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Abstract: The essential roles of Fe oxides in stabilizing long-term soil organic carbon (SOC), especially
aromatic dissolved organic carbon (DOCaro), are well-established in forest soils and sediments. We
chose to focus on these processes in agricultural soils in which the input and translocation of native
DOC to deeper soils are impacted by management practices. We quantified SOC, Fe oxide bound
SOC (Fe-bound OC), and the DOCaro sorption in a forest, a cropland, and a pasture soil at 0–10 and
10–25 cm. Significantly larger amounts of Fe oxides in the cropland soil were observed compared to
the forest and pasture soils at both depths (p < 0.05). Land management practices and depth both
significantly influenced the Fe-bound OC percentage (p < 0.05). Larger maximum sorptions of DOC
in the cropland (315.0 mg kg−1) and pasture (395.0 mg kg−1) soils than the forest soil (96.6 mg kg−1)
at 10–25 cm weres found. DOCaro sorption decreased in the three soils at 0–10 cm (slope of −0.002 to
−0.014 L2 mg−2 m−1) as well as the forest soil at 10–25 cm (−0.016 L2 mg−2 m−1) with increasing
equilibrium DOC concentration. Conversely, the cropland and pasture soils at 10–25 cm increased
(0.012 to 0.014 L2 mg−2 m−1). The different sorption behaviors of DOCaro in these surface soils
indicate that the forest, cropland, and pasture-managed soils may have more complex and various
sorption behaviors in stabilizing DOCaro and non-DOCaro.

Keywords: soil organic carbon; agricultural soils; amorphous Fe; non-aromatic DOC; sorption

1. Introduction

Soil organic carbon (SOC) bridges biogeochemical C cycling among soil, aquatic, and
atmospheric environments [1]. Without appropriate soil management, SOC is linked to cur-
rent environmental issues, such as global warming and surface water brownification [2,3].
Iron (Fe) oxides are critical in regulating SOC dynamics and significantly impact SOC
biogeochemical cycling [4–8]. The SOC bound to Fe oxides (Fe-bound OC) is physically
inaccessible to soil microorganisms, which inhibits the degradation and mineralization
of SOC and thus has a long residence time [9,10]. In a changing climate, sequestering
more SOC is a promising approach to mitigate these environmental issues [11], especially
Fe-bound OC.

One dominant mechanism of stabilizing SOC is the sorption of DOC to soil mineral
surfaces mediated by Fe oxides, which is supported by recent molecular level technolo-
gies [10,12–14]. SOC is a complex assemblage of various microbial-derived and plant-
derived compounds, root exudates, and polyaromatic char with different reactivity caused
by the various functional groups [1,11]. This SOC chemical heterogeneity, which is due
to various sources and alteration factors, brings more uncertainty and diversity to a full
understanding of the mechanisms of SOC stabilization, especially in agricultural soils
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with varied management practices [15–17]. Carbon stocks in agricultural soils contribute a
significant amount of C to global C stock and play an important role in mitigating global
warming [18]. It has been reported that grass and cropland have a higher potential to pre-
serve OC compared to forest soil [19]. However, the roles of Fe oxides in SOC stabilization
in agricultural soils are not as well documented as in the forest soils and in sediment [7,20].

Agricultural management practices are commonly adapted as strategies to improve
crop production and sequester more SOC [11,17,21]. Manure application in croplands and
continuous grazing in pastures are common management practices in agricultural ecosys-
tems, which increase the aromaticity of DOC in soil [21–26]. Agricultural management
practices also alter the concentrations of Fe oxides in soil solution, which, in turn, influences
the preservation of DOC by Fe oxides [27]. Poorly crystalline iron oxides in agricultural
soils increased significantly due to manure application [28–30]. Since soil Fe occurs in
various forms differing in reducibility, it is important to have a better understanding of Fe
oxides with different reducibility in soil in stabilizing SOC, for example, exchangeable Fe
and microbially reducible Fe [31,32]. However, multiple forms of Fe oxides with different
reducibility in stabilizing SOC are still understudied in agricultural soils.

Plant-derived aromatic and lignin-like high molecular weight compounds are pref-
erentially retained by reactive amorphous Fe oxides by forming irreversible inner-sphere
bonds, which resist DOC desorption and thus contribute to long-term SOC preserva-
tion [12,14,33,34]. Long term agriculture inputs reshape the quantity and quality of SOC
present in the soil including aromatic structures, structural complexity, and DOC molecular
weight [26,35,36]. Interactions between DOC and Fe oxides are highly impacted by the
changes in quantity and quality of DOC accessible to soil Fe minerals. Proper management
practices are strategies to increase the aromaticity of DOC in soil and sequester more SOC,
which improves crop production [11,17,21–23,25]. However, current studies mostly focus
on Fe-bound OC in sediment, permafrost, and forest soils [7,33,37,38].

One of the major issues is soil degradation and carbon stock depletion, which is due
to increasing anthropogenic disturbances in the central Appalachian region. The dominant
land types in this region are the forest, pasture, and cropland, which account for 62, 18,
and 8% of land use, respectively. SOC sequestration was studied in severely disturbed
soils [39,40], and dissolved organic C was investigated in peatland soils and streams [41,42],
which was the focus of most previous studies. However, there are few studies on the
capacities of forest, cropland, and pasture soils for long-term SOC sequestration, especially
by incorporating the role of Fe oxides. Thus, to develop the best management practices
for restoration and sustainable agriculture, an improved understanding of Fe-bound OC
and interactions between Fe oxides and DOC, especially aromatic DOC, is crucial for a
better understanding of the mechanisms of long-term SOC sequestration in agricultural
soils. Additionally, filling this research gap is essential for developing and evaluating
the best management practices in terms of soil nutrient dynamics. It may provide useful
information to accurately predict the global SOC changes in the warming environment.

SOC dynamics are influenced by various important factors, such as climate and soil
properties [43–45]. Current studies have been done in larger watersheds [45–49]. However,
these studies are potentially confounded by differences within watershed other than land
management practices, for example, different parent materials, topography, and climate.
To minimize the effects of parent materials, topography, and climate within a watershed on
SOC dynamics, pseudo-replicated studies to minimize these variations may be informative.
Therefore, a single fine-scale watershed with a similar climatic condition was chosen, and a
cropland, a pasture, and a forest soil within this small catchment were specially selected in
our study, which was also derived from the same source parent material [50].

Sorption experiments in the majority of studies used DOC extracted from forest O
horizon soils, which were different from the sorbent soils [7,12,33,51,52]. This prevents
the interpretation of these studies for naturally occurring sorption processes; the DOC
sources to sub-surface soils are from the in situ surface soils. Thus, we were interested in
comparing the sorption behaviors of the DOC extracted from the cropland, pasture, and
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forest managed topsoil at 0–10 cm to soils at 10–25 cm to reduce the uncertainty of using ex
situ DOC sources to indicate soil DOC sorption behaviors.

The objectives of this study were to quantify and compare (1) three forms of Fe oxides
(the exchangeable, amorphous Fe, and crystallized Fe oxides), three forms of SOC (total
SOC (TOC), Fe-bound OC, and DOC released during amorphous Fe extraction), and (2) the
sorption of DOC and changes of aromaticity of DOC after sorption using batch experiments
from the pasture, cropland, and hardwood forest managed soils.

2. Materials and Methods
2.1. Study Site Description

This study was carried out using three representative land management types in-
cluding forest, pasture, and cropland at the West Virginia University’s Animal Science
Farm in Morgantown, West Virginia (39◦40′ N, 79◦56′ W). The mean annual precipitation
was 106.2 cm; the mean annual averages daily maximum was 17.1 ◦C; the mean annual
averages minimum temperature was 6.3 ◦C, respectively, between 1981 to 2010 [50]. The
deciduous hardwood forest (HF) stand was approximately 120 years old. The permanent
pasture was continuously grazed (CG) with 0.5–0.75 dry dairy cows and/or heifers per
hectare for 20 years. The cropland was a continuous corn (Zea mays) field with manure
application (CM) for at least 20 years. Kellner et al. described this site with detailed
information [50]; Other characteristics, management, and botanical composition of each
land type are presented in Table 1 and illustrated in Table S1.

Table 1. The characteristics of the sampling plots in hardwood forest (HF), cropland with manure
(CM) and continuous pasture (CP).

Land
Type Elevation (m) Slope (%) Topographic

Position Parent Materials

Forest 303.5–338.7 25–35 Backslope loamy residuum weathered from
limestone, sandstone, and shale

Pasture 324.4–341.8 25–35 Backslope loamy residuum weathered from
limestone, sandstone, and shale

Cropland 289.0–292.4 3–5 Flood plain loamy alluvium derived from
limestone, sandstone, and shale

Four 10 m × 10 m plots were selected within each land type after a thoroughly soil
survey and computer mapping, which is illustrated in Figure S1 The forest and pasture soils
were mapped as Celleoka-Westmoreland silt loams (Fine-loamy, mixed, active, mesic Ultic
Haplusdalfs) [53]. In the cropland, the soil was mapped as Holly silt loam) (Fine-loamy,
mixed, active, nonacid, mesic Typic Fluvaquents) and Lobdell silt loam (Fine-loamy, mixed,
active, mesic Fluvaquentic Eutrudepts) [53].

2.2. Soil Sampling

Soil samples were collected in June 2018. For each land type, four 10 m × 10 m soil
plots were randomly selected in the field with similar micro-environmental conditions,
like vegetation distribution. When sampling the forest soil samples, the thin and lightly
decomposed layer was removed. To avoid the effects of supplemental feeding and watering
post for cows in the pasture field, these areas were excluded. In addition, the pasture plots
that at least 5 m away from the edge of the field were chosen. The plots that were at least
10 m away from the riparian grass buffer were chosen for collecting crop land soil samples.

The S patter was used to collect six soil sample cores to a depth of 25 cm at each plot
using a soil sampling problem, which was 3 cm in diameter. All the collected cores were
sectioned into 0–10 cm and 10–25 cm layers. Three pseudo-replication soil samples for both
depth increment in each land type were obtained by combining and composing pairs of
cores from each plot. The study and sampling site is presented in Figure S1.
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For the adsorption experiment, three 0.5 m × 0.5 m subplots were chosen from each
plot and the soil of the top 5 cm from the three subplots was collected. The collected soil
samples from three subplots of all four plots within each land type were composited to
make one representative and homogeneous sample for each land type. Then, the collected
soil samples were used to extract DOC as a DOC source of mimicing DOC percolating from
surface to deeper mineral soils in the field condition.

2.3. Soil Physical and Chemical Analysis

Upon returning to the lab, each bulk sample was divided into two subsamples. One
subsample was air dried at room temperature until reach a constant weight; the subsample
was ground and sieved through a 2-mm sieve, which was used for determination of soil
pH, EC, and particle size distribution, total C, total N, exchangeable Ca, Mg, P, and K. The
description of these determinations is summarized in S1 and are presented in Table S1. The
other subsample was sieved through a 2-mm sieve and stored at 4 ◦C until analysis within
three days.

To degas the inorganic C in soil for OC fraction determination, the air-dried soil
samples were firstly treated with 1 M HCl with a 1:2 (m:V) solid:solution ratio; the mixtures
were then dried for 24 h at 70 ◦C in a oven. TOC in the oven-dried soil samples was
determined by dry combustion (Elementar Vario MAX Cube, Hanau, Germany). The
Fe-bound OC was determined using citrate-bicarbonate-dithionite (CBD) method [37,38].
The reactive Fe concentrations in the filtrate after CBD extraction were determined using
ICP-OES, which represented the crystalline Fe (III) oxides in soil [32]. Exchangeable Fe
(Feex) in fresh soil subsamples was determined to using 0.5 M HCl and the microbially
reducible amorphous Fe (Feamor) was calculated as the Fe extracted from fresh soil using
0.25 M hydroxylamine hydrochloride and 0.25 M HCl minus the Fe extracted with 0.5 M
HCl [31,32]. Exchangeable Fe represented the directly exchangeable Fe portion with the soil
adsorption complex while the microbially reducible amorphous Fe represented the portion
of amorphous Fe (III) oxyhydroxide which could be reduced by microorganisms [32]. The
released Fe was determined according to methods described by Lovley and Phillips [31].
The released DOC in the filtrate was determined using Shimadzu-TOC V (Tokyo, Japan)
and, as a measure of aromaticity, the specific ultraviolet absorbance at 254 nm (SUVA254) of
the released DOC was determined using method described by Weishaar et al. [53].

2.4. Adsorption Experiments

A DOC stock solution from each land type was obtained by percolating the composited
soil samples with 12.5 mM CaCl2 solution using a 1:1 (m:V) fresh soil to solution ratio [54,55].
The mixture was shaken at 200 cycles per minute for 6 days at room temperature. The
percolates were centrifuged and filtered through 0.45-µm filters. The filtrate was used
as DOC stock solution and stored at –20 ◦C until used in adsorption experiments. The
extracted DOC stock solution was 119, 120, and 150 mg L−1 for forest, cropland, and
pasture soils. The stock solution was diluted to five DOC concentrations (forest and
cropland: 12, 24, 48, 60, 72 mg L−1; pasture: 15, 30, 60, 75, and 90 mg L−1) using 12.5 mM
CaCl2 solution, which was adjusted using the same ratio for each DOC concentration level
of each soil. Since the pH and ionic strength have significant infleunces on DOC soprtion
behaviors [56,57], the pH and EC were adjusted to be about 7 using 1 M HCl and 1 M
NaOH and 2.5 µS cm−1 using 0.0125 M CaCl2 before starting the sorption experiment
to minimize the effects of pH and inoic strength. The initial SUVA254 of DOC extracted
solution of each land type were 0.8 L m−1 mg−1 (forest), 1.4 L m−1 mg−1 (cropland), and
1.2 L m−1 mg−1 (pasture), which was lower than some studies [33,58] and similar to other
studies [59–61]. The same SUVA254 as the initial SUVA254 of extracted DOC was used for
each land type soil soprtion experiment.

For generating sorption adsorption data, 3.0 g of air-dried soil was mixed with 30.0 mL
of one of the five DOC solutions in 50 mL centrifuge tubes with two replications each.
The control for each isotherm was done by using 12.5 mM CaCl2 with 0 mg L−1 DOC.
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The mixtures were shaken for 24 h at 30 rpm on a rotary shaker. Then, the mixtures
were centrifuged for 30 min at 3000 rpm (1600× g). The supernatant was filtered through
0.45-µm filters. The filtrate was stored at 4 ◦C and analyzed within two days. The pH,
EC, DOC concentration, and SUVA254 of DOC in the filtrate were determined after the
sorption experiment as described above. The change of aromaticity of DOC during sorption
processes (∆SUVA254) were calculated as SUVA254 of the DOC after 24 h sorption minus
the SUVA254 at the beginning of sorption experiment. A negative ∆SUVA254 meant the
SUVA254 of DOC in solution decreased after adsorption, which indicated the net loss
of aromatic DOC in solution, while a positive ∆SUVA254 meant the SUVA254 of DOC in
solution increased after sorption, which indicated the net gain of aromatic DOC in solution.

2.5. Isotherm

The modified Langmuir isotherm (Equation (1)), which added a desorption term b, in
mg kg−1, to correct for the desorption of native adsorbed solute on the soil surface, was
used [62].

ADS =
k × Qmax × qe

1 + k × qe
− b (1)

where ADS is amount of adsorbed DOC in mg kg−1, k is binding affinity in L mg−1, Qmax
is the maximum adsorption capacity in mg kg−1, and qe is the equilibrium concentration
in mg L−1.

2.6. Statistical Analysis

Analysis of variance (repeated measure: rmANOVA) and Tukey adjustment were
conducted to assess main effects of land management practice, depth, and their interaction
on TOC, Fe-bound OC, reactive Fe, microbially reducible Fe, released DOC and SUVA254 of
released DOC during microbially reducible Fe extraction, exchangeable Fe, and released
DOC and SUVA254 of released DOC during exchangeable Fe extraction at α = 0.05 using
SAS PROC MIXED procedure (Version 11. SAS Institute Inc., Cary, NC, USA). Across
all three land management practices and two depths, a linear regression was conducted
between released DOC and Fe during extracting exchangeable Fe and microbially reducible
Fe, assuming independence. Similarly, a non-linear regression was performed between
the SUVA254 of released DOC and released Fe. The isotherms were fit using a G-Newton
iterative method with least square functions to estimate the fit using JMP [62]. The per-
formance of the fit was evaluated using the minimum root mean square error (RMSE)
when estimating how well the model fit the data [62]. The linear regression was performed
between the changes in SUVA254 of the DOC solution and equilibrium DOC concentrations
for the adsorption experiment.

3. Results
3.1. The TOC, Fe-Bound OC, and Reactive Fe in Forest, Cropland, and Pasture Managed Soils

Significant influences of land management practices, depth, and the interactions
between management and depth were observed on TOC, Fe-bound OC proportion, and
amount of Fe-bound OC (p < 0.01) except for main effects of land management practices
on TOC and main depth effects on the amount of Fe-bound OC (p > 0.05). No significant
differences in TOC were observed among the forest, cropland, and pasture managed
soils at 0–10 cm. The cropland managed soil at 10–25 cm had significantly higher TOC
(17.79 g kg−1) compared to the forest soil (12.13 g kg−1) and pasture soil (9.61 g kg−1)
(Figure 1A). The forest, cropland, and pasture managed soils at 0–10 cm showed significant
higher amounts of Fe-bound OC than the three soils at 10–25 cm while no significant
differences in amount of Fe-bound OC observed in each depth (Figure 1C). The pasture
(34.1%) and forest soils (32.0%) at 10–25 cm had significant higher percentage of Fe-bound
OC than other soils at both 0–10 cm and 10–25 cm (Figure 1B).

Only land management practices had significant influence on reactive Fe concentration
(p < 0.01). The crop land soil had a significantly higher reactive Fe concentration at both
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0–10 cm (23.86 g kg−1) and 10–25 cm (23.72 g kg−1) than forest and pasture soils at both
depths (Figure 1D). The forest and pasture soils at both depth increments had similar reac-
tive Fe contents (HF0–10cm: 16.93 g kg−1; HF10–25cm: 16.75 g kg−1; CG0–10cm: 12.98 g kg−1;
CG10–25cm: 14.71 g kg−1) (Figure 1D).
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Figure 1. Total organic carbon (TOC) (A), organic carbon preserved by Fe (OC_Fe) (B), reactive Fe
(C), and Fe-bound OC (D) in forest (HF), cropland (CM), and pasture (CP) soils at 0–10 cm and
10–25 cm depth. Different lower-case letters indicated significant differences at α = 0.05. The error
bar represented the standard deviation (n = 3).

3.2. Amorphous and Exchangeable Fe and Extracted DOC

For the microbially reducible amorphous Fe, the cropland soil (1.53 g kg−1) had a sig-
nificantly higher amount than the forest (1.38 g kg−1) and the pasture soils cm (1.23 g kg−1)
at 0–10 cm, which were all significantly higher than that in the soils at 10–25 cm (Table 2).
The forest and pasture soils at 0–10 cm had significantly higher released DOC (0.63 g kg−1

and 0.57 g kg−1, respectively) than other soils while the pasture and cropland soils at
10–25 cm had the lowest released DOC (0.30 g kg−1) (Table 2). The pasture and cropland
soils at 0–10 cm had the highest SUVA254 of released DOC (48.46 and 45.38 L m−1 mg−1

per g soil, respectively) than all other soils (Table 2). There were no differences in released
DOC and the SUVA254 of released DOC observed among all soils at 10–25 cm (Table 2).

For the exchangeable Fe, the cropland soil (0.24 g kg−1) had a significant amount than
pasture soil (0.18 g kg−1) at 0–10 cm, which was significantly higher than the cropland and
pasture soils at 10–25 cm and forest soil at both depths (Table 2). Similar to the trends of the
released DOC of microbially reducible amorphous Fe extraction, the forest and pasture soils
at 0–10 cm had significantly higher released DOC (0.37 g kg−1 and 0.42 g kg−1, respectively)
than other soils while the pasture and cropland soils at 10–25 cm had the lowest released
DOC (0.16 g kg−1) (Table 2). The pasture and cropland soils at 0–10 cm had the highest
SUVA254 of released DOC (28.93 and 27.99 L m−1 mg−1 per g soil, respectively) than all
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other soils (Table 2). The cropland soil at 10–25 cm (22.68 L m−1 mg−1 per g soil) had a
significantly higher SUVA254 of released DOC than the forest and pasture soil at 10–25 cm
(13.50 and 15.67 L m−1 mg−1 per g soil, respectively) (Table 2).

Table 2. Amount of released Fe, DOC (dissolved organic carbon), and SUVA254 (absorbance of DOC
at 254 nm) of DOC released from soils after 0.5 N HCl at 0–10 cm and 10–25 cm, 0.25 N HCl and
0.25 N NH2OH·HCl extraction (bold and italicized) at 0–10 cm and 10–25 cm in hardwood forest
(HF), cropland with manure (CM) and continuous pasture (CP).

Land Type Depth(cm) Fe Released DOC SUVA254 of Released DOC
(g kg−1) (g kg−1) (L m−1 mg−1 per g Soil)

HF
0–10 1.38 ± 0.04 b 0.63 ± 0.04 a 36.89 ± 1.5 bc

10–25 0.52 ± 0.01 e 0.44 ± 0.02 b 33.16 ± 1.1 c

CM
0–10 1.53 ± 0.02 a 0.42 ± 0.02 b 45.38 ± 3.2 ab

10–25 0.81 ± 0.002 d 0.30 ± 0.02 c 35.03 ± 2.3 c

CP
0–10 1.23 ± 0.02 c 0.57 ± 0.01 a 48.16 ± 1.4 a

10–25 0.47 ± 0.01 e 0.30 ± 0.01 c 32.04 ± 1.4 c

HF
0–10 0.12 ± 0.006 d 0.37 ± 0.02 ab 15.36 ± 0.18 d

10–25 0.07 ± 0.004 e 0.25 ± 0.01 cd 13.50 ± 0.2 d

CM
0–10 0.24 ± 0.009 a 0.28 ± 0.01 bc 28.93 ± 1.0 a

10–25 0.15 ± 0.002 c 0.16 ± 0.01 d 22.68 ± 0.7 b

CP
0–10 0.18 ± 0.004 b 0.42 ± 0.03 a 27.99 ± 2.6 a

10–25 0.06 ± 0.009 e 0.22 ± 0.02 cd 15.67 ± 2.5 d

Note: Different lower-case letters after each number indicated significant differences at α = 0.05.

3.3. The Sorption of DOC to Three Land Management Practices Soils and Changes in ∆SUVA254

The three land management practice soils had increasing sorption of DOC with in-
creasing equilibrium concentration and a higher amount of DOC sorption at 10–25 cm than
0–10 cm (Figure 2 HF-a, CM-a, and CP-a). Larger maximum sorption of DOC in the crop-
land (315.0 mg kg−1) and pasture (395.0 mg kg−1) soils than the forest soil (96.6 mg kg−1)
at 10–25 cm was found (Figure 2 HF-a, CM-a, and CP-a). The desorption occurred at low
equilibrium concentrations (<30 mg L−1) of the cropland soil, pasture soil, and forest soil at
10–25 cm (Figure 2 HF-a, CM-a, and CP-a). The forest soil at 0–10 cm had desorption of the
studied equilibrium concentration range (0–72 mg L−1) at 0–10 cm (Figure 2 HF-a).

Cropland and pasture soils at 0–10 cm had positive ∆SUVA254 and similar decreasing
trends with increased equilibrium concentrations while the pasture and cropland soils
at 10–25 cm had negative ∆SUVA254 and increasing trends (Figure 2 CM-b and CP-b; Ta-
ble 3). The increasing trends with increased equilibrium DOC concentrations in cropland
and pasture soil at 10–25 cm had similar increasing slopes (0.014 and 0.012 L2 mg−2 m−1,
respectively) (Figure 2 CM-b; Figure 2 CP-b; Table 3). Conversely, forest soils had decreasing
trends of ∆SUVA254 with increased equilibrium concentrations (0–10 cm:
−0.014 L2 mg−2 m−1; 10–25 cm: −0.016 L2 mg−2 m−1) (Figure 2 HF-b; Table 3).
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Figure 2. Dissolved organic carbon (DOC) sorption to the forest (HF-a), cropland (CM-a), and pasture
(CP-a) soils and the change of SUVA254 (∆ SUVA254) of the DOC solution after sorption to the hard-
wood forest (HF-b), cropland with manure (CM-b), and continuous pasture (CP-b) soils at 0–10 cm
and 10–25 cm depth. The solid lines were the fitted modified Langmuir isotherm. The dashed lines
were the fitted linear regression. ADS: adsorbed DOC; ∆ SUVA254: The specific ultraviolet absorbance
at 254 nm of filtered DOC in solution at equilibrium minus that of DOC at original solutions.
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Table 3. Linear regression between the change in SUVA254 of a DOC solution and equilibrium DOC
concentration for three land type soils at 0–10 cm and 10–25 cm depths.

Land type Depth Equation Adjusted r2 p

Forest
0–10 cm ∆SUVA254 = −0.014 qe + 1.10 0.93 0.005

10–25 cm ∆SUVA254 = −0.016 qe + 0.71 0.86 0.014

Cropland 0–10 cm ∆SUVA254 = −0.002 qe + 0.18 0.68 0.053
10–25 cm ∆SUVA254 = 0.014 qe − 0.76 0.78 0.031

Pasture
0–10 cm ∆SUVA254 = −0.006 qe + 0.61 0.77 0.031

10–25 cm ∆SUVA254 = 0.012 qe − 0.49 0.89 0.01

∆SUVA254 (m−1 L mg−1): The specific ultraviolet absorbance at 254 nm of filtered DOC in solution at equilibrium
minus that of DOC at original solutions; qe (mg L−1): The equilibrium concentration of filtered DOC solution.

4. Discussion
4.1. Comparison of Three Forms of Fe Minerals and Associated Organic Carbon in Three Soils

Fe oxides correlate with SOC content, mineralization, and thus long-term storage [63].
There were no significant differences in TOC and amount of Fe-bound OC in three soils at
0–10 cm as well as amount of Fe-bound OC at 10–25 cm while significantly higher TOC
in cropland soil at 10–25 cm (Figure 1A,C). This indicated that cropland soil at 10–25 cm
had more TOC that did not bound with Fe minerals. Due to this, a significantly relative
higher percentage of Fe-bound OC was found in the forest (32%) and pasture (34%) soils
at 10–25 cm than other soils (Figure 1B), which was similar to the percentage of Fe-bound
OC in forest soils reported by Zhao et al. [37]. The significantly lower Fe-bound OC in
forest (25%) and pasture soils (26%) at 0–10 cm and cropland soil at both 0–10 cm (23%) and
10–25 cm (22%) were observed (Figure 1B), which had similar ranges as marine sediments
and soils of permafrost ecosystem (approximate 20%) [20,38]. Our studies also indicated
that the reactive Fe was more efficient in stabilizing SOC in the pasture and forest soil at
10–25 cm than the soils at 0–10 cm, which may reveal different mechanisms of Fe oxides in
stabilizing SOC between top and subsurface layer of forest and pasture managed soils [64].

The three soils had similar reactive Fe range compared to the forest soil reported
by Zhao et al. [37] (up to 19.3 g kg−1) and a lower range than that reported by Waigi
et al. [8] (up to 180 g kg−1). The cropland soil at both depths had the highest reactive Fe
content while no differences in the amount of Fe-bound OC in three soils at 0–10 cm or
10–25 cm were found (Figure 1). This indicated that there were more Fe minerals that was
not bounded with SOC in cropland soils at both depths. Huang et al. [27,29] reported
that manure application increased total SOC content and reactive Fe content, such as less
crystalline ferrihydrite. This may indicate limited influence of manure applications on
increasing recalcitrant SOC bounded with crystalline Fe oxides that have a longer residence
time [65]. Zong et al. [66] reported that tillage reduced most soil Fe/Al oxides at 0–150 cm,
which can lead to potential SOC loss. The significantly higher reactive Fe content and lower
content of Fe-bound OC in cropland soil may lead to a higher SOC mineralization and
loss due to tillage which inverts deep soil SOC lacking of Fe/Al oxides protection to the
surface [66]. This indicated other non-Fe oxides associated SOC play an important role in
stabilizing SOC and contributed to the observed differences in Fe-bound OC percentage in
soils with three management practices, for example, Al oxides [33,66]. However, we did
not have data to confirm this in our study.

Amorphous Fe oxides are strongly associated with SOC [5,52,67] and contribute to
64% of SOC storage [33]. Similar to the trend of reactive Fe, microbially reducible Fe and
exchangeable Fe in cropland soil at 0–10 cm or 10–25 cm had significantly higher amount
than both forest and pasture soil at either depth (Table 2), which may be due to long-term
manure application. This is consistent with Zhang et al. [28] who reported long term
non-crystalline Fe increases due to long-term manure applications. Unlike Fe-bound OC,
the forest and pasture soils at 0–10 cm had the highest amounts of released DOC during
microbially reducible amorphous (0.63 and 0.57 g kg−1, respectively) and exchangeable Fe
extraction (0.37 and 0.42 g kg−1, respectively) (Figure 3A; Table 2), which were significantly
higher than the cropland soil at 0–10 cm (Table 2). Although these variations were observed,
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a significantly positive linear relationship was found between the released DOC and Fe
concentration across all land management practices (R2 = 0.54, p < 0.01) (Figure 3). This is
consistent with Kramer et al. [33] which reported the released DOC during extraction was
linearly related to the amount of short range ordered Fe minerals.

Chemical retention of aromatic DOC by amorphous Fe contributes to long-term SOC
storage, especially for subsurface soil [33]. In our study, the aromaticity of released DOC
had a significantly positive relationship with amorphous and exchangeable Fe content
(r2 = 0.89, p < 0.001) (Figure 3B). These results were consistent with Kramer et al. [33]. This
indicated amorphous Fe had similar roles in preserving aromatic DOC across different land
management practices. Although forest and pasture soils released higher amounts of DOC
during microbially reducible amorphous and exchangeable Fe, a higher aromaticity of
released DOC stabilized by microbially reducible amorphous Fe was found in pasture and
cropland soils than forest soil only at 0–10 cm (Figure 3B; Table 2). These results indicated
that microbially reducible amorphous and exchangeable Fe oxides were more efficient in
stabilizing aromatic DOC in the cropland soils than the forest and pasture soil. This may
be due to manure application in cropland soil and grazing effects in pasture soil, which
increase the hydrophobic aromatic DOC components [68]. The interactions of amorphous
Fe and SOC may be promoted by manure application, or other non-sorptive mechanisms
could be a reason for the low amounts of SOC associated with amorphous Fe oxides in
cropland soil [29,69]. These differences suggested interactions between aromatic DOC and
amorphous Fe differed at different depths in these three soils.
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Figure 3. Regression relationship between the amount of released DOC (A) and SUVA254 of DOC
released (B) from soils after 0.5 N HCl at 0–10 cm (diamonds) and 10–25 cm (squares), 0.25 N HCl
and 0.25 N NH2OH·HCl extraction at 0–10 cm (circles) and 10–25 cm (triangles) in hardwood forest
(black fill), cropland with manure (gray fill), and continuous pasture (no fill). Panel A: Released
DOC (g kg−1 soil) = 0.19 × Fe (mg L−1) + 0.16, r2 = 0.54, p < 0.01; Panel B: SUVA254 of released DOC
(m−1·L mg−1 per g soil) = 9.27 × ln (Fe) (mg L−1) + 39.84, r2 = 0.89, p < 0.0001.

4.2. Changes of DOC and Aromaticity of DOC during Sorption

The three land management practice soils had increasing sorption of DOC with in-
creasing equilibrium concentration and a higher amount of DOC sorption at 10–25 cm than
0–10 cm (Figure 2 HF-a, CM-a, and CP-a). The desorption occurred at low equilibrium con-
centrations (<30 mg L−1) of the cropland soil, pasture soil, and forest soil at 10–25 cm, while
implied sorption and stabilization of DOC from soil solution only occurred at higher soil
DOC concentrations. Overall, agricultural soils had a higher DOC sorption (Figure 2) and
maximum capacity to sorb and stabilize DOC than the forest soil in this study (Table S3).
The soil DOC is dynamically altered by a multitude of soil conditions, for example, the
stabilization of DOC only occurs in conditions leading to high soil DOC production, like
continuing flooding or wet-dry cycles [70]. This revealed that forest topsoil released DOC
to solution, which could be leached and percolated to deep surface soil for sorption and
stabilization (Figure 2 HF-a). Overall, agricultural soils had a higher maximum capacity to
sorb and stabilize DOC than the forest in this study (Table S3), which was consistent with
higher SUVA254 of agricultural soils than forest soil (Table 3) [71]. This is consistent with
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Wiesmeier et al. [19] who reported a higher SOC saturation in forest soil than crop and
pasture soils and thus a higher potential of cropland and pasture to sequester more SOC.
These differences could be also due to different soil minerology. For example, goethite was
shown to preferentially retain aromatic OC while montmorillonite was shown to retain
low molecular weight OC and no preference to aromatic OC [4]. In addition, the dissolved
Fe and Al in the DOC solution added may influence the DOC sorption behavior in these
different soils [72]. However, future study is still needed to confirm this.

The changes of aromaticity of DOC in the solution were significantly related to the
equilibrium concentration (Figure 2 HF-b, CM-b, and CP-b; Table 3). Kramer, Sanderman,
Chadwick, Chorover and Vitousek [33] reported a similar retention trend of aromatic
DOC by short-ranged Fe minerals across all soil types. Rumpel et al. [73] found the main
decomposed plant-derived OC (high aromaticity) in the topsoil layer and microbial-derived
OC (low aromaticity) in the deep soil layer, which leads to different SOC stabilization
processes. The observed different sorption trends at different land type soils at different
depths may be due to different DOC sources [73].

Agricultural soils at 0–10 cm had positive ∆SUVA254 and thus showed desorption
processes of aromatic DOC from soil mineral surface (Figure 2 CM-b and CP-b; Table 3).
This is different from the majority of current studies that report preferential sorption of
aromatic and phenolic moieties of DOC to soil or iron minerals when using exogenous
DOC sources [12,14,33,74].

Sowers et al. [75] and Coward et al. [12] proposed a three-step sequential sorption
processes of DOC (aromatic, lignin-like, and aliphatic compounds) on Fe oxyhydroxide
and bacteriogenic Fe oxides within the first four hours of sorption. Surface exchange of
DOC between mineral surface and solution still occurs beyond four hours, which may lead
to mobilization of stabilized DOC [14,75]. The binding of aromatic and carboxyl moieties
with soil minerals are typically irreversible by forming inner-sphere bonds, while outer-
sphere bonding with carboxyl moieties are readily desorbed [14]. Our study indicated
more reversible bonding with non-aromatic DOC might be the mechanisms occurring
in agricultural topsoil, like multiple exchange processes [76]. Adhikari and Yang [77]
found that stabilized aliphatic acid by hematite was more resistant than aromatic carbon
during reduction release. This reveals that stabilization of non-aromatic DOC, like carboxyl-
rich DOC, and reduction release of aromatic OC may be important pathways of SOC
stabilization and destabilization in topsoil [10,12,75,78]. In addition, specific mineral
composition as well as N enrichment to soils resulted in different retention mechanisms
of SOC by minerals with different interactive zones [79]. This may explain different DOC
sorption behavior in cropland and pasture soils compared to the forest soil in our study.

The pasture and cropland soils at 10–25 cm had negative ∆SUVA254 and showed sorp-
tion of aromatic DOC and decreasing sorption of aromatic DOC occurred with increasing
DOC concentration (Figure 2 CM-b; Figure 2 CP-b; Table 3). This indicates more irreversible
bonds with aromatic DOC were formed in agricultural soils at 10–25 cm, especially at
lower equilibrium concentrations [76]. Unlike cropland soils with an aromatic sorption of
the studied DOC concentration range (0–72 mg L−1), the pasture soils reached a zero-net
sorption of aromatic DOC. This may indicate that desorption processes of aromatic DOC
occurs, which may reveal more complex processes between aromatic DOC and soil surfaces
than reported interactions between Fe pure minerals and DOC [12,75].

Unlike the sorption pattern of the cropland and pasture soils at both 0–10 and 10–25 cm,
forest soils had decreasing trends of ∆SUVA254 with increasing equilibrium concentrations
(Figure 2 HF-b; Table 3). The 0–10 cm soil materials reached zero net sorption of aromatic
DOC at high equilibrium DOC concentrations (Figure 2 HF-b). The 10–25 cm soils had
net desorption of aromatic DOC at low equilibrium DOC concentration (<35 mg L−1) and
sorption of aromatic DOC at high equilibrium DOC concentration (35–72 mg L−1) (Figure 2
HF-b). Confirmation of molecular level characteristics of sorbed or released DOC remains
unclear, which are still in need for future research to uncover the reasons behind these
trends in different land managed soils.
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4.3. Implications for Land Use and Stabilization of DOC for Long-Term SOC Sequestration

Although most well documented studies had the role of amorphous Fe on aro-
matic DOC sorption and Fe oxides on SOC preservation in forest soils and marine sed-
iments [6,19,37,64,69,78], we did not find direct and aligned evidences of significant in-
fluence of reactive Fe and amorphous Fe in increasing aromatic sorption in 0–10 cm or
10–25 cm soils of forest, pasture, and cropland. The three land managed soils had dif-
ferent sorption trends of aromatic DOC between the two agricultural soils (pasture and
cropland) and the forest soil, as well as between agricultural soils from 0–10 cm and soils
from 10–25 cm (Figure 2 HF-b, CM-b, CP-b). The stabilization of aromatic DOC was only
enhanced in agricultural soils at 10–25 cm with low DOC concentration and in forest soils
with high DOC concentration (Figure 2 HF-b, CM-b, CP-b). This indicated non-aromatic
sorption might be a preference or desorption of aromatic OC from soil surfaces occurred in
forest soil and agricultural soils at 0–10 cm at low soil DOC concentrations (Figure 2). Thus,
a uncertainty exists regarding interactions of soil Fe minerals and DOC or aromatic DOC in
different land managed soils at different depths and multiple factors may regulate DOC
and aromatic DOC sorption processes, such as DOC composition [80], soil mineralogy [81],
soil mineral surface chemistry [4], and structural features of soil aggregates [51]. Future
studies are still necessary to uncover the influencing factor behind these phenomena.

Land types and management practices highly influence the quantity and quality of
soil Fe minerals and DOC and also the conditions of transferring and transformation
processes [36,82–85]. This causes more uncertainty in understanding Fe oxides and DOC
interactions in agricultural soils with different land management practices, and points to
a need for future studies using a wide range of agricultural soils. This study revealed
important contributions of non-aromatic sorption to soil mineral surfaces in agricultural
topsoil. This indicated the limitation of current generalized understanding of highly
selected sorption of aromatic DOC to Fe oxides, which is still weakly supported by our
studies using DOC from in situ soils and specifying the soils with different management
practices at different depth.

Although Leinemann et al. [76], Lützow et al. [15], and Scott and Rothstein [74]
proposed models that showed stepwise processes or several sorption mechanisms simul-
taneously occurring during sorption, our study indicated more specific context studies
in different land soils and filed studies deserve more efforts and should be the subject of
future study [10,15,73,76]. Since cropland and pasture are two dominant land types in the
world [86], it is essential to incorporate more studies in terms of the mechanisms of Fe
oxides in stabilizing SOC, especially for both non-aromatic and aromatic DOC, to provide
theories for appropriate management practices in agriculture and robust global C cycling
models for C dynamics prediction.

5. Conclusions

Our study confirmed the different patterns of total reactive Fe, amorphous Fe, and
exchangeable Fe in stabilization of SOC in both agricultural and forest soils. Although no
significant differences in amount of Fe-bound OC among three soils at 0–10 cm or 10–25 cm,
cropland soil at both depths showed significant higher reactive Fe, microbially reducible
Fe, and exchangeable Fe than the forest and pasture soils at each depth. Forest and pasture
soils showed higher DOC stabilized by microbially reducible Fe, and exchangeable Fe than
the cropland soil at 0–10 cm.

Furthermore, a higher sorption of DOC in the cropland and pasture soils than the
forest soil was observed. The sorption behaviors of aromatic DOC between the cropland
and pasture soils were similar at both 0–10 cm and 10–25 cm, which were different from
that of the forest soil. Unlike other studies, our study indicated the significant role of non-
aromatic DOC in stabilizing DOC in the cropland and pasture soils at 0–10 cm. Additionally,
this study indicated the native DOC concentrations significantly altered the sorption of
aromatic and non-aromatic DOC. Overall, our study indicated agricultural soils may have
a higher potential to stabilize SOC. However, the changes in the quality and quantity of
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DOC due to various management practices may reshape SOC dynamics. The potential for
these central Appalachian region soils to sequester carbon may be influenced by the quality
and quantity of DOC and interactions between DOC and Fe minerals.
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ous pasture soils at 0–10 cm and 10–25 cm depth; Table S2. The estimated linear regression using
the standard square least approach between total organic carbon, Fe-bound OC and reactive Fe
and the combined silt and clay content in in hardwood forest, cropland with manure application,
and continuous pasture soils at 0–10 cm and 10–25 cm depth; Table S3. The adsorption character-
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