used to validate models.



Appl. Sci. 2020, 10, 16 3 of 20Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 20 

 

Figure 1. Study area. 

2.1. Data Preparation 

The quality of landslide inventory is very significant for landslide susceptibility modeling, and 
an accurate landslide inventory map is the foundation of landslide susceptibility modeling [63,64]. In 
this study, three techniques were used to improve the reliability and accuracy of the landslide 
inventory map: historical report, aerial photo interpretation, and field survey using Global 
Navigation Satellite Systems (GNSS). According to the landslide inventory map in this area, 263 

Figure 1. Study area.



Appl. Sci. 2020, 10, 16 4 of 20

After compiling the landslide inventory, it is necessary to choose the landslide conditioning factors
to create the landslide susceptibility map [65]. The selection principle is to consider the mechanism and
geo-environmental characteristics of landslide occurrence in the study area. Generally, the landslide
conditioning factors used to evaluate landslide susceptibility include three categories: topographic
factors, geological factors, and environmental factors. In this paper, 14 landslide conditioning factors
were selected and transformed into the same resolution (30 × 30 m), including elevation, slope, aspect,
plan curvature, profile curvature, sediment transport index (STI), stream power index (SPI), topographic
wetness index (TWI), the normalized difference vegetation index (NDVI), land use, lithology, soil,
distance to roads, and distance to rivers (Table 1, Figure 2).

Table 1. Source and scale of conditioning factors.

Factors Data Source Format Resolution/Scale

Elevation, slope, aspect, plan curvature,
profile curvature, sediment transport index
(STI), steam power index (SPI), topographic

wetness index (TWI), distance to roads,
distance to rivers

ASTER GDEM Raster, 30 m

Normalized difference vegetation index (NDVI) Landsat 8 operational land imager Raster, 30 m
Lithology Geological maps Polygon, 1:200,000
Land use Land use/land cover maps Polygon, 1:100,000

Soil Soil type maps Polygon, 1:1,000,000
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3. Modeling Approach

The chapter included the illumination of five models, namely certainty factors, functional trees,
bagging, rotation forest and dagging. The certainty factors model was used to express the correlation
between landslide and conditioning factors, the functional trees model was used as a base classifier,
the bagging, rotation forest, and dagging were used as ensemble algorithms.

3.1. Certainty Factors

The certainty factor (CF) belongs to a probability function, which was first proposed in 1990 [66]
and modified subsequently [67]. The certainty factor can be expressed as [68]:
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CF =

 PPa−PPs
PPa(1−PPs) i f PPa ≥ PPs

PPa−PPs
PPs(1−PPa) i f PPa < PPs

(1)

where, PPa is the conditional probability of landslide in class a in study area A, PPs is the prior
probability of the total number of landslides in study area A.

The range of CF is −1 to 1, the positive value indicates that the degree of certainty of landslide
occurrence increases, while the negative value indicates that the degree of certainty of landslide
occurrence decreases [69–71].

3.2. Functional Trees

Functional trees (FT) are a combination of a discriminant function and multivariable decision tree
through constructive induction [72]. Functional trees use logistic regression functions to calculate the
splitting of internal nodes (called oblique splitting) and estimation of leaves [73–75]. FT learns the
classification tree based on the attributes of leaf nodes, decision nodes or nodes and leaves [38,76].
The decision nodes are built while the trees are growing, while the functional leaves construct when
the trees are pruning [76]. Functional trees have the following three usage types: (1) the full functional
tree using a regression model for internal nodes and leaves; (2) function tree internal-only uses the
regression model for internal nodes; (3) functional tree leaves only use the regression model for
leaves [75,76].

In the leaf logic regression function, the logic enhancement (iteration are weighted) of the
least-squares function is determined for each output consisting of two classes [77]. Among them,
training datasets of D and n samples (Ai, Bi) with Ai ∈ Rn, Bi ∈ {1, 0} [76]. Ai is the input vector
containing all landslide condition factors [75,76]; whereas P(A) is the probability prediction value of
landslide occurrence; Bi is the coefficient of the i component of the input vector Ai. The posterior
probability P(A) of the left ventricle is calculated as follows [78]:

fBi(A) =
14∑

i=1

BiAi + B0 (2)

P(A) =
e2 fBi (A)

1 + e2 fBi (A)
(3)

3.3. Bagging

Bagging is based on the concepts of bootstrapping and aggregating, which is used to obtain a more
robust and accurate landslide model. Bagging is one of the most popular integration algorithms [79].
The process of a bagging algorithm includes:

Firstly, the bootstrap samples S(xi, yi) are randomly resampled from a training set (xi, yi), forming
a set of training subsets, where, xi ∈ R, yi ∈ (landslide, non-landslide) [80]. Then, several models based
on a classifier are constructed according to each subset, Ci(x) is a classifier constructed from each
guiding sample. All models based on classifier (Li) are aggregated to generate the final model (L′),
where, L1, L2, . . . , Ln generates a combined classifier (L′). L′ predicts the class label of a given instance
x by calculating the votes using the following equation [81]:

L′(x) = arg max
y∈Y

t∑
i=1

L(Ci(x) = y) (4)

3.4. Rotation Forest

Rotation forest (RF) is a popular aggregation technique proposed by Rodriguez et al. [82]. RF is
an effective technique for improving weak classifiers [83]. It uses principal component analysis (PCA),
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a multivariate technique used for analyzing large multivariate datasets, to reduce its dimensions [84].
In this method, features are extracted from the learning (training) dataset and a base classifier is used
to generate learning sub training dataset [82].

For the use of RF: randomly divide the training dataset into D subsets, where D is the parameter
of the algorithm, and construct the rotated sparse matrix by performing feature extraction for each
subset. The classifier is based on the feature of a repeated matrix projection, and the result is obtained
by combining the output of multiple classifiers [84]. RF can be used with any basic classifier, and the
feature extraction of each classifier retains all the features that promote variability [84].

In the RF algorithm, x = (x1, x2, · · · , xn) is the training sample set, and Y is the corresponding
class label, that is used to consider landslides and non-landslides; D1, D2, · · · , DL are the classifier in
the set frame; and P is the set of landslide condition factors. The coefficients of the rotation matrix Ri

a

are obtained by transformation and base classifier. Obtain Ri
a by rearranging Ri matrix [84]:

Ri =


bi,1

(1), · · · , bi,1
(M1) 0 · · · 0

0 bi,2
(1), · · · , bi,2

(M2) · · · 0
...

...
. . .

...
0 0 · · · bi,K

(1), · · · , bi,K
(MK)

 (5)

For each sub training dataset extracted by the rotation matrix Ri
a, average grouping method is

adopted to obtain the coefficients of each class in a given test sample [85]:

µ j
(x) =

1
L

L∑
i=1

di j(xRi
a), j = 1, . . . , c. (6)

where µ j
(x) is the maximum confidence specified on the class, classifier probability allocation Di,

and the di j regression di j(xRi
a) [85].

3.5. Dagging

Dagging is a well-known resampling integration technique originally proposed by Ting and
Witten to generate many disjoint hierarchical folds from a dataset, and each data partition can be sent
separately to the basic classifier [86]. The final forecast is based on a majority vote [86]. The main
principle is to use a majority vote to combine multiple classifiers to improve the prediction accuracy of
the basic classifier [86].

For a given training dataset, which has n samples, the dagging algorithm constructs M datasets (M is
a free parameter) from the original training dataset [87]. Each dataset contains n samples [87], and no
two datasets have the same sample. A basic classifier is trained for each dataset to build a classification
model [87]. Therefore, the M dataset can be summarized into M classification models [86,87].

4. Results

This section consists of the detailed description of the results of the present study, which includes
the following four sections: (1) the correlation between landslide and conditioning factors, and then
the CF values are used as input to weight the classes of conditioning factors; (2) selection of landslide
conditioning factors that are positive to the modeling process; (3) application of four hybrid models
and generate landslide susceptibility maps; and (4) validation and comparison of models using ROC
and Chi-squared methods.

4.1. Correlation Analysis of Landslide and Conditioning Factors Using the CF Method

The landslide density at each class was calculated by combining each thematic map and landslide
inventory map. Meanwhile, this paper summarizes the spatial relationship between the landslides and
conditioning factors using the CF method (Table 2). According to the calculation results in Table 2,
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the highest CF value (0.661) is found in the elevation category of 1500–1574 m, which indicates that the
probability of landslide is the highest. Among the six classes classified by the slope, 40◦–50◦ (0.324)
is the highest CF value of the six categories. As far as aspect is concerned, the CF values of slopes
facing south (0.309) and southwest (0.242) are the largest. Among the five classes classified by plan
curvature, the classes of (−9.24)–(−1.79) have the lowest CF value (−0.495), and the classes of 1.44–7.56
have the highest CF value (0.244). Among the five classes classified by profile curvature, the classes of
(−1.65)–(−0.46) have the lowest CF value (−0.346), and the classes of 0.58–1.97 have the highest CF
value (0.277). For STI, the frequency of landslide occurrence is the most relevant in 20–30 categories,
with the largest CF value (0.220). In TWI, the CF value is the largest in the classes of 2–3 (0.164) and the
smallest in the classes of >5 (−1). For NDVI, the lowest CF value (−0.326) was found in the classes of
0.01–0.04, and the highest CF value was found in the categories of 0.07–0.09 (0.223). In terms of land
use, landslides mostly occur in residential areas (0.465). Among the five types of lithology, the groups
2 and 4 were relatively more sensitive to landslide occurrence, with CF values of 0.430 and 0.465,
respectively. For soil, the majority of landslides occurred in red clay soils with a CF value of 0.712.
It can be seen from a distance to roads that the closer the distance is, the more sensitive the landslide.
CF value is the largest in the categories of 0–100 m (0.452). For distance to rivers, CF value is the largest
in the categories of 0–200 m (0.585).

Table 2. Relationship between landslides and conditioning factors using the certainty factor (CF) method.

Conditioning Factors Classes Percentage of Landslide Percentage of Domain CF

Elevation (m)

933–1000 2.17 1.14 0.476
1000–1100 22.28 13.38 0.400
1100–1200 33.15 28.22 0.149
1200–1300 29.35 31.06 −0.055
1300–1400 9.24 20.45 −0.548
1400–1500 3.26 5.57 −0.415
1500–1574 0.54 0.18 0.661

Slope (◦)

<10 0.00 10.44 −1.000
10–20 30.43 26.09 0.143
20–30 36.96 35.14 0.049
30–40 26.09 23.90 0.084
40–50 6.52 4.41 0.324
>50 0.00 0.02 −1.000

Aspect (◦)

F (−1) 0.00 0.05 −1.000
N (0–22.5; 337.5–360) 7.61 9.25 −0.177

NE (22.5–67.5) 6.52 13.16 −0.504
E (67.5–112.5) 17.39 16.34 0.060

SE (112.5–157.5) 13.59 11.26 0.171
S (157.5–202.5) 14.67 10.14 0.309

SW (202.5–247.5) 16.85 12.77 0.242
W (247.5–292.5) 17.93 15.44 0.139

NW (292.5–337.5) 5.43 11.59 −0.531

Plan curvature (100/m)

(−9.24)–(−1.79) 2.72 5.38 −0.495
(−1.79)–(−0.54) 15.76 17.98 −0.124

(−0.54)–0.38 45.11 42.08 0.067
0.38–1.44 25.54 26.34 −0.030
1.44–7.56 10.87 8.22 0.244

Profile curvature
(100/m)

(−7.29)–(−1.65) 7.07 8.08 −0.126
(−1.65)–(−0.46) 15.76 24.10 −0.346

(−0.46)–0.58 41.85 39.33 0.060
0.58–1.97 29.35 21.23 0.277
1.97–9.45 5.98 7.26 −0.177

STI

0–10 44.02 48.27 −0.088
10–20 33.70 30.96 0.081
20–30 15.22 11.21 0.263
30–40 3.26 4.22 −0.227
>40 3.80 5.34 −0.287
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Table 2. Cont.

Conditioning Factors Classes Percentage of Landslide Percentage of Domain CF

SPI

0–10 20.11 32.46 −0.381
10–20 25.00 19.69 0.212
20–30 17.39 13.57 0.220
30–40 10.33 8.20 0.206
>40 27.17 26.08 0.040

TWI

1.11–2 55.43 56.33 −0.016
2–3 39.67 33.16 0.164
3–4 3.80 7.36 −0.483
4–5 1.09 2.83 −0.617
>5 0.00 0.31 −1.000

NDVI

(−0.15)–0.01 14.13 13.96 0.012
0.01–0.04 11.41 16.94 −0.326
0.04–0.07 16.85 22.45 −0.250
0.07–0.09 35.33 27.44 0.223
0.09–0.31 22.28 19.20 0.138

Land use

Farmland 25.54 36.96 −0.309
Forestland 20.11 18.93 0.059
Grassland 53.80 43.70 0.188

Water bodies 0.00 0.10 −1.000
Residential areas 0.54 0.29 0.465

Others 0.00 0.02 −1.000

Lithology

1 60.33 75.17 −0.197
2 21.74 12.38 0.430
3 0.54 0.94 −0.421
4 12.50 6.69 0.465
5 4.89 4.82 0.015

Soil

Cultivated loessial soils 76.63 85.66 −0.105
Alluvial soils 15.22 11.83 0.223
Red clay soils 8.15 2.35 0.712

Water 0.00 0.15 −1.000

Distance to roads (m)

0–100 27.72 15.20 0.452
100–200 17.39 11.42 0.344
200–300 11.96 11.35 0.050
300–400 6.52 8.93 −0.270

>400 36.41 53.10 −0.314

Distance to rivers (m)

0–200 69.02 28.64 0.585
200–400 14.67 25.39 −0.422
400–600 9.24 22.38 −0.587
600–800 3.26 15.61 −0.791

>800 3.80 7.98 −0.523

4.2. Selection of Landslide Conditioning Factors

In order to ensure the accuracy of landslide prediction results, it is necessary to remove unimportant
or unrelated factors [88,89]. In this study, the Pearson correlation method [90,91] with 10-fold
cross-validation was used as an effective feature selection method for evaluating the predictive ability
of conditioning factors. The distance to rivers, slope, and lithology has the highest predictive abilities
(Table 3). Since a no conditioning factor has a null predictive value, all are included in this analysis.

4.3. Application of Landslide Susceptibility Models

In this study, the training data and CF values were used to construct four models, namely the
functional trees (FT) model, bagging-functional trees (BFT) model, rotation forest-functional trees
(RFFT) model, and dagging-functional trees (DFT) model, respectively. To get the best performance of
the model, the iteration times of the FT model and the minimum number of instances considering the
separation of nodes from the training dataset are optimized to 15 and 36, respectively. When building the
BFT, RFFT, and DFT models, the two parameters mentioned above were fixed firstly. After completing
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the above work, the optimized models were applied to the whole research area to create landslide
susceptibility maps. The calculated landslide sensitivity index (LSI) values can be interpreted as the
probability in the range of 0 and 1, and all LSI values can be converted to ArcGIS to generate the final
landslide susceptibility map.

Table 3. Correlation attribute of landslide conditioning factors.

Factors Average Merit Standard Deviation

Distance to rivers 0.382 ±0.015
Slope 0.224 ±0.008

Lithology 0.180 ±0.012
Elevation 0.185 ±0.018

Distance to roads 0.172 ±0.015
TWI 0.171 ±0.014
SPI 0.152 ±0.015

Aspect 0.147 ±0.011
Soil 0.141 ±0.013

Profile curvature 0.136 ±0.020
NDVI 0.105 ±0.024

Landuse 0.097 ±0.013
Plan curvature 0.038 ±0.011

STI 0.041 ±0.015

Four landslide susceptibility maps generated by FT, BFT, RFFT, and DFT models are shown
in Figure 3a–d respectively. The landslide susceptibility maps were reclassified into five classes,
namely very low, low, moderate, high, and very high using the natural break method [92].
The comparison of area sizes for each category of the four models is shown in Figure 4. For the FT
model, the largest area is the very low class (27.92%), followed by high class (23.47%), very high class
(20.21%), low class (17.55%), and the smallest area is the moderate class (10.86%). For the BFT model,
the percentages of very low, low, moderate, high, and very high classes are 24.02%, 22.87%, 19.88%,
18.10%, and 15.12%, respectively. The results of landslide susceptibility zoning using the RFFT model
show that these percentages are 37.62% (very low), 21.41% (low), 7.79% (moderate), 12.25% (high),
and 20.93% (very high), respectively. For the DFT model, the percentages of very low, low, moderate,
high, and very high classes are 19.70%, 30.59%, 23.72%, 16.50%, and 9.49%, respectively.

4.4. Model Performances and Comparisons

In this study, the landslide susceptibility models were evaluated by using the areas under the
ROC curves (AUC), standard error, 95% confidence interval, and significance level p-value. The ROC
curve can be used as a useful tool to indicate the quality of deterministic and probabilistic prediction
system [93–95]. The sensitivity (true positive rate) is shown as y-axis and 1-specificity (false positive
rate) as x-axis [94,96]. The AUC values are in the range of 0.5 to 1 [97], and the excellent attributes of
the model increase with the AUC values [98].

Using the training dataset, the performance of the landslide susceptibility models was evaluated
(Table 4). The BFT model has the highest AUC value (0.947), the lowest standard error (0.011), and the
narrowest 95% confidence interval (0.925–0.969). It is followed by the RFFT model, the FT model,
and the DFT model. For the validation data, the calculation results are shown in Table 5. The BFT
model has the highest AUC value (0.804), the lowest standard error (0.035), and the narrowest 95%
confidence interval (0.736–0.871). It comes before the DFT model, the FT model, and the RFFT model.
These results show that all performance in the validation dataset is slightly worse than those of the
training data. These results show that the BFT model is the best model among the four models, and the
ensemble model is not necessarily superior to the single model.
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Table 4. Parameters of receiver operating characteristic (ROC) curves with the training dataset.

Test Variables FT Model BFT Model RFFT Model DFT Model

ROC Curve Area 0.836 0.947 0.839 0.797
Standard Error 0.021 0.011 0.020 0.023

95% Confidence Interval 0.795–0.878 0.925–0.969 0.798–0.879 0.752–0.842
p-Value <0.0001 <0.0001 <0.0001 <0.0001

Table 5. Parameters of ROC curves with the validation dataset.

Test Variables FT Model BFT Model RFFT Model DFT Model

ROC Curve Area 0.745 0.804 0.740 0.748
Standard Error 0.039 0.035 0.0394 0.039

95% Confidence Interval 0.668–0.822 0.736–0.871 0.663–0.817 0.672–0.824
p-Value <0.0001 <0.0001 <0.0001 <0.0001

A Chi-squared test was used to analyze the significance of the four models (Table 6). It can be seen
that only the comparison of FT and RFFT exhibits lower Chi-squared value (0.044) and higher p-value
(0.834), which indicate no significant difference between the two models. The other five groups all
present larger Chi-squared values and lower p-values. The significant differences between the models
indicate that the differences between the models are good, which is more conducive to the modeling
work and enables this study to obtain the susceptibility results smoothly.

Table 6. Pairwise comparison of four models.

Pair FT vs. BFT FT vs. RFFT FT vs. DFT BFT vs. RFFT BFT vs. DFT RFFT vs. DFT

Chi-squared 40.376 0.044 8.205 44.928 63.681 14.454
p-Value <0.0001 0.834 0.004 <0.0001 <0.0001 0.000

Significance Yes No Yes Yes Yes Yes

5. Discussions

In this current study, the correlation analysis between conditioning factors and landslides was
carried out by the CF method. The probability of landslide occurrence is in inverse correlation with
elevation. This may be related to local rainfall and loess and may be related to human engineering
activities. With the increase of slope angle, the degree of certainty of landslide occurrence decreases.
This may be due to the larger slope angle, the less loose material or more weatherproof material. At the
same time, it can be observed that most landslides occur on slopes facing south and southwest with
the highest probability. This is mainly because more rain and sunshine are available to the south and
landslides are prone to occur. The curvature of plan and profile shows anomalous results. The curvature
of the plan (near zero) and convex plan (positive value) are highly sensitive. This anomaly may
be related to the overweight effect [28,99,100]. In terms of land use, the probability of landslides
in residential areas is the largest, which can explain the impact of human engineering activities on
landslides. For the lithology, the second group (Tertiary (T): mudstone, conglomerate) and the fourth
group (Triassic (T): mudstone, sandstone, songlomerate) are more sensitive to landslide occurrence.
There is groundwater flow in the relatively fractured saturated sandstone and fractured conglomerates,
resulting in additional load on the mudstone, resulting in landslides [28,101]. The linear characteristics
of the road and river buffers are inversely correlated with landslide susceptibility in the distance. Such an
important result has been repeated in many kinds of literature [6,102–104]. However, the remaining
five variables make little contributions to the occurrence of landslides.

According to ROC curve analysis (Figures 5 and 6) and statistical index analysis (Tables 4 and 5),
it can be concluded that the four machine learning methods selected in the training and testing data
assemble a very small p-value and significant high performance in the 95% confidence interval. The BFT
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model has the highest AUC value (0.947), the lowest standard deviation (0.011), 95% confidence interval
(0.925–0.969), and p-value (<0.0001). However, the DFT model has the worst results in this study
area. The DFT model has the lowest AUC value (0.797), the highest standard deviation (0.023),
95% confidence interval (0.752–0.842), and p-value (<0.0001). There is no doubt that most ensemble
models are superior to single models. However, there is still a phenomenon that the performance
of hybrid machine learning methods is not always better than a single model. In order to find more
optimal solutions, much more different set models should be applied to the research field.
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According to the paired comparison of the performance of the models (Table 6), the Chi-squared
test shows that the Chi-squared values are relatively large. Among them, the Chi-squared value of the
FT and RFFT models is smaller, the p-value is larger, and the difference between these two models
is not significant. The good results obtained from the other three groups can serve as a powerful
basis for modeling in this study. At the same time, the BFT model is compared with the other three
models in pairs, and the difference is significant. According to the evaluation results of various
evaluation criteria, the performance of the BFT model is better than that of the RFFT model, FT model,
and DFT model. As a final recommendation, the obtained results can be useful for policy planning and
decision-making in areas prone to landslides. The proposed BFT model, based on performance and
prediction accuracy, is suggested in the study area and other regions over the world where they have
similar geo-environmental conditions with a logical caution.

6. Conclusions

This study applied functional tree-based ensemble techniques (FT model, BFT model, RFFT
model, DFT model) for landslide susceptibility spatial modeling in Zichang County, China.
Fourteen conditioning factors and the occurrence of landslides were used to analyze the correlation.
Meanwhile, the ROC curve and statistical parameters were used to evaluate and compare the accuracy
of the model results. The results showed that the prediction rate of the BFT model is the highest.
Therefore, the BFT model is the best optimization ensemble model in this study, and it can be used as
an advantageous and promising method for landslide susceptibility modeling. Finally, the landslide
susceptibility map generated by this study can be used as an effective tool for future land planning
and monitoring by government officials or research experts and scholars.
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