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Abstract: The detection of SARS-CoV-2 RNA fragments in feces has paved the way for wastewater-
based epidemiology to contribute to COVID-19 mitigation measures, with its use in a public health
context still under development. As a way to facilitate data comparison, this paper explores the
impact of using alternative normalization approaches (wastewater treatment plant (WWTP) flow,
population size estimates (derived using total nitrogen (TN), total phosphorus (TP) and census data)
and pepper mild mottle virus (PMMoV)) on the relationship between viral wastewater data and
clinical case numbers. Influent wastewater samples were collected at two WWTPs in Luleå, northern
Sweden, between January and March 2021. TN and TP were determined upon sample collection, with
RNA analysis undertaken on samples after one freeze–thaw cycle. The strength of the correlation
between normalization approaches and clinical cases differed between WWTPs (r ≤ 0.73 or r ≥ 0.78 at
the larger WWTP and r ≤ 0.23 or r ≥ 0.43 at the smaller WWTP), indicating that the use of wastewater
as an epidemiological tool is context-dependent. Depending on the normalization approach utilized,
time-shifted analyses imply that wastewater data on SARS-CoV-2 RNA pre-dated a rise in clinical
cases by 0–2 and 5–8 days, for the lager and smaller WWTPs, respectively. SARS-CoV-2 viral loads
normalized to the population or PMMoV better reflect the number of clinical cases when comparing
wastewater data between sewer catchments.

Keywords: wastewater-based epidemiology; normalization; population estimates; pepper mild
mottle virus; clinical cases; infiltration inflow

1. Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has put significant pres-
sure on public health authorities, policy makers and society at large. As a result of its rapid
transmission, it has, to-date, resulted in over 290 million confirmed infections worldwide
and over 5.4 million deaths [1]. Clinical diagnostics use reverse transcript polymerase chain
reaction (RT-PCR) to detect RNA signals of the virus from nasopharyngeal and oropha-
ryngeal swabs as the standard method for clinical testing [2]. The surveillance of virus
transmission based on clinical tests performed by healthcare professionals was been insuffi-
cient during the formative year of the pandemic due to shortages in staff and consumables,
as well as hesitancy to test in some communities [3]. Furthermore, approximately 43–45%
of infected individuals can be asymptomatic, with initial data suggesting this may vary
by population and by variant [4,5]. As testing focuses on symptomatic cases, the number
of cases identified in clinical reports may be an under-representation of the real-world
conditions [2].

Despite the fact that COVID-19 is a disease that predominantly affects the respiratory
tract, resulting in high prevalence of the virus in respiratory fluids [6], several studies have
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reported that SARS-CoV-2 RNA is excreted in feces. While data are still developing, current
estimates are that 40.5–51.8% of infected individuals excrete viral RNA fragments in their
feces [7,8]. In addressing the identified challenges, considerable interest has focused on
the use of wastewater-based epidemiology (WBE). Previously practiced in the monitoring
of drug use [9], poliovirus [10] and hepatitis E [11], for example, it is rapidly evolving
as a key approach in efforts to monitor the occurrence and spread of the virus in several
countries [3,12,13].

The basic premise of WBE is that human excreted substances entering the sewer
system can be related to their use by, or exposure to, the contributing population. Thus,
by systematic sampling of raw wastewater, a single pooled sample might offer a near
real-time, community-wide, snapshot of population health [14]. WBE could serve as a
complimentary tool for public health authorities to monitor spatial and temporal trends
in virus prevalence, and to detect early warning signs of (re-)emerging outbreaks in a
non-invasive and economically effective manner [3,9,12]. Hence, WBE could enhance the
public health authorities’ preparedness, assisting them in taking necessary precautions to
protect public health [2].

However, a variety of factors other than the number of contributing individuals
may influence the variability of SARS-CoV-2 concentrations in wastewater. In relation to
clinical test data (which typically target symptomatic individuals), wastewater contains
inputs from both asymptomatic and symptomatic cases [15]. The fate of SARS-CoV-2
RNA in wastewater and its susceptibility to decay and degradation is observed to be most
significantly affected by increasing temperature [16]. Similar behavior has been reported for
other enveloped viruses, as well as surrogate viruses which resemble SARS-CoV-2 in their
biological and physical properties [14,16–18]. Findings of gamma-irradiated SARS-CoV-2
suggest that the persistence of RNA fragments in raw wastewater, in a range of 4 to 37 ◦C, is
sufficient to produce valid results within the relevant timeframe for wastewater collection
and analysis [16].

Whilst clinical data on the shedding of SARS-CoV-2 in feces are limited, data avail-
able to date indicate that it does not appear to follow a homogenous pattern amongst
clinical cases, with shedding rates ranging between 10–108 gene copies/g of feces re-
ported [19]. Moreover, the duration of fecal shedding of SARS-CoV-2 has been observed
to last for extended periods of time, in many cases outlasting shedding from the respi-
ratory tract [5,6,20,21]. Additionally, due to easy accessibility, studies of fecal shedding
of SARS-CoV-2 are conducted primarily on hospitalized symptomatic individuals; this
contributes to uncertainties in the patterns of shedding at the beginning of infection and
the virus’ prevalence in pre- and asymptomatic individuals [2]. However, several studies
have detected viral loads in wastewater a few days to weeks prior to clinical diagnostic
reports [4,22–25], supporting the supposition that fecal shedding could occur in both pre-
symptomatic and asymptomatic phases. Hence, WBE could provide a better indication of
the virus’ prevalence at a population level, since the sewer system receives concentrations
regardless of symptomatic status, supporting its potential as a trend-monitoring tool and
early warning system.

Aside from the uncertainty associated with shedding patterns, environmental impacts
that may cause dilution in the sewer system and influence WWTP flow (e.g., stormwater and
infiltration inflow (I/I)) as well as temporal variations in the number of people contributing
to the sewer system (e.g., commuters) increases the difficulty of robust interpretation of
the temporal concentration variations [26–28]. Normalization of SARS-CoV-2 wastewater
data is one approach to address these deficiencies and promote robust data interpretation
that is comparable across samples, as well as WWTPs that can be useful to public health
authorities. Wastewater data can be normalized using various parameters, from nutrient
concentrations to flow volume. However, the impact of the method chosen on the strength
of relationship with clinical case numbers has yet to be thoroughly explored.
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Herein, data on the concentration of SARS-CoV-2 in wastewater were normalized
to WWTP flow, and the population size estimated based on mass loads of TN and TP, as
well as census data and the biomarker PMMoV. Using statistical analyses, the strength
of the relationship between the normalization approaches and clinical case data were
evaluated. The implications of using alternative normalization methods were identified
and recommendations made for future studies.

2. Materials and Methods
2.1. Sampling Site Description

Wastewater was collected from two WWTPs in Luleå municipality—the Uddebo
(UDD) WWTP and the Råneå (RAN) WWTP—at the beginning of 2021. The municipality
is situated in the northern part of Sweden along the east coast of Norrbotten county; it
has a cold temperate climate [29] and an average precipitation of 600 mm/year, with
the highest precipitation rates June–November [30]. UDD is the largest WWTP in Luleå
municipality; it is dimensioned for a population equivalent (pe) of 91,000, and has an
industrial load equivalent of 15,000 pe, covering the urban catchment area of the Luleå
conurbation as well as several larger suburbs [31]. The RAN WWTP is a smaller WWTP,
dimensioned for 3800 pe, and has no industrial input. It is located north of Luleå, with
a catchment area covering the urban Råneå community [32]. Neither catchment reports
major industrial sources of TN or TP, and the use of domestic garbage disposal units is
practiced in this area of Sweden. According to census data, 66,600 people are connected to
the UDD WWTP and 1971 people are connected to the RAN WWTP, covering 84 and 2.5%
of the total population in the municipality, respectively. In excess of the de jure population,
the catchment area of UDD WWTP is also influenced by daily commuters and tourists. The
majority of the sewage network is made up of separate sewer systems (80–90%); however,
infiltration/inflow (I/I) accounts for 47 and 67% of total yearly inflow at the UDD and
RAN WWTPs, respectively [31,32].

2.2. Wastewater Sampling and Wastewater Quality Characterisation

A total of 32 samples of influent wastewater were collected from UDD and RAN
WWTP (from 13 January to 1 March 2021 at the UDD WWTP, and from 1 February to
1 March 2021 at the RAN WWTP). At both locations, 24 h composite samples were collected
twice per week with a 72 h composite sample collected over weekends, using a refrigerated
flow-proportional autosampler (UDD WWTP) and a refrigerated time-proportional (50 mL
every 20 min) autosampler (RAN WWTP). The total composite samples were stirred upon
collection, and 3 grab-samples of 100 mL were collected in plastic bottles by WWTP
personnel. The samples were stored in a freezer at −20 ◦C until transportation to the
laboratory using ice boxes. Average daily flow was recorded on the day of sampling, as was
data referring to precipitation and snowmelt. For each composite sample, the concentration
(mg/L) of TN and TP were analyzed by the Uddebo accredited laboratory, according to the
standard methods SS 02 81 31-1, SM 4500-NO3 B and SS-EN ISO 6878:2005, respectively.
Mass loads of TN and TP were calculated for each sampling day by multiplying the
concentration with the average daily WWTP flow.

2.3. Clinical Case Data

Daily case data of new clinical cases covering the study period were provided by
Norrbotten county council in the following format: date of clinical test, date clinical test
result was reported, and related postal code for each tested individual [33]. Information
on postal code (which did not overlap between the two studied areas) was solely used to
allocate clinical data to each WWTP.

While assessing the sufficiency of early warning in this study, the time lag between
the day of testing and the day of statistical reports must be kept in mind (average 1–2 days
at this time in Luleå municipality). Clinical testing was not significantly hampered by a
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lack of resources during this period of the pandemic, and availability of clinical testing was
sufficient; therefore, high clinical testing rates may be presumed.

2.4. SARS-CoV-2 Concentration and RNA Extraction

Viral total nucleic acid (TNA) was concentrated from duplicate wastewater samples for
each sample using a Maxwell RSC Environmental TNA Kit, AX9560 (Promega) according
to the manufacturer’s protocol. This method has an excellent ability to eliminate RT-qPCR
inhibitors. Briefly, protease solution was added to 40 mL of wastewater sample and
incubated for 30 min at room temperature. Following the digestion step, solids were
removed by centrifugation and nucleic acids were concentrated by a column-based system.
The 0.5 mL of nucleic acids eluted from the column were further purified using the provided
Maxwell cartridge and the PureFood GMO and Authentication program of the Maxwell
RSC instrument (Promega). In the final step, the instrument eluted the nucleic acids in
80 µL of nuclease-free water [34]. In-house assessment of the recovery efficiency of the
method using Bovine Coronavirus (BCoV) were in line with the efficiency and consistency
expected according to the manufacturer (23 ± 3%).

2.5. RT-qPCR

The extracted TNA was used to perform one-step RT-qPCR quantification of the ge-
netic material of SARS-CoV-2 and PMMoV, separately. SARS-CoV-2 was quantified using
the U.S. Center for Disease Control primer sets [35], while PMMoV was quantified using the
primer sets described in Zhang et al. (2006) [36]. All qPCR quantifications were performed
according to the MIQE guidelines [37], and only analyses with PCR amplification efficien-
cies between 90 and 120% were accepted. A serial dilution of CDC RUO 2019-nCoV_N
Positive Plasmid Control (IDT DNA, Cat # 10006625) and a manufactured plasmid con-
taining the appropriate target sequence (IDT DNA, Custom MiniGene 25–500 bp) were
used to generate standard curves using linear regression of the relationship between the Cq
values and copy numbers. Samples were analyzed in triplicate using the Reliance One-Step
Multiplex Supermix kit (BioRad), following the manufacturer’s protocol and in the presence
of 1 mg/mL BSA (ThermoFisher). Each 20 µL reaction contained 5 µL template RNA or
nuclease free water for the non-template controls (NTCs). The reactions were run according
to the following thermal profile using a CFX96 Touch Real-time PCT Detection system
(BioRad): 50 ◦C for 30 min and 95 ◦C for 5 min; followed by 45 cycles of 95 ◦C for 15 s and
60 ◦C for 30 s for N1; and 58 ◦C for 30 s for PMMoV. Samples were reported positive only
for Ct values < 40 and when the RT-qPCR assay triplicates of each wastewater sample had a
Ct standard deviation < 0.45. If removing outliers did not improve the standard deviation,
RT-qPCR triplicates with Ct standard deviation > 0.45 were disregarded. The concentration
of SARS-CoV-2 and PMMoV genomes in each sample, C (copies/mL), was calculated using
Equation (1).

C = N/(VRT-qPCR × (Vsample/Vextracted)) (1)

where N (copies/reaction) is the gene copies detected in each RT-qPCR reaction; VRT-qPCR
(mL) is the volume of TNA used for RT-qPCR; Vsample (mL) is the wastewater sample
volume initially used for the concentration step; and Vextracted (mL) is the total volume of
nucleic acid extracted using the Maxwell RSC instrument (Promega).

2.6. Estimations of Popualtion Size and Normalization of SARS-CoV-2 Concentrations

The daily viral load, VL (copies/d), for both SARS-CoV-2 and PMMoV was calculated
by normalizing C to the average daily WWTP flow, Q (L/d) (Equation (2)).

VL = C × Q × 103 (2)

Mass loads of TN and TP in wastewater, MTN/TP (g/d), were utilized to estimate the
size of the contributing population (P) on each day of sample collection (see Equation (3)).
In this study, four values of the domestic contribution of TN and TP sourced from the
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literature, mTN/TP (g/p/d), were used, with values ranging from 12.5–14.0 g/p/d for TN
and 1.2–2.1 g/p/d for TP (see Tables S1 and S2 for specific values [38–41]).

P= MTN/TP/mTN/TP (3)

Subsequently, divisions of VL by P were applied for population normalization of the
viral loads, resulting in an expression of copies/p/d. Normalization of SARS-CoV-2 RNA
using the biomarker PMMoV was undertaken by dividing the VL of SARS-CoV-2 RNA (N)
by the VL of PMMoV for each sampling day.

2.7. Statistical Analyses

Intraday variations of the different approaches of estimating the population size, as
well as the variability between weekday and weekend data sets, were measured as relative
standard deviation (RSD) and expressed as a percentage (%) of variation (Equation (4)).

RSD = (SD/ x)× 100 (4)

where SD is the standard deviation and x is the mean value of the data. A Pearson correla-
tion test was used to assess the type of relationship between the different normalization
approaches of SARS-CoV-2 in wastewater and epidemiological data. The Pearson correla-
tion coefficient for each normalization approach and the associated 7-day rolling average
of clinical cases per 100,000 inh. were compared across the two WWTPs and between
normalization approaches. All normalization approaches were also subjected to a time-
shifted correlation. A period of 1 to 10 days was used to offset the association between each
normalization procedure and clinical cases. The difference in Ct values between sample
replicates of SARS-CoV-2 and PMMoV was analyzed as a process efficiency measurement.
A Ct difference > ±0.90 was utilized as an indication of a low level of reproducibility in an-
alytical procedures between sample replicates. All statistical analyses and data processing
were performed in MS Excel.

3. Results and Discussion
3.1. Estimations of Population Size

In the context of WBE, several studies have attempted to estimate population size
using different human markers found in wastewater, since census data do not consider
diurnal dynamics of the population size [26,38,42]. In Sweden, WWTPs routinely analyze
TN and TP; therefore, using reported literature values of the domestic input per person of
these parameters, it provides an easy and effective way to investigate temporal population
variations. The selected values (see Supplementary Materials Tables S1 and S2) were
applied in the study as they reflect the range of values typically used in Sweden [38–41].
The population size estimates vary significantly between TN and TP estimations and
between the literature values used for each parameter—from 44,822 to 112,702 at the UDD
WWTP (Figure 1a,b), and from 984 to 4291 at the RAN WWTP (Figure 2a,b).

At the UDD WWTP, the average deviation for all the population estimations from cen-
sus data is 6.1% for the TP estimated population and 28% for the TN estimated population.
For the RAN WWTP, similar results can be seen, wherein the average deviation from census
data is −2.8% for the TP estimated population and 8.5% for the TN estimated population.
This suggest that the TP estimated population yields a result that is close to census data,
whereas TN generally overestimates the population size compared to the census data.
However, intraday variations, measured as relative standard deviation (RSD), between
the four literature values utilized for the domestic contribution of each parameter to the
sewer system, are lower for TN (RSD 10%) than for TP (RSD 24%). Hence, even though the
average deviation from census data is lower for TP-derived estimations, the extreme values
of population estimations during the sampling period at both WWTPs are represented
by those calculated based on TP mass loads. Given that the data were collected during a
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time when many people were working from home (and therefore presented limited daily
variations), the use of TN-derived population estimates is considered to be more robust.
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When comparing weekdays and weekend data sets, weekends TN-derived population
estimates exhibit less variability (RSD 4.1% at the UDD WWTP and 8.3% at the RAN
WWTP) than weekdays (RSD 5.7% at the UDD WWTP and 24.5% at the RAN WWTP)
(see Supplementary Materials Tables S3 and S4). At the UDD WWTP, the same result
can be seen for the TP estimated population (RSD 10.6% on weekdays and RSD 6.1% on
weekends). However, this pattern does not apply to TP population estimations at the RAN
WWTP (RSD 25.4% on weekdays and 29.1% on weekends). These patterns could imply that
the population size is more constant on weekends based on the TN mass loads. However,
this result could be a function of the fact that contributions from industrial activities are
reduced on weekends at the UDD WWTP (industrial input equal to 15,000 pe) [42,43], and
further work is required to enable the influences and inter-relationships between these two
factors to be resolved.

During the pandemic in Sweden, lockdowns have not been applied; instead, more
modest restrictions and recommendations have been implemented, encouraging people to
be more restrictive in their travel and commuting patterns, as well as encouraging people
to work from home. Even though minimal diurnal population variations were expected
during this time, a constant state, as might be expected with lockdowns, cannot be assumed.
Therefore, the temporal trend observed for estimations of the population size might be
an indicator of fewer commuters during the weekend; this suggests that the estimated
population size based on TP and TN might be more adequate than population size based
on census data.

3.2. Detection and Quantification of SARS-CoV-2 RNA in Wastewater Samples

Out of the 32 wastewater samples collected, all UDD WWTP samples (n = 19) and
77% of RAN WWTP samples (n = 13) were RT-qPCR positive for the N1 gene (all RT-
qPCR NTCs were negative) (see Supplementary Materials Tables S5 and S6). All positive
samples had mean Ct values below 35, with ranges of 29.2–34.5 and 29.9–34.8 at the
UDD and RAN WWTPs, respectively, with the SD of RT-qPCR triplicates being <0.45. In
the absence of measurements performed on fresh samples, the exact impact of freezing
could not be evaluated. However, the measured SARS-CoV-2 concentrations were in the
range of 10.7–144.9 copies N1/mL at the UDD WWTP and 2.9–169.1 copies N1/mL at the
RAN WWTP (see Supplementary Materials Tables S5 and S6), indicating that the applied
method was robust to one freeze–thaw cycle. A comparison of the difference in Ct values
between replicates for each sampling date demonstrated sufficient concordance for the
majority of the analyzed samples (see Supplementary Materials Tables S5 and S6), with the
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average Ct difference for N1 being 0.49 at the UDD WWTP and 0.47 at the RAN WWTP.
The result demonstrates sufficient concordance, indicating strong to very strong levels of
reproducibility in the analytical procedures between sample replicates.

3.3. Detection and Quantification of PMMoV RNA in Wastewater Samples

Among the samples collected in this study, they all detected strong signals of PM-
MoV in the RT-qPCR, with mean Ct values in the range of 22.3–25.0 at the UDD WWTP
and 21.9–24.6 at the RAN WWTP. On a few sampling occasions, the SD of the Ct val-
ues from RT-qPCR duplicates from the initial analysis exceeded 0.45 (see Supplementary
Materials Tables S7 and S8 for specific days) and their concentrations were lower than
the expected, indicating analytical errors in the first RT-qPCR run. Hence, RT-qPCR
was repeated on the specific samples. PMMoV concentrations were in the range of
2.4 × 104–1.5 × 105 copies/mL at the UDD WWTP and 3.1 × 104–2.0 × 105 copies/mL at
the RAN WWTP (see Supplementary Materials Tables S7 and S8). At both the UDD WWTP
and the RAN WWTP, the average Ct difference for PMMoV between duplicates for each
sampling date was 0.56 (see Supplementary Materials Tables S7 and S8 for specific values).
Samples with a Ct difference > 0.90 included replicates that were re-analyzed. However,
the result demonstrates sufficient concordance, indicating strong levels of reproducibility
in the analytical procedures between sample replicates.

3.4. Different Normalization Approaches for SARS-CoV-2 in Wastewater and Correlation to
Clinical Case Data

The sampling period covers an initial period of low clinical case numbers (282 and
0 clinical cases per 100,000 inhabitants (inh.) per week at the UDD and RAN WWTPs,
respectively), followed by an increase to a maximum of 787 clinical cases/100,000 inh. at
the UDD WWTP and 913 clinical cases/100,000 inh. at the RAN WWTP per week (see
Supplementary Materials Figure S1a,b).

At the UDD WWTP, the 7-day rolling average of clinical cases has a strong correlation
initially (daily offset 0, i.e, no time shift) to unnormalized data, as well as all normalization
approaches (Tables 1 and 2). For un-normalized data, as well as SARS-CoV-2 normalized
to WWTP flow and PMMoV, the correlation peaks at a two-day time-shift. However,
out of all the approaches, viral loads normalized to the TP estimated population had the
strongest correlation to clinical cases without any time shift. In contrast, the approach of
normalizing viral loads using PMMoV reveals the weakest correlation to clinical cases at
its maximum at two days offset; however, the difference in the strength of the correlations
between the different approaches applied was minimal (0.73 as the lowest and 0.78 as the
highest). At the RAN WWTP, the Pearson correlation coefficient initially (daily offset 0)
shows a weak-to-moderate correlation to clinical cases in all the normalization approaches,
which gradually increases to a very strong correlation in the time-shifted analyses. In
contrast to the results obtained at the UDD WWTP, the approach of normalizing viral loads
using the TP estimated population indicates the weakest correlation to clinical cases at the
RAN WWTP.

Table 1. Time-shifted analyses of the Pearson correlation coefficients (r) at UDD WWTP between
un-normalized as well as normalized SARS-CoV-2, and the 7-day rolling averages of clinical cases
offset over a time period of 1–10 days (where 0 refers to the wastewater sample collection date).

Daily Offset
0 1 2 3 4 5 6 7 8 9 10

Un-normalized 0.764 0.771 0.776 0.771 0.768 0.766 0.739 0.707 0.632 0.572 0.508
Normalized to WWTP flow 0.763 0.766 0.768 0.761 0.755 0.752 0.723 0.690 0.613 0.553 0.487

Normalized to TN estimated population 0.752 0.750 0.749 0.741 0.735 0.736 0.702 0.667 0.592 0.530 0.465
Normalized to TP estimated population 0.776 0.759 0.748 0.731 0.725 0.724 0.679 0.640 0.562 0.495 0.432

Normalized to PMMoV viral loads 0.734 0.735 0.748 0.746 0.695 0.667 0.652 0.615 0.549 0.507 0.447

Key: shading indicates the highest level of correlation per parameter.
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Table 2. Time-shifted analyses of the Pearson correlation coefficients (r) at RAN WWTP between
un-normalized as well as normalized SARS-CoV-2, and the 7-day rolling averages of clinical cases
offset over a time period of 1–10 days (where 0 refers to the wastewater sample collection date).

Daily Offset
0 1 2 3 4 5 6 7 8 9 10

Un-normalized 0.408 0.591 0.629 0.732 0.781 0.854 0.878 0.862 0.860 0.851 0.780
Normalized to WWTP flow 0.418 0.586 0.627 0.726 0.758 0.835 0.846 0.826 0.828 0.815 0.753

Normalized to TN estimated population 0.421 0.592 0.623 0.695 0.737 0.824 0.784 0.774 0.746 0.733 0.674
Normalized to TP estimated population 0.230 0.397 0.434 0.499 0.596 0.691 0.704 0.686 0.754 0.731 0.746

Normalized to PMMoV viral loads 0.435 0.649 0.653 0.711 0.841 0.841 0.888 0.875 0.766 0.773 0.636

Key: shading indicates the highest level of correlation per parameter.

Depending on the normalization approach used, time-shifted analyses of the Pear-
son correlation coefficient suggest that wastewater data of SARS-CoV-2 RNA pre-date
rises in clinical cases by 0–2 days at the UDD WTTP and 5–8 days at the RAN WWTP
(Tables 1 and 2). Whilst the specific reasons for the difference in the time-shift duration
between the two sites are not clear, potential factors could include differences in people’s
willingness to be tested, age profiles, and sewer system travel times. Based on this study,
this could be an indication that WBE has a stronger predictive value for smaller WWTPs.
However, further studies are needed to completely comprehend the changes in WBE
predictability between different sized WWTPs.

3.4.1. SARS-CoV-2 WWTP Flow Normalization

To account for variations in flow between days due to factors such as precipitation,
snowmelt or groundwater inflow, normalization of SARS-CoV-2 concentrations using the
average daily WWTP flow was applied, resulting in an expression of the N1 gene in viral
loads (N1 copies/d). The volume of inflow slightly decreased over the sampling period at
both WWTPs. The flow was, on average, 2.57 × 104 ± 1.59 × 103 m3/d at the UDD WWTP
and 6.79 × 102 ± 7.07 × 101 m3/d at the RAN WWTP (see Supplementary Materials Figure
S2a,b); this modest change in flow explains the limited (if any) effect on the strength of
correlation between flow-normalized and un-normalized data (Tables 1 and 2). Throughout
the sampling period, temperatures above zero were not recorded until the last few days of
the study period. Hence, most of the precipitation fell as snow, suggesting that stormwater
had no impact on the sewage system’s flow volumes during the sampling campaign. The
limited reduction in inflow volumes observed over time is also linked to the reported
cold weather conditions whereby a lack of stormwater recharge of groundwater leads to
falling groundwater levels, which, in turn, reduces levels of groundwater infiltration to
piped systems.

Regardless of the minimal influence on the correlation that this normalization approach
has on the data set, normalization to flow is essential to account for systematic variations
within a WWTP. If samples had been collected during this region’s snow melt season, flow
rates would have been substantially higher, and large variations between days could have
been expected, resulting in greater variations in the data. Hence, the detected signals of
SARS-CoV-2 RNA expressed as raw concentrations are likely to be insufficient to provide
information about viral occurrence and behavior during all seasons; this is because an
increase could be caused by a higher number of infected individuals, or a function of dry
weather and, thus, less dilution from stormwater and/or groundwater.

The results of the time-shifted correlation coefficients (Tables 1 and 2 and Figure 3a,b)
indicate an increase in viral load before clinical cases begin to rise. This further suggests
that SARS-CoV-2 normalized to WWTP flow could have predicted an increase in clinical
cases ahead of time. However, while clinical cases continue to rise in the subsequent time
period, the first increase in SARS-CoV-2 in wastewater at the UDD WWTP is followed by a
decline (between 8 and 10 February) before rising again. In the context of public health,
this could lead to confusion and the misconception that viral transmission is decreasing.
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Therefore, the influence of additional factors and interactions on virus behavior in-pipe
needs further research. However, it is important to note that the magnitude of the viral
loads was substantially higher at the UDD WWTP compared to that at the RAN WWTP
(see secondary Y axes in Figure 3a,b).
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Figure 3. Longitudinal data of flow-normalized SARS-CoV-2 viral loads together with clinical cases,
presented as 7 day rolling average per 100,000 inh. (based on day of testing) at: (a) UDD WWTP and
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3.4.2. SARS-CoV-2 Population and PMMoV Normalization

Even though population size cannot be predicted with a high level of confidence,
the goal of assessing an estimated population based on different estimations is to better
reflect the influence that population changes have on the detected signals of SARS-CoV-2
in wastewater [12,44,45], and thus, the implications for public health decision-makers. The
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estimations of population size described in Section 3.1 were applied to further normalize
the viral loads (Section 3.4.1) in order to include the effect of population dynamics on
SARS-CoV-2 wastewater data (Figure 4a,b). SARS-CoV-2 normalized to census data is the
same as viral load, since census data are constant. However, for comparison of population
normalization procedures, this is included in Figure 4a,b.
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When comparing the magnitude of population-normalized SARS-CoV-2 viral loads, it
can be seen that the difference between data normalized using TN population estimations
and census data fall within the same order of magnitude at both WWTPs (Figure 4a,b).
A similar trend is seen for viral wastewater data normalized to TP estimated population
size (see Supplementary Materials Figure S3a,b). Previous studies estimating population
size based on other parameters, to infer temporal changes in illicit drug use, have reported
similar results [46]. Hence, despite the fact that TN and TP estimated population size devi-
ates (to differing degrees) from the census data over the sampling period, the relationship
between the normalized viral loads and clinical case-numbers were relatively insensitive to
whether census population or population size estimates were used. However, the data also
indicate the potential limitations of using viral data normalized only to flow in a public
health context; the presentation of flow-normalized loads, independent of case numbers
(see secondary Y axes in Figure 3a,b), may suggest that the virus was more prevalent in the
catchment area of the UDD WWTP compared to the RAN WWTP, a picture which changed
when data were further normalized for population size.

PMMoV is a plant virus that is found in human feces as a result of eating peppers and
pepper-processed foods. It is the most abundant RNA virus found in healthy individuals
and it has been discovered to be highly stable in wastewater. PMMoV is also shed in large
quantities—up to 109 gene copies/g feces—and is often utilized as a marker of wastewater
pollution in environmental waters [36, 47–48]. As a result, interest in utilizing PMMoV
as an internal reference virus to normalize SARS-CoV-2 in wastewater has increased [27].
Theoretically, this normalization approach would account for flow variations, and loss
due to storage and sample processing, as well as population dynamics (i.e., these factors
would affect the concentration of both PMMoV and SARS-CoV-2) [49]. However, the effects
of freezing and thawing may have varying degrees of impact on the viruses, and further
research to support the development of a more complete understanding of the impact of
freeze–thaw cycles is required. Several studies have reported that PMMoV shows minimal
geographic and seasonal variation [44,45,47]. However, PMMoV concentrations originate
from the consumption of PMMoV-infected plants which may vary between regions due to
social and cultural variations influencing food habits.

When examining the effect of PMMoV normalization on the longitudinal data sets, a
temporal trend comparable to SARS-CoV-2 normalized to WWTP flow and population can
be seen at both WWTPs (Figure 5a,b). When compared to flow-normalized SARS-CoV-2,
the magnitude of the normalized data using this approach more accurately reflects the
number of clinical cases/100,000 inh. at the two WWTPs in a manner similar to population
normalization. Comparing viral loads normalized to population or PMMoV with clinical
cases indicates that the temporal variations follow the same pattern as the viral loads
(Figure 3a,b). Moreover, after the first peak (between 8 and 10 February) in normalized
SARS-CoV-2 data at the UDD WWTP, both the population- and PMMoV-normalized data
sets showed a decline in normalized SARS-CoV-2 data in the same way as WWTP flow
normalized data. The normalized data could decrease if the population of the area suddenly
increased while infection rates remained unchanged. However, no such relationship could
be found in this study based on population estimates at the time (Figure 1a,b).
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3.5. Future Research Recommendations

This study involved the use of frozen samples, stored for 18 weeks at −20 ◦C, and
exposed to a single thaw cycle before RNA concentration and extraction. Whilst some
studies have reported a negative impact of the freeze–thaw cycle on signal strength [48],
in-house evaluation of the impact of freezing indicated that the freeze–thaw process did not
significantly affect the recovery of N1 (p = 0.47 and p = 0.49). The recovery of PMMOV was
higher in the frozen samples (potentially due to the release from solid materials), and further
research is required to evaluate the impact of freeze–thaw cycles on PMMoV behavior.
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Moreover, the samples used in this study were obtained during cold winter conditions
(with minimal changes in flow reported over the sampling campaign), which are ideal
circumstances for SARS-CoV-2 detection in wastewater [14]. However, the specific effect of
dilution and temperature changes on SARS-CoV-2 in wastewater should be investigated
further. In addition, the results indicate that a time shift between wastewater data and
clinical case numbers, as well as a greater understanding of the factors contributing to the
time shift (e.g., in-pipe behavior and understanding of whether time shifts are consistent on
a catchment basis), will increase the utility of the approach as a public health tool. Another
issue that should be further investigated is what detection limit should cause concerned
in public health officials. The study showed that the surveillance of SARS-CoV-2 viral
loads normalized to population can be sufficient for detecting temporal changes in viral
occurrence, although it may be difficult to interpret the data if levels are already high.

Population normalization of viral loads might become more crucial as society opens
up and the population deviates further from census data, particularly in places with
exceptionally high diurnal variations, such as commuter and tourist-influenced cities.
Population dynamics may have a different impact on SARS-CoV-2 wastewater data as more
people are vaccinated, resulting in decreased virus prevalence in communities. Therefore,
it would be interesting to explore how the population normalization of viral loads, using
an estimated de facto population on a bigger population with more variable population
dynamics, would compare to those normalized to census data as clinical cases decrease.

4. Conclusions

This study explored the implications of the use of alternative normalization approaches
on SARS-CoV-2 in wastewater using WWTP flow, with population size estimated based
on mass loads of TN and TP, as well as the biomarker PMMoV. This case study identified
the following:

Time-shifted analyses of the Pearson correlation coefficient suggest that wastewa-
ter data of SARS-CoV-2 RNA pre-date rises in clinical cases by 0–2 days at the larger
WWTP (UDD) and 5–8 days at the smaller WWTP (RAN), depending on the normaliza-
tion approach utilized. Additionally, a strong correlation for all values was found across
both WWTPs. However, whilst none of the normalizations approaches substantially im-
proved the strength of the relationship between clinical case numbers and SARS-CoV-2 in
wastewater normalization, they are important in terms of understanding trends in data
and supporting comparisons between sites.

The magnitude of SARS-CoV-2 viral loads normalized to estimated population or
PMMoV better reflect the number of clinical cases compared to those solely normalized
to WWTP flow. Hence, these approaches could provide more robust information for
comparing viral transmission between different areas using SARS-CoV-2 wastewater data.

As a case study, further research with larger data sets, generated over a longer time
period, is needed to support development of a more complete understanding of the impact
of normalization approaches under, for example, changing climatic conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments9030039/s1, Figure S1: Daily new clinical cases per
100,000 inh. over the sampling period in the catchment area of: (a) UDD WWTP and (b) RAN WWTP.
The datemark display is held on the first Monday of every new week; Figure S2: Average daily WWTP
flow over the sampling period at: (a) UDD WWTP and (b) RAN WWTP; Figure S3: Longitudinal data
of SARS-CoV-2 viral loads normalized to census population (census) and TP estimated population
size (TP1-TP5) benchmarked with daily new clinical cases per 100,000 inh. based on day of testing
at: (a) UDD WWTP and (b) RAN WWTP. The datemark display is held on the first Monday of
every new week; Table S1: Content of total nitrogen (TN) in domestic wastewater (expressed as
g/p/d) based on literature values of excretion in faeces and urine, as well as contribution from
greywater; Table S2: Content of total phosphorous (TP) in domestic wastewater (expressed as g/p/d)
based on literature values of excretion in faeces and urine, as well as contribution from greywater;
Table S3: Weekend and weekday average TP and TN population estimations and corresponding
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relative standard deviation (RSD) at UDD WWTP; Table S4: Weekend and weekday average TP and
TN population estimations and corresponding relative standard deviation (RSD) at RAN WWTP;
Table S5: UDD WWTP Ct values and calculated Ct difference between replicates, as well as calculated
concentrations in each sample. Each replicate is based on an average value from RT-qPCR triplicates
targeting the N1 gene of SARS-CoV-2; Table S6: RAN WWTP Ct values and calculated Ct difference
between replicates, as well as calculated concentrations in each sample. Each replicate is based on an
average value from RT-qPCR triplicates targeting the N1 gene of SARS-CoV-2; Table S7: UDD WWTP
Ct values from RT-qPCR of PMMoV and calculated Ct difference, as well as calculated concentrations
in each sample replicate. Each replicate is based on an average value from RT-qPCR duplicates;
Table S8: RAN WWTP Ct values from RT-qPCR of PMMoV and calculated Ct difference, as well as
calculated concentrations in each sample replicate. Each replicate is based on an average value from
RT-qPCR duplicates.
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