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Abstract: For a healthy indoor environment, it is important to understand which materials and
factors favor the generation of high levels of indoor radon. A preliminary multivariate statistical
analysis was carried out on two datasets concerning indoor radon and building materials in the
Campania Region using Principal Component Analysis (PCA) and the k-means partitional analysis
technique. A total of 13 parameters related to building materials were used. The results show the
greater contribution of building materials of volcanic origin to the concentration of indoor radon
and thoron activity and the different influence of the parameters of the 31 materials analyzed. The
same analyses applied to the indoor radon values of 694 rooms in the Campania Region were equally
effective in assessing the structural characteristics of indoor environments that most influence indoor
radon levels. The study provided an effective assessment of the influence on radon activity of several
environmental parameters, which are often not adequately considered.

Keywords: indoor radon; Campania Region; PCA; k-means; building materials

1. Introduction

Radon (222Rn) is a radioactive natural gas that comes from the decay of radium
(226Ra) present in soils and building materials and tends to accumulate in indoor envi-
ronments [1,2], where in some cases it can reach very high concentrations to represent a
significant risk for human health because it can generate a carcinogenic process [3,4].

It is therefore important to understand which materials and factors favor the gener-
ation of high levels of indoor radon [5–7]. The analysis and evaluation of the different
characteristics of indoor environments, in different types of buildings, in different environ-
mental contexts and linked to different types of use, is a complex problem that requires
careful evaluation of situations that are often poorly documented and not easily quantifi-
able because many agents contribute through multiple dynamics to the determination of
the radon activity concentration [8–10].

The numerical solutions of the related transport equations are solved and used to
estimate the activity concentration of radon in closed environments e.g., [11]. These
investigations lead to the conclusion that, in addition to the nature of the soil and building
materials, the location of the lower floor of houses plays a significant role in determining
the amount of radon entry into residential buildings.
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The Campania Region (southern Italy) is characterized by soils and materials used for
construction of volcanic origin, and therefore richer in natural radionuclides [12]. Measure-
ments of all possible parameters characterizing the generation and emission of radon and
thoron (220Rn) of 31 materials have been performed [13,14]. Indoor measurement projects
have been carried out [15–23] and a first potential indoor radon map of the Campania
Region was also drawn up [24]. During a campaign, the values of various parameters that
are considered to influence the accumulation of indoor radon are also generally acquired
but are often not adequately used to implement analysis procedures. The availability of
this large dataset makes it possible to perform a more detailed analysis to distinguish and
characterize the different sources and parameters influencing the indoor radon levels. Here,
multivariate statistical tools are applied to derive data characteristics on both indoor radon
and materials used in construction [24].

2. Materials and Methods
2.1. Data

The first dataset used here consists of the results of the work to characterize the
content of natural radioactivity in 31 natural building materials typical of the Campania
Region using high-resolution spectrometric methods [13]. The analyzed samples of natural
building materials from the Campania Region were selected to be representative of different
geological environments of the region. A total of 31 samples were collected: 8 tuffs (brown,
grey, yellow, green), 2 pumices, 2 lava stones, 2 marbles, 3 limestones, 1 bauxite, 2 pozzolans,
2 ignimbrites, 2 tephrites, 2 siltstones, 4 sandstones and 1 clay. Several samples of a given
building material belong to different geographical locations with the same geological
settings. The data for each material concern the activity concentration of the radon and
thoron progenitors, their emanation coefficient, the exhalation rate, and risk indices such
as the activity concentration I index, the Hex and Hin indices for assessing external and
internal exposure to gamma radiation [13].

The second dataset consists of a subset of the radon indoor data used for the realization
of the first potential map of radon distribution 222Rn in the Campania Region. This map
is based on a geostatistical interpolation method kriging through 10 proxy variables used
as predictors influencing the gas emission [24]. The radon indoor activity concentration,
expressed in Bq/m3, was obtained as an annual average of two half-yearly measurements
performed using SSNTD methods. Each radon data point is accompanied by different data
characterizing the measurement environment and the building in which it is located.

2.2. Statistical Analysis Methods
2.2.1. PCA

Principal Component Analysis (PCA) is particularly suitable for studying the structure
of a set of multivariate observations, especially when there is no prior information on how
the measured variables are dependent or associated with each other; it is a multivariate
statistical methodology that allows many variables to be analyzed simultaneously, guar-
anteeing synthesis, ease of reading and the least possible loss of information [25–27]. It
replaces the p variables of a data matrix with a new set of artificial variables called principal
components that are uncorrelated and listed in descending order of their variance. These
new variables are linear combinations of the observed variables, so it is possible to obtain
as many variables as the original ones; the choice of the number of components considered
suitable for interpretation follows certain criteria. Therefore, the objective of the analysis is
to determine the axes that allow the best representation of the point cloud, preserving the
original variability and minimizing the loss of information [27].

As a first step we construct a rectangular unit-variable table of dimension (n, p) that
we will denote Y, in which n are the units and p the quantitative variables revealed to then
obtain a representation of the n units in the space Rp generated by the p variables and a
representation of the p variables in the space Rn generated by the n units.
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In the space of the variables, a base formed by orthogonal vectors of unitary norm is
determined. It is obtained as linear combinations of the original variables and is able to
represent at best the structural information of the system with respect to a fixed optimization
criterion. This criterion must be chosen in such a way as to guarantee the search for axes
that maximize the sum of the squares of the distances between all the possible pairs of point-
units projected onto them. The best axis, the best plane, or the best subspace on which to
project the point-units is then searched for, making sure that the original distances between
all pairs of points are represented in the projection with the least possible distortion.

The PCA performs algebraic transformations of the initial matrix Y that result in
a translation of the point system at its barycenter, thus generating a new centered data
matrix X. Applying a normalization condition on the principal axes and the Lagrange
multiplier formula, the problem is a maximization with a normalization constraint: we look
for the maximum value eigenvalues of the matrix X’X, a full-rank matrix p with distinct
eigenvalues which will correspond to the correlation matrix. The eigenvalues precisely
represent the amount of the total variability observed in the original variables, expressed
by each principal component. The eigenvectors corresponding to the chosen eigenvalues
identify the new orthogonal axes. In the space of individuals Rn, the matrix X defines a
cloud of p points, and the search for factors that maximize the variance of the projected
points is analogous to that in the space Rp. The construction of the plans on which to project
the points is carried out by looking for the “significant” factors, that is, those factors that
consider the percentage of variability explained and are easy to interpret. The scree test is a
criterion that makes it possible to plot the eigenvalues on a histogram and identify abrupt
changes in the values of the sample eigenvalues. The visualization of the results takes
place with a circle of unit radius drawn from the matrix of correlations between variables
and components. Each variable is represented on this circle as a vector, whose extreme
point coordinates are the correlations between the new variables and the original ones. The
lower the angle of the representative vector joining the origin of the circle to the point of
the variable, the higher the correlation of the variable to the component represented by
the axis.

For individuals, a factor map is constructed similar to a Cartesian plane with the aim
of analyzing the behavior of individuals in relation to the components according to the
position they occupy on the plane itself [27].

2.2.2. K-Means

Partitive methods are automatic classification methods with the objective of iteratively
defining the classification structure of a set under study [28]. The dataset is subdivided
into K non-empty subgroups, where K is the number of clusters assigned as input to the
algorithms that will stop as soon as the subdivision appears stable with respect to the
evaluation criterion used, guaranteeing that each instance is placed exactly in one of the
many mutually exclusive clusters generated. The generated clusters are usually exhaustive
and exclusive in the sense that they cover all the variability of the set, and each observation
belongs to one and only one cluster [28].

The different quality measures used tend to express the degree of homogeneity of
observations belonging to the same cluster and their heterogeneity with respect to obser-
vations in other clusters. Partition methods are, therefore, heuristic in nature and operate
at each step the choice that appears locally more advantageous; the result is very much
conditioned by the initial choice. For this reason, the algorithm is run several times with
different initial choices, remembering that clustering is good if there is a small percentage
of variability in clusters and a large percentage of variability between clusters.

To identify the optimal number K of clusters that guarantees the best solution, there
are several criteria, one of which is based on the calculation of the silhouette index. The
silhouette index is given by the ratio of the divergence of the average distance between a
generic object and the other points of the nearest of the other classes and the average dis-
tance between the same object and the other points within its same class, on the maximum
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of the two distances. The closer the index is to unity, the better the classification result
obtained [28].

The algorithm chosen for the classification operation conducted in this work is the K-
means algorithm. This algorithm divides the dataset into K non-empty subgroups, where K
is the number of clusters assigned as input. Randomly choosing among all the observations,
a number K of them that are the centers of the generated clusters. The new centers are
defined iteratively starting from the various observations already clustered and every other
observation is placed in the cluster with the closest center to it, and therefore, a definition
of distance must be used to evaluate the proximity between objects; the most commonly
used distance is the Euclidean distance of the sum of the squares of the deviations.

2.2.3. R Software and RStudio

Both the analyses and the classifications of the datasets were carried out using the
RStudio software, GUI (Graphical User Interface) for the R programming language [28].
This language is interpreted, open source and object-oriented [29].

RStudio is an integrated development environment (IDE) for R, which can be managed
through the RStudio console [30]. It is, therefore, a statistical package, a set of macros,
libraries and objects that can be used to manage and analyze data and produce graphs. It
has several libraries and packages.

The functions PCA() for Principal Component Analysis and k-means() for automatic
clustering are contained in the packages FactoMineR and Stats, respectively. The first func-
tion provides a list of elements such as a matrix containing all the calculated eigenvalues
with their respective percentages of variance and cumulative variance, matrices relating to
variables and individuals containing information such as coordinates, contributions and
correlations, and matrices containing information relating to any qualitative variables. The
second function provides a list of data relating to clusters, the number of which must be
provided as input [29].

3. Results and Discussion
3.1. Building Materials

In the first step of applying the PCA analysis, we determined the eigenvalues of the
correlation matrix, the percentage of explained variability and the percentage of cumulative
variability for each principal component to choose the appropriate number of dimensions to
consider. The trend in the eigenvalues as a function of the number of principal components
(scree plot in Figure 1) is decreasing. The point at which an abrupt change in slope occurs
identifies the number of components to be considered. In this case, the first two dimensions
have a high percentage of explained variability, the sum of which is about 93%, which is
excellent for proceeding with the analysis. Moreover, even the criterion of eigenvalues
greater than 1 would lead us to choose the first and second dimension: Dim.1 = 8.101,
Dim.2 = 3.968.

The eigenvalues chosen are, therefore, the variance of component 1 and component
2, respectively.

The correlation circle obtained from the PCA is in Figure 2a. The emanation coefficients
of 222Rn and 220Rn are all located in the first quadrant, and are thus highly correlated with
dimension 2 and weakly correlated with dimension 1, whereas the exhalation rates, both
per unit area and per unit mass, are averagely correlated with both dimensions. The risk
indices are all placed in the fourth quadrant, together with the activity concentration of
226Ra, 232Th and 40K, indicating they are correlated with dimension 2 and anticorrelated
with dimension 1.
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Figure 2. (a) The correlation circle obtained from the PCA; the palette of colors combined with the
different values of cos2 allows a faster interpretation of the results. (b) Percentage contribution of
each variable to the determination of the first and second component.

Figure 2b shows the contribution of each variable in the determination of the factorial
plans; the red dashed line corresponds to the cut-off value, i.e., the average expected
percentage of a variable’s contribution (about 8%). The first four variables reported, i.e.,
the hazard indices, are therefore, those that contributed most to the definition of the
main components.

After completing the analysis in the space of variables, we analyze the space of n
individuals by repeating all the steps performed in the case of the variables. A multidi-
mensional study in this space is based on the choice of a metric and a diagonal matrix D
to define the inertia of the points. Inertia is a value that measures the dispersion of the
point-individual cloud N(I) and is equivalent to the sum of the weights of everyone by the
squares of the unit vector norms. The metric, which is encompassed by a matrix M, is used
to calculate the norm of each squared vector, whereas the matrix D is the diagonal matrix of
the weights of the n units. These data in the study are standardized and centered, so M = I.
There is no reweighting because the data are homogeneous, and the metric is Euclidean.

The objective at this stage of the analysis is to maximize the centered value of the data
with respect to the origin and thus maximize inertia. We first generate the factorial map of
individuals to analyze their behavior.

Figure 3a shows the representation of all the materials in the plane of the two main
components identified. Volcanic materials such as tuff, pumice stone and pozzolan are
separated from the others. Yellow tuff is very close to dimension 2 and is positively
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correlated with it, demonstrating a high rate of radon emission and exhalation. Pumice also
occupies a position that demonstrates its high radioactivity content, and compared with
yellow tuff, it has a higher risk index. Pozzolan and Lavic Stone are positively correlated
with dimension 1; Pozzolan (2) and Lavic Stone (2) occupy an extreme position, which
suggests that these materials are of high radiological risk. Carbonate, siliciclastic and
sedimentary rocks such as siltstone, limestone, marble, sandstone are positioned close to
the origin of the axes and are negatively correlated with the two dimensions, especially
with the dimension related to radioactive risk. In fact, these types of materials have lower
levels of radioactivity and low capacity to contaminate the external environment, making
them approved materials for building construction.
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Figure 3. (a) Representation of all Campania building materials in the plan of the two main components
identified. (b) The percentage contribution of each material (individual) to the two main components.

The cut-off percentage of the contributions of the individuals (Figure 3b) is lower
than that calculated in the case of the variables because the relationship is formed with a
higher number of individuals (31). The individuals Pozzolan (2), LavicStone (2), Pomices
(1), Pomices (2), Yel-lowTuff (2), YellowTuff (1) are those that contributed most to the
determination of the components.

The biplot of Figure 4a, a superimposition of the factorial plane and the correlation cir-
cle, shows the positioning of the individuals based on the two main components identified.
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We now provide a classification of the analyzed dataset by means of a partitional
analysis with the K-means algorithm and using the criterion of internal variability. The
optimal number of clusters for this dataset is K = 3. The result is shown in Figure 4b. For
the sake of brevity, we do not show other plots here that were obtained to highlight the
influence of the different parameters on the clustering of the three groups of materials.

3.2. Radon Indoor Data

The dataset used for the entire analysis consists of 694 measured indoor radon activity
concentration values (expressed in Bq/m3) and the corresponding environment data:

1. the type of building (above ground, underground, basement, on pillars).
2. the floor number.
3. the wall material (concrete, brick, stone, tuff, other).
4. wall covering (paper, plaster, tiles, other).
5. the floor covering (tiles, wood, linoleum, carpet, granite,
6. marble, other).
7. the number of windows.
8. the number of doors.
9. the postcode of the place where the house is located.

To extract more information, several PCAs were carried out by changing the actual
and additional variables to choose those with a higher percentage of explained variability.
Table 1 lists the four that produced the best results together with the variables used for each,
and the first two components whose sum of the percentage value of explained variability is
greater than 60% (percentage chosen by means of Kaiser’s rule).

Table 1. Parameters of the four PCA analyses carried out on indoor radon datasets.

First Analysis Second Analysis Third Analysis Fourth Analysis

Actual variables All Floor number, Building
type, Postcode

Floor number, Windows,
Wall material, Floor
covering, Postcode

Wall material, Wall
covering, Floor covering

Additional variables None

Wall material, Wall
covering, Floor covering,

Windows number,
Doors number

Building type, Wall
covering, Doors number

Building type, Floor
number, Windows

number, Doors
number, Postcode

First component Building material,
Windows, Floor covering Floor number Postcode Wall covering,

Floor covering

Second component Postcode, Floor number Wall material Building type Building material,
Floor number

Figure 5a shows the correlation circle of the first PCA analysis. It can be seen that
postcode and floor variables are positively correlated with dimension 2, whereas the wall
material variable is negatively correlated with it. The variable floor covering is positively
correlated, whereas the variable windows is negatively correlated with dimension 1. We can,
therefore, interpret dimension 1 as representing the interior environment of the dwelling
while dimension 2 represents the environment outside the dwelling. Figure 5b shows that
the variable with the greatest contribution to indoor radon is the floor number variable; the
postcode and floor covering variables exceed the expected average contribution value of
20% (dashed red line). The percentage of the other two variables is about 15%.
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Figure 5. Results of the first PCA analysis: (a) the correlation circle and (b) percentage contributions
of the factors that formed the main components (see Table 1).

Figure 6 shows the plot of only a small subset of the data (for reasons of readability of
the graph) that distinguishes each indoor radon value according to the floor number of the
corresponding dwelling. Most of the indoor radon activity concentration values detected in
the 694 dwellings are arranged around the origin of the axes; therefore, they are influenced
by both the external environment of the house and the indoor one. However, certain cases
can be highlighted; for example, value 86 Bq/m3 is positively correlated in a strong way
with the indoor environment dimension (greater influence on the indoor environment),
whereas value 40 Bq/m3 is characterized by a positive correlation with the outdoor envi-
ronment dimension (greater influence on the outdoor environment). With this analysis it is
possible to assess the influence on each from the external or internal environment.
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Figure 6. Factor map of the first analysis with differentiated individuals according to the plan.

The second analysis, carried out with the variables reported in Table 1, shows that the
variable floor covering occupies a position close to the axis of dimension 1 and far from that
of dimension 2 (Figure 7a); in contrast, the variable wall covering is positioned close to the
axis of dimension 2 and far from that of dimension 1. The percentage contributions of the
three variables in the identification of the two main components are shown in Figure 7b.
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Figure 7. Results of the second PCA analysis: (a) the correlation circle and (b) Percentage contribu-
tions of the factors that formed the main components (see Table 1).

Two factor maps were made with a subset of the values: one highlighting the floor
covering (Figure 8a) and the other the wall material (Figure 8b). The first graph shows that
wood-panelled floors and most linoleum floors are positively correlated with floor size.
The corresponding dwellings have an indoor radon value that is more influenced by floor
coverings, as is also shown by the position of wood coverings in the fourth quadrant.
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Figure 8. Factor maps of the first analysis with differentiated individuals according to (a) floor
covering (1 = Majolica, 2 = Wood, 3 = Linoleum, 4 = Carpet, 5 = Granite, 6 = Marble, 7 = Other) and
(b) wall materials (1 = Cement, 2 = Bricks, 3 = Stones, 4 = Tuff, 5 = Other).

Floors covered with tiles are all positioned in the third quadrant, and are negatively
correlated with both dimensions. This indicates that the indoor radon value is the result
of other factors. Finally, dwellings paved with marble occupy a position that is positively
correlated with wall size and negatively correlated with floor size: these dwellings are
more influenced by the material and the wall coverings in terms of indoor radioactivity.

Figure 8b shows that dwellings with tuff walls are positively correlated with the wall
dimension in contrast to those with concrete walls; dwellings with walls made of bricks
are negatively correlated with the floor dimension. The only dwelling with stone walls is
located close to the horizontal axis and is negatively correlated with both dimensions. It
is evident that the tuff walls in a building have a greater influence on the indoor radon
values; similarly, if the walls are made of marble rocks, we should not expect a radon value
linked to them but to the choice of floor covering.
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The third analysis, carried out with the variables shown in Table 1, shows that the
variable floor number is linked to dimension 2, the variable postcode occupies a position
closer to dimension 1, and the building type is further away from this dimension (Figure 9a).
Dimension 1, therefore, represents the geographical location (position) of the buildings,
whereas the second dimension represents the type of building (underground, basement, on
pillars), including the floor number and the type of building. The percentage contributions
of the three variables in identifying the two main dimensions are shown in Figure 9b. The
contribution of the postcode is greater than that of the building type, which in turn is
greater than that of the floor number.
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Figure 9. Results of the third PCA analysis: (a) the correlation circle and (b) percentage contributions
of the factors that formed the main components (see Table 1).

Figure 10 shows the disposition of a subset of the individuals and their higher correla-
tion with the building structure (e.g., 78, 212, 79 Bq/m3) or with the dimension representing
the geographic location (e.g., 126). Additionally, individuals 76 Bq/m3 and 91 Bq/m3 show
a position that is slightly different from the average, occupying the fourth quadrant with
a negative correlation with the geographic position component but a positive correlation
with the building component.
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Figure 10. Biplot obtained from the third analysis (see Table 1).

The fourth analysis, carried out with the variables indicated in Table 1, achieved a
percentage of variability of 74.1%.

Figure 11a shows that the variable wall covering is closely linked to the axis of di-
mension 1, and the other two variables (wall material and floor covering) are more closely
linked to dimension 2. In particular, the variable floor covering is placed in the first quad-
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rant, between the two dimensions, suggesting the nature of the materials used for the
floor coverings is like those used for the wall material. These materials are characterized
by a massive thickness and they are compact and consistent materials, such as marble,
cement, wood. They are unlike the materials used for wall coverings, such as plaster or
wallpaper, which are defined by small thicknesses. Therefore, the correlation circle can be
representative of the thickness of the material components.
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Figure 11. Results of the fourth PCA analysis: (a) the correlation circle and (b) percentage contribu-
tions of the factors that formed the main components (see Table 1).

The percentage contributions of the three variables in identifying the two main dimen-
sions are shown in Figure 11b. The contribution of the wall covering is greater than that of
the floor covering, which in turn is greater than that of the floor number.

In the biplot obtained (Figure 12), there is only one individual which behaves differ-
ently from the others, namely the indoor radon value of 44 Bq/m3. This value is positively
correlated with both components but more so with the size of the thin material components.
The corresponding house, therefore, has a radon value that is more influenced by the
wall covering than by the solid materials that make up the floor covering and the internal
perimeter structure.
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Figure 12. Biplot obtained from the fourth analysis (see Table 1).

In contrast to analysis number 1, the depicted biplot shows that most individuals have
similar behavior around the origin of the axes of the two principal components; moreover,
both components have a similar percentage value of explained variability, so the same
amount of latent information is explained in both.

The 694 indoor radon data referring to dwellings located in the Campania Region
were also classified through the partitive k-means algorithm. The input matrix is made up
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of all the individuals, i.e., the 694 Bq/m3 data, and by columns of the variables: indoor
radon, building type, floor, wall material, wall covering, floor covering, windows, doors,
and postcode.

The optimal cluster number varies between k = 3 and k = 5. Applying the k-means al-
gorithm with k = 3, k = 4 and k = 5 clusters, the highest silhouette value (0.93) corresponding
to k = 5 is obtained.

The clustering groups the data according to the five Provinces of the Campania Region:
Salerno, Caserta, Benevento, Avellino and Naples. Each cluster is representative of one
Province (Figure 13).
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Figure 13. Representation of (a) five clusters of the first k-means analysis identified based on
geographical position corresponding to the five Campania provinces (1 = Salerno, 2 = Caserta,
3 = Benevento, 4 = Avellino, 5 = Napoli) and (b) two clusters obtained from the second analysis.

The clustering analysis was repeated excluding the postcode variable. The highest
silhouette value is for a subdivision in k = 2 clusters. The analysis of the characteristics
of the two clusters shows a division between dwellings with higher and lower values of
radon activity concentration (Figure 13b). The mean and standard deviation of indoor
radon values in the two groups are (181, 60) Bq/m3 and (72, 28) Bq/m3, respectively.

Table 2 shows that the percentage of dwellings with walls made of tuff is higher in
cluster 1 than in cluster 2, whereas the percentage of dwellings with walls made of materials
such as cement and bricks, which are made of sedimentary and alluvial rocks, is higher in
cluster 2 than in cluster 1. Therefore, the presence of dwellings with linoleum flooring in
cluster 2 alone justifies the lower average indoor radon value in the latter.

Table 2. Characteristics of the two clusters identified with the latest k-means analysis.

Cluster 1 Cluster 2

Radon Activity Concentration (Bq/m3)

Mean value 181 72
Standard Deviation 60 28

Percentage Distribution of Wall Materials (%)

Cement 5.6 8.9
Bricks 20.4 42.8
Stones 15.5 15.9

Tuff 58.5 25.9
Other materials 0 6.5

Percentage Distribution of Floor Covering Materials (%)

Majolica 64.1 60.1
Wood 0 2.5

Linoleum 0 1.3
Granite 0.7 0.9

Moquette 10.6 8.3
Marble 8.5 9.1

Other materials 16.1 17.8
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4. Conclusions

Two datasets referring to building materials and dwellings in the Campania Region
have been analyzed in terms of natural radioactivity through the method of Principal
Component Analysis and automatic non-hierarchical partitioning.

Both the PCA and the clustering operations were performed using the RStudio soft-
ware, a specific development environment for statistical data analysis, whose programming
language is an open-source object-oriented language.

It was deduced that building materials of volcanic origin contribute most to the
concentration of indoor radon and thoron activity. The PCA method highlighted the
different influence of the most characteristic parameters.

The principal component analyses carried out on the samples of dwellings built
provided a several insights: it was possible to understand how and to what extent each
indoor radon value of a dwelling analyzed was influenced by the structure of the building
or its geographical location, the composition of the floor or walls, or even which type of
material components most influenced the interior of the dwelling in terms of radioactivity.

In conclusion, this preliminary study certainly shows that these methods of statistical
analysis can also be applied for detailed and fruitful analyses of the influence of various
parameters on the levels of radon and other radionuclides.

Author Contributions: Conceptualization, C.S. and M.L.F.; methodology, C.S., M.L.F., V.D. and G.L.V.;
software, M.L.F.; validation, C.S., F.A. and M.L.F.; formal analysis, M.L.F. and F.A.; investigation, V.D.
and G.L.V.; data curation, F.A., V.R., M.L.F. and V.F.; writing—original draft preparation, M.L.F. and
C.S.; writing—review and editing, C.S., M.P., V.F. and A.D.; supervision, A.D., M.P., V.F. and V.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request of the
corresponding author. The data is not publicly available because it is subject to further analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation,

Report to General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2008.
2. Charles, M. UNSCEAR Report 2000: Sources and Effects of Ionizing Radiation; United Nations Scientific Comittee on the Effects of

Atomic Radiation. J. Radiol. Prot. 2001, 21, 83–86. [CrossRef] [PubMed]
3. Zeeb, H.; Shannoum, F. WHO Handbook on Indoor Radon: A Public Health Perspective; WHO Guidelines Approved by the Guidelines

Review Committee; World Health Organization: Geneva, Switzerland, 2009.
4. U.S. Environmental Protection Agency. EPA Assessment of Risks from Radon in Homes; EPA 402-R-03-003; Office of Radiation and

Indoor Air: Washington, DC, USA, 2003.
5. Bochicchio, F.; Ampollini, M.; Antignani, S.; Carpentieri, C.; Caprio, M.; Caccia, B.; Di Carlo, C.; Pozzi, S.; Valentini, S.; Venoso, G.

Protection from radon in Italy: Past, present and perspectives. Rom. J. Phys. 2019, 64, 817.
6. Trevisi, R.; Nuccetelli, C.; Risica, S. Screening tools to limit the use of building materials with enhanced/elevated levels of natural

radioactivity: Analysis and application of index criteria. Constr. Build. Mater. 2013, 49, 448–454. [CrossRef]
7. Stanley, F.K.T.; Irvine, J.L.; Jacques, W.R.; Salgia, S.R.; Innes, D.G.; Winquist, B.D.; Torr, D.; Brenner, D.R.; Goodarzi, A.A. Radon

exposure is rising steadily within the modern North American residential environment and is increasingly uniform across seasons.
Sci. Rep. 2019, 9, 18472. [CrossRef] [PubMed]

8. Guida, D.; Guida, M.; Cuomo, A.; Guadagnuolo, D.; Siervo, V. Assessment and Mapping of Radon-prone Areas on a regional scale
as application of a Hierarchical Adaptive and Multi-scale Approach for the Environmental Planning. Case Study of Campania
Region, Southern Italy. WSEAS Trans. Syst. 2013, 12, 105–120.

9. Szajerski, P.; Zimny, A. Numerical analysis and modeling of two-loop experimental setup for measurements of radon diffusion
rate through building and insulation materials. Environ. Pollut. 2020, 256, 113393. [CrossRef]

10. Minolfi, G.; Albanese, S.; Lima, A.; Tarvainen, T.; Fortelli, A.; DeVivo, B. A regional approach to the environmental risk
assessment—Human health risk assessment case study in the Campania region. J. Geochem. Explor. 2018, 184, 400–416. [CrossRef]

http://doi.org/10.1088/0952-4746/21/1/609
http://www.ncbi.nlm.nih.gov/pubmed/11281539
http://doi.org/10.1016/j.conbuildmat.2013.08.059
http://doi.org/10.1038/s41598-019-54891-8
http://www.ncbi.nlm.nih.gov/pubmed/31796862
http://doi.org/10.1016/j.envpol.2019.113393
http://doi.org/10.1016/j.gexplo.2016.12.010


Environments 2022, 9, 82 14 of 14

11. Sabbarese, C.; Ambrosino, F.; D’Onofrio, A. Development of radon transport model in different types of dwellings to assess
indoor activity concentration. J. Environ. Radioact. 2021, 227, 106501. [CrossRef]

12. Lima, A.; Albanese, S.; Cicchella, D. Geochemical baselines for the radioelements K, U, and Th in the Campania region, Italy: A
comparison of stream-sediment geochemistry and gamma-ray surveys. Appl. Geochem. 2005, 20, 611–625. [CrossRef]

13. Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Roca, V. Radiological characterization of natural building materials from the
Campania region (Southern Italy). Constr. Build. Mater. 2021, 268, 121087. [CrossRef]

14. De Martino, S.; Sabbarese, C.; Monetti, G. Radon emanation and exhalation rate from soils measured with an electrostatic collector.
Appl. Radiat. Isot. 1998, 49, 407–413. [CrossRef]

15. Quarto, M.; Pugliese, M.; Roca, V. Gamma dose rate measurements in dwellings of Campania region, South Italy. J. Environ.
Radioact. 2013, 115, 114–117. [CrossRef] [PubMed]

16. Sabbarese, C.; De Martino, S.; Signorini, C.; Gialanella, G.; Roca, V.; Baldassini, P.G.; Cotellessa, G.; Sciocchetti, G. A survey of
indoor 222Rn in the Campania Region. Radiat. Prot. Dosim. 1993, 48, 257–263.

17. Pugliese, M.; Quarto, M.; Roca, V. Radon concentrations in air and water in the thermal spas of Ischia Island. Indoor Built Environ.
2014, 23, 823–827. [CrossRef]

18. Malanca, A.; Pessina, V.; Dallara, G. Influence of tuff on the radon concentration in dwellings. J. Environ. Radioact. 1991, 14,
295–303. [CrossRef]

19. Quarto, M.; Pugliese, M.; Loffredo, F.; Roca, V. Indoor radon concentration measurements in some dwellings of the Penisola
Sorrentina, South Italy. Radiat. Prot. Dosim. 2013, 156, 207–212. [CrossRef]

20. Venoso, G.; De Cicco, F.; Flores, B.; Gialanella, L.; Pugliese, M.; Roca, V.; Sabbarese, C. Radon concentrations in schools of the
Neapolitan area. Radiat. Meas. 2009, 44, 127–130. [CrossRef]

21. La Verde, G.; Roca, V.; Sabbarese, C.; Ambrosino, F.; Pugliese, M. The equilibrium factor in the radon dose calculation in the
archaeological site of Acquedotto Augusteo del Serino in Naples. Nuovo Cim. C 2018, 41, 218.

22. La Verde, G.; D’Avino, V.; Sabbarese, C.; Ambrosino, F.; Roca, V.; Raulo, A.; Pugliese, M. Radiation protection legislation and
sustainable development of a rural green tuff village of ischia island. Sustainability 2020, 12, 8374. [CrossRef]

23. Sabbarese, C.; Ambrosino, F.; Chiodini, G.; Giudicepietro, F.; Macedonio, G.; Caliro, S.; De Cesare, W.; Bianco, F.; Pugliese, M.;
Roca, V. Continuous radon monitoring during seven years of volcanic unrest at Campi Flegrei caldera (Italy). Sci. Rep. 2020, 10,
9551. [CrossRef]

24. Sabbarese, C.; Ambrosino, F.; D’Onofrio, A.; Pugliese, M.; La Verde, G.; D’Avino, V.; Roca, V. The first radon potential map of the
Campania region (southern Italy). Appl. Geochem. 2021, 126, 104890. [CrossRef]

25. Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
26. Jackson, J.E. A User’s Guide to Principal Components; Wiley: New York, NY, USA, 1991.
27. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002.
28. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
29. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2017; Available online: https://www.R-project.org/ (accessed on 20 April 2022).
30. RStudio Team. RStudio: Integrated Development for R.; RStudio: Boston, MA, USA, 2020; Available online: http://www.rstudio.

com/ (accessed on 20 April 2022).

http://doi.org/10.1016/j.jenvrad.2020.106501
http://doi.org/10.1016/j.apgeochem.2004.09.017
http://doi.org/10.1016/j.conbuildmat.2020.121087
http://doi.org/10.1016/S0969-8043(96)00300-4
http://doi.org/10.1016/j.jenvrad.2012.07.016
http://www.ncbi.nlm.nih.gov/pubmed/22910141
http://doi.org/10.1177/1420326X13480053
http://doi.org/10.1016/0265-931X(91)90020-G
http://doi.org/10.1093/rpd/nct056
http://doi.org/10.1016/j.radmeas.2008.10.002
http://doi.org/10.3390/su12208374
http://doi.org/10.1038/s41598-020-66590-w
http://doi.org/10.1016/j.apgeochem.2021.104890
http://doi.org/10.1109/TIT.1982.1056489
http://doi.org/10.1016/S0031-3203(02)00060-2
https://www.R-project.org/
http://www.rstudio.com/
http://www.rstudio.com/

	Introduction 
	Materials and Methods 
	Data 
	Statistical Analysis Methods 
	PCA 
	K-Means 
	R Software and RStudio 


	Results and Discussion 
	Building Materials 
	Radon Indoor Data 

	Conclusions 
	References

