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Abstract: The benthic diatom assemblages of the glacier Avusor Great Lake and Koçdüzü Great
Lake were investigated in August 2019. A total of 71 diatom species belonging to 34 genera were
determined in the samples, 49 species from Avusor Great Lake and 37 from Koçdüzü Great Lake. Only
15 diatom species were common to both lakes. Total floristic similarity between the neighbouring
lakes was only 21.12%. Genera with the highest number of species were Eunotia (8), Gomphonema
(6), Pinnularia (6), Navicula (5) and Aulacoseira (4). The diatom flora of both lakes was formed by
cosmopolitan species with a large influence from species in alpine and subalpine area. A comparison
of the diatom assemblages of the investigated lakes showed differences in both relative abundance
and species present in the individual lakes. Bioindicative analysis showed that the water of Koçdüzü
Great Lake is more alkaline and less saturated with organic substances than Avusor Great Lake. In
both lakes, the communities are composed of species adapted to living in the benthos of fresh waters
of moderate temperature well enriched with oxygen. In both lakes, the water quality was Class 2
with a saprobity index of S = 1.08 in Avusor Great Lake and 0.97 in Koçdüzü Great Lake, but their
communities were composed of species with both oligotrophic and mesotrophic status. Statistical
comparison of the species composition of studied lakes with other high mountain lakes and the lakes
in northern Turkey revealed the role of altitude as the main factor in the formation of diatom floras.

Keywords: high mountain; diatoms; benthic habitats; bioindicators; comparative statistics; Avusor
Great Lake; Koçdüzü Great Lake; Turkey

1. Introduction

Mountainous regions have areas called “biodiversity hotspots” and these areas are
home to many endemic and endangered species. Mountain ecosystems, which are an
important source of water, energy, and biodiversity, are essential for the continuation of
ecosystems. A significant percentage of the world’s population benefits from resources in
mountain ecosystems, primarily water. However, mountain ecosystems, which are highly
vulnerable to human and natural ecological imbalances, are also very susceptible to climate
change [1,2].

High mountain lakes have extreme environmental conditions such as low tempera-
tures, low nutrients, short growing times, and high radiation, and they spend a large part
of the year under ice and snow [3–5]. Therefore, they usually have an oligotrophic charac-
ter [6]. Organisms that adapt to these extreme climatic and physico-chemical conditions
create a biodiversity unique to high mountain lakes [3]. Examination of high mountain
lakes, which are regarded as indicators of environmental degradation and global changes,
is of great importance for the future [5,7–9].

Benthic algae are capable of photosynthesis. Therefore, they are among the oxygen
and energy sources of aquatic ecosystems. They are also used as bioindicators since
they react to environmental changes [10,11]. Diatoms are important organisms used in
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determining water quality and monitoring changes in water quality [12]. Diatoms provide
great advantages in the ecological monitoring of aquatic ecosystems because of the diversity
of their populations, their easy sampling, they contain indicator species, and the structure
of the communities being related to the ecological structure of water [13]. Therefore, the
European Union has defined benthic diatoms as one of the organisms used to determine
the ecological quality of water resources in the Water Framework Directive report, which it
declared in 2000 [14].

The Eastern Black Sea Region is one of the ecosystems with the highest biological
diversity in the world [15–19]. Rize is one of the most striking provinces of the region in
terms of biodiversity due to its current climate characteristics, which has cool summers,
mild winters, and rainy seasons during the whole year [20]. The data obtained in this
study, which aims to determine the floristic and ecological characteristics of benthic diatom
communities of Avusor and Koçdüzü Great Lakes, is the first record for the province of
Rize and the studied lakes.

Algae as a whole, and diatoms, as one of the smallest and most diverse organisms in a
lake ecosystem, represent the first trophic level of the trophic pyramid. They create proteins
through photosynthesis and thus form the food base for other organisms that live in the
lakes. Their absence or overgrowth can harm water resources and diversity. Several factors
have been noted that can influence the growth and diversity of algae. We hypothesize
that lake altitude will affect diatom diversity due to changes in ionic content and water
temperature that influences oxygen concentration. Analysis of the composition of indicator
species of oxygen saturation, salinity, and organic pollution will help to reveal the effect of
altitude on the state of the lakes’ ecosystem.

2. Materials and Methods
2.1. Study Area

Both studied glacial lakes are located within the borders of Çamlıhemşin district of
Rize province on the territory of the Kaçkar Mountains National Park. Located at 40◦56′11”
N–41◦12′01” E coordinates, the Avusor Great Lake has an altitude of 2678 m above sea
level (a.s.l.), and a surface area of 2.2422 ha. The altitude of the Koçdüzü Great Lake is 2382
m a.s.l., and its surface area is 8.1896 ha. The lake is located at 41◦00′15” N–41◦11′53” E
coordinates (Figures 1 and 2).
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2.2. Sampling and Laboratory Studies

The diatom samples were collected from Avusor Great Lake and Koçdüzü Great Lake
on 21 August 2019. Epipelic diatom samples were obtained with a glass tube, which is 1 m
long and 0.8 cm diameter from the surface of the sediments of both lakes. Epilithic samples
were obtained from only Avusor Great Lake, scraped from randomly chosen stones with the
toothbrush, and washed into plastic bottles. Epiphytic diatoms were collected by squeezing
out the macrophytes (Potamogeton sp. and Juncus sp.) from only Koçdüzü Great Lake [21,22].
All samples were fixed in 4% formaldehyde in the 100 mL plastic bottles. At the same
time, water temperature, dissolved oxygen, conductivity, and pH were measured using
Thermo Orion-4-Star pH (Hampton, NH, USA, Marshall Scientific) and YSI-55 (Letchworth,
Hertfordshire, United Kingdom, Xylem Analytics) portable meters. In the laboratory, the
slides were prepared to the method of Round [21] and mounted in Naphrax mounting
media. Analyses of other hydrochemical parameters were carried out in the DSI General
Directorate Laboratories DSI 22nd Regional Directorate Quality Control and Laboratory
Branch Office. Diatoms were examined with the Leica DM 2500 light microscope and
photographed with the Leica MC170 HD camera (Wetzlar, Germany, Leica Microsystems).
Identification of the diatom species was made using the relevant handbooks [23–31]. The
current scientific names of the species were updated according to algaebase.org [32]. The
abundance scores estimation was made according to a 6-point scale [33]: 1—“single” with
1–5 cells per slide, 2—“rare” with 10–15 cells, 3—“common” with 25–30 cells, 4—“frequent”
with one cell over a slide transect, 5—“very frequent” several cells over a slide transect,
6—“abundant” with one or more cells in each field of view.

The first experience of constructing distribution curves for the number of genera
species by the number of algae genera was carried out earlier by J.C. Willis in the book
“Age and Area” in 1922 [34] for different lists of faunas and floras of angiosperms, shows
that the Willis curves constructed for the algal floras of various water bodies of Eurasia
have a hyperbolic distribution only with a well-studied flora, and therefore the curve can
be used as a criterion for the completeness of the list of algae [35].

The ecological preferences of the identified species were determined using bioindica-
tion methods [36]. For each species, its indicator properties were determined in relation to
one or more environmental variables [37,38]. Then the data on the number of species in
each indicator group were summarized. The distribution of the number of species with
the same indicator properties was constructed with respect to each environmental variable.
The class of water quality indicators were grouped on the range of species–specific index
saprobity S: Class 1, S = 0.0–0.5; Class 2, S = 0.5–1.5; Class 3, S = 1.5–2.5; and Class 4,
S = 2.5–3.5. Altogether, nine environmental variable indicator groups were used for analy-
sis. The location of the indicator groups of each environmental variable on the histogram
was in order of strength for this variable.
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Bray–Curtis similarity analysis was carried out and a tree was constructed with the
help of the BioDiversity Pro 9.0 program. Pearson coefficients of similarity were calculated
in [39]. The correlation analysis of species content was conducted as the network plot in
JASP (Jeffrey’s Amazing Statistics Program 0.16.4) on the botnet package of Statistics with
R [40]. Three-dimensional surface plots for the dependencies of individual parameters
were built in the program Statistica 12.0 according to the Distance Weighted Least Square
method. Three-dimensional surface plots were constructed based on the data for each of
the parameters shown in the table for major variable distribution. For comparison, one
main parameter and two others were selected for each graph, within the limits of which
the program calculates probable changes in the main parameter. Thus, the resulting graph
shows the trends in each of the related parameters. From here, outrageous values may
appear, which are not real, but only reflect trends for a given distribution. The graph can be
interpreted as a trend of change (increase or decrease) in the values of the main parameter
(on the x axis) when the other two parameters (y and z axes) change.

3. Results
3.1. Physical and Chemical Analysis

The pH level was neutral in Avusor Great Lake, while it was alkaline in Koçdüzü
Great Lake. The conductivity value was lower than 50 µS/cm−1 in the Avusor Great Lake,
while it was 104.7 µS cm−1 in the Koçdüzü Great Lake. Avusor Great Lake had the highest
concentration of total dissolved matter. While nitrate nitrogen was found in Avusor Great
Lake, it was less than in Koçdüzü Great Lake. Magnesium was not found in either lake.
The concentrations of ammonium nitrogen and nitrite nitrogen were almost the same in
both lakes. The concentrations of phosphate in all lakes were low (Table 1).

Table 1. Averaged physical and chemical data, GIS coordinates and altitude of the Avusor Great Lake
and Koçdüzü Great Lake.

Variable Avusor Great Lake Koçdüzü Great Lake

North 40◦56′11” 41◦00′15”
East 41◦12′01” 41◦11′53”

Altitude 2678 2382
Temperature (◦C) 15.9 21.0

Dissolved oxygen (mg L−1) 10.2 9.2
pH 7.58 8.45

Conductivity (µS cm−1) 45.3 104.7
Total Dissolved Matter (mg L−1) 28.01 6.88

Potassium (mg/L) 0.18 0.23
Total Hardness CaCO3 (mg L−1) 18.96 12.94

Calcium (mg L−1) 5.53 3.12
Magnesium (mg L−1) - -
Ammonium (mg L−1) 0.14 0.16

Chloride (mg L−1) 6.31 10.78
Nitrate (mg L−1) 1.092 -
Nitrite (mg L−1) 0.083 0.081

Ammonium nitrogen (mg L−1) 0.11 0.12
Nitrate nitrogen (mg L−1) 0.247 -
Nitrite nitrogen (mg L−1) 0.025 0.024

Medium phosphate (mg L−1) 0.07 0.072
Phosphate (P2O5) (mg L−1) 0.053 0.054

Note: (-): Could not be detected as below the determination level.

3.2. Diatom Assemblages

A total of 71 species belonging to 34 genera were determined in the samples: 49 species
from Avusor Great Lake and 35 from Koçdüzü Great Lake. In the first step of floristic
analysis, the Willis curve was constructed for the revealed species composition in the
studied lakes. Figure 3 shows that distribution of species number over number of genera in
the diatom flora of the Avusor Great Lake (AGL) and Koçdüzü Great Lake (KGL) formed
the line that was close to the trend line for the distribution with R = 0.89. Therefore, the
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studied species list can be analyzed as the flora in respect of the taxonomic presentation [35].
It has been previously found [35,41] that the Willis curve can be a criterion for the fullness
of a species list in well-studied algal floras in Eurasia. Therefore, we can carry out floristic,
taxonomic, and ecological analysis for the diatom flora in AGL and KGL and compare it
to other high mountain lake floras in this region where the Willis proportion also closely
follows the hyperbolic shape [8,42–46].
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Figure 3. The Willis curve: distribution of genera number over species number in the diatom flora of
the Avusor Great Lake (AGL) and Koçdüzü Great Lake (KGL). Dotted line is the trend line with R2 =
0.8856.

When the diatom communities of the investigated lakes were compared, differences
were observed in species composition and relative abundance of each lake. Abundance as a
sum of species abundance scores was larger in Avusor Great Lake (97) than in the Koçdüzü
Great Lake (69) that demonstrated more comfortable environment for diatom assemblage
in AGL. As can be seen in Table 2, diatom species preferred the epipelic habitats more than
epilithic or epiphytic in both lakes.
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Table 2. List of identified diatoms in the Avusor Great Lake (AGL) and Koçdüzü Great Lake (KGL)
with abundance scores and ecological preferences.

Taxa

Ep
ip

el
ic

Ep
il

it
hi

c

Ep
ip

hy
ti

c

AGL KGL Hab Oxy pH pH Range Sal T Tro Aut-Het D Sap S

Achnanthidium minutissimum
(Kützing) Czarnecki 1 2 0 P-B st-str ind 4.3–9.2 i eterm e ate es b 0.95

Amphora ovalis (Kützing) Kützing 1 2 2 B st-str alf 6.2–9.0 i temp e ate sx b 1.50
Aulacoseira italica (Ehrenberg)
Simonsen 1 2 0 P-B st-str ind 5.8–8.4 i cool me ate es b 1.45

Aulacoseira lacustris (Grunow)
Krammer 1 0 2 P - acf - hb cool ot - - x-o 0.50

Aulacoseira valida (Grunow)
Krammer 1 0 2 P-B - alf - i - om ate es o 1.30

Aulacoseira sp. 1 0 2 - - - - - - - - - - -
Brachysira brebissonii R.Ross 1 0 2 P-B st-str acf 4.6–7.8 hb temp ot ats sx o 0.40
Caloneis alpestris (Grunow) Cleve 1 2 0 B str alf - i - m ats - o 0.10
Caloneis silicula (Ehrenberg) Cleve 1 2 0 B st ind 6.3–9.0 i warm om ats sp o 1.30
Cocconeis placentula var. euglypta
(Ehrenberg) Grunow 1 2 0 P-B st-str alf 5.5–9.0 i temp om ate sx b 1.30

Cymbella affinis Kützing 1 2 0 B st-str alf 6.3–9.5 i temp e ats sx b 1.10
Cymbella cistula (Ehrenberg)
O.Kirchner 1 1 2 0 B st-str alf 8.0 i - e ats sx b 1.20

Cymbella sp. 1 2 0 - - - - - - - - - - -
Cymbopleura amphicephala (Nägeli
ex Kützing) Krammer 1 1 0 2 B st-str ind 4.6–8.10 i - om ats sx o 1.20

Diatoma vulgaris Bory 1 2 2 P-B st-str alf 6.2–8.9 i temp me ate sx b 2.20
Diatoma sp. 1 2 0 - - - - - - - - - - -
Didymosphenia geminata (Lyngbye)
Mart.Schmidt 1 1 2 0 B st-str ind - i - ot ate sx o-x 0.70

Diploneis elliptica (Kützing) Cleve 1 2 0 B str alf 8.2 i temp m ats sx o-x 0.60
Encyonema minutum (Hilse)
D.G.Mann 1 1 1 0 B st-str ind 4.9–8.9 i temp m ate sx o 1.20

Encyonema silesiacum (Bleisch)
D.G.Mann 1 2 0 B st-str ind 6.2–8.6 i temp o-e ate sx o 1.20

Epithemia gibba (Ehrenberg)
Kützing 1 0 2 P-B st-str alf 6.2–9.0 i temp om ate es x-o 1.40

Eunotia ambivalens Lange-Bertalot
& Tagliaventi 1 0 2 B - acf - i - ot - - o 1.00

Eunotia arcus Ehrenberg 1 0 2 B st-str acf 5.8–6.95 i temp ot ats - x-o 0.50
Eunotia bilunaris (Ehrenberg)
Schaarschmidt 1 0 2 B st-str acf 5.0–7.8 i temp o-e ate es o 1.00

Eunotia diodon Ehrenberg 1 0 2 B st-str acf 6.75 i cool ot ats - x 0.20
Eunotia exigua (Brébisson ex
Kützing) Rabenhorst 1 0 2 P-B,

aer st-str acb 3.4–8.0 hb temp o-e ate es x-o 0.45

*Eunotia hexaglyphis Ehrenberg 1 0 2 B - acf 5.79–6.66 hb temp - - - o-x 0.70
Eunotia mucophila (Lange-Bertalot,
Nörpel-Schempp & Alles)
Lange-Bertalot

1 2 2 P-B st-str acf 5.25–6.4 hb temp om ate - o 1.00

Eunotia praerupta Ehrenberg 1 2 0 P-B st-str acf 6.68–8.0 hb cool om ats sx x-o 0.40
Fragilaria capucina Desmazières 1 2 2 P-B st-str ind 6.4–8.9 i temp m ats es b-o 1.60
Frustulia crassinervia (Brébisson ex
W.Smith) Lange-Bertalot &
Krammer

1 0 2 B str acf 4.7–7.2 hb - ot ats es x-o 0.50

Gomphonella calcarea (Cleve) R.Jahn
& N.Abarca 1 2 0 B st-str alf - i - om ate b 2.30

Gomphonella olivacea (Hornemann)
Rabenhorst 1 2 0 B st-str alf 6.5–8.8 i temp e ate es o-b 1.45

Gomphonema acuminatum
Ehrenberg 1 0 2 B st-str ind 6.3–9.5 i temp om ats es o-b 1.40

Gomphonema hebridense W.Gregory 1 0 2 B - acf 6.1 - - - - - - -
Gomphonema montanum
(Schumann) Grunow 1 2 0 B str ind - i - m ats es x-b 0.85

Gomphonema pala E.Reichardt 1 2 0 B - - - - - - - - o-b 1.40
Gomphonema subclavatum
(Grunow) Grunow 1 2 0 B str ind - i - om ats es o-b 1.40

Gomphonema truncatum Ehrenberg 1 3 0 2 B st-str ind 7.19 i temp me ats es o-b 1.40
Gomphonema sp. 1 2 0 - - - - - - - - - - -
Gyrosigma attenuatum (Kützing)
Rabenhorst 1 2 0 P-B st-str alf 6.9–8.5 i temp om ate - o-a 1.80

Hannaea arcus (Ehrenberg)
R.M.Patrick 1 2 3 0 B str alf 5.7–7.5 i temp om ats es x 0.30

Iconella linearis (W.Smith) Ruck &
Nakov 1 2 2 P-B st-str ind 4.6–9.0 i - om ats es x-o 0.50

Melosira undulata (Ehrenberg)
Kützing 1 0 2 P-B - ind - i - me - es b 2.00

Meridion circulare (Greville)
C.Agardh 1 2 0 P-B st-str ind 6.6–8.3. i temp om ate es o 1.10

Navicula cryptocephala Kützing 1 2 2 P-B st-str ind 6.5–8.4 i temp o-e ate es b 2.10
Navicula cryptotenella
Lange-Bertalot 1 2 0 P-B st-str ind 6.5–8.7 i temp m ats es o 1.30

Navicula minima Grunow 1 2 2 P-B st-str alf 6.7–7.8 hl temp e hne es a-o 2.60
Navicula pseudosilicula Hustedt 1 2 0 P-B - ind - i - ot - - o 1.00
Navicula radiosa Kützing 1 2 2 B st-str ind 5–9 i temp me ate es b 1.30
Neidium ampliatum (Ehrenberg)
Krammer 1 0 2 B - acf 8.5–10.5 hb temp ot - - o -

Neidium bisulcatum var.
subampliatum Krammer 1 2 0 B - acf – hb - - - - - -

Neidium dubium (Ehrenberg) Cleve 1 2 0 B str alf – i - me ats - b-o 1.70
Nitzschia fonticola (Grunow)
Grunow 1 2 0 P-B st-str alf 6.0–8.9 i temp me ate - o-b 1.50

Nitzschia sublinearis Hustedt 1 2 0 P-B - alf – i - me hne es a 3.00
Odontidium hyemale (Roth) Kützing 1 0 2 P-B st-str ind 6.5–7.5 hb cool ot ats sx x 0.30
Odontidium mesodon (Kützing)
Kützing 1 2 0 B st-str ind 6.6–8.3 hb cool ot ats sx x-o 0.40

Orthoseira dendroteres (Ehrenberg)
Genkal & Kulikovskiy 1 2 0 B, aer - - – i - - - - x-o 0.50
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Table 2. Cont.

Taxa
Ep

ip
el

ic

Ep
il

it
hi

c

Ep
ip

hy
ti

c

AGL KGL Hab Oxy pH pH Range Sal T Tro Aut-Het D Sap S

Pinnularia borealis Ehrenberg 1 2 2 B, aer st-str,
aer ind 7.8 i om ate es x-o 0.40

Pinnularia brebissonii (Kützing)
Rabenhorst 1 0 2 B st-str ind - i temp - ats - p-a -

Pinnularia interrupta W.Smith 1 2 2 B st-str ind 6.0–8.0 i - om ats - o -
Pinnularia major (Kützing)
Rabenhorst 1 1 1 2 2 B st-str ind 6.38–7.1 i temp me ate o-x 0.60

Pinnularia microstauron var.
nonfasciata Krammer 1 0 2 B - - - - - - - - - -

Pinnularia viridis (Nitzsch)
Ehrenberg 1 2 0 P-B st-str ind 5.24–7.1 i temp o-e ate es x 0.30

Stauroneis anceps Ehrenberg 1 3 2 2 P-B st-str ind 4.8–8.0 i - om ate sx o 1.30
Staurosira construens Ehrenberg 1 2 0 P-B st-str alf 5.5–9.0 i temp me ats sx o 1.30
Staurosirella pinnata (Ehrenberg)
D.M.Williams & Round 1 2 0 P-B st-str alf 6.2–9.3 hl temp o-e ate es o 1.20

Surirella angusta Kützing 1 2 0 P-B st-str alf 6.9–8.9 i temp e ate es b-o 1.70
Surirella robusta Ehrenberg 1 2 0 P-B st-str ind 7.6–9.5 i temp ot ats es o 1.20
Tabellaria fenestrata (Lyngbye)
Kützing 1 3 0 2 P-B st-str ind 6.2 i - om ats es x 0.30

Tabellaria flocculosa (Roth) Kützing 1 3 1 1 P-B st-str acf 4.5–8.0 i eterm ot ats es o-x 0.60

Note: Abbreviations: *: New record. Ecological preferences: Water temperature (T): cool, cool-loving species; temp,
temperate temperature water inhabitants; eterm, eurythermic species, warm, warm water inhabitants. Habitat
(Hab): B, benthic; P-B, planktonic–benthic; P, planktonic. Water pH (pH): acf, acidophilic species; ind, indifferent;
alf, alkaliphilic species; acb, acidobiontes. Organic pollution, Watanabe diatom indicator system (D): sx, saprox-
enes, es, eurysaprobes; sp, saprophiles. Self-purification zone indicators (Sap): x/0.0—xenosaprobe; x-o/0.4—
xeno-oligosaprobe; o-x/0.6—oligo-xenosaprobe; o/1.0—oligosaprobe; o-b/1.4—oligo-betamesosaprobe; x-b/0.8—
xeno-betamesosaprobe; b-o/1.6—beta-oligosaprobe; o-a/1.8—oligo-alphamesosaprobe; b/2.0—betamesosaprobe;
a-o/2.6—alpha-oligosaprobe; a/3.0—alphamesosaprobe; p-a/4.0—poly-alphamesosaprobe. Species–specific
index of saprobity S (S). Trophic state: ot, oligotrafentic; o-m, oligo-mesotraphentic; m, mesotraphentic; me,
meso-eutraphentic; e, eutraphentic; o-e, oligo- to eutraphentic. Nutrition type as Nitrogen uptake metabolism:
ats, nitrogen-autotrophic taxa, tolerating very small concentrations of organically bound nitrogen; ate, nitrogen-
autotrophic taxa, tolerating elevated concentrations of organically bound nitrogen; hne, facultative nitrogen-
heterotrophic taxa, needing periodically elevated concentrations of organically bound nitrogen. Oxygenation
(Oxy): str, streaming well oxygenated waters inhabitant; st-str, low streaming medium oxygenated waters
inhabitant; st, standing low oxygenated water inhabitant. Water salinity (Sal): hb, halophobe; i, oligohalobious-
indifferent; hl, oligohalobious-halophilous).

Only 15 diatom species were common to both lakes. Total floristic similarity between
the neighbouring lakes was only 21.12%. Genera with the highest number of species were
Eunotia (8), Gomphonema (6), Pinnularia (6), Navicula (5), and Aulacoseira (4). Other genera
were represented by three or one species (Table 2, Figures 4 and 5).

The genus Eunotia (Figure 4) represented 11.26% of the diatom flora with eight species.
Eunotia mucophila and E. praerupta species were common in both lakes, while other Eunotia
species were identified only in Koçdüzü Great Lake (Table 1). This is a remarkable result
because the water of the Koçdüzü Great Lake is alkaline (pH 8.45) (Table 1).

Hannaea arcus (Figure 4) was the only “common” determined species. For this species,
which is generally considered to be oligosaprobic, with a wide range of pH and calcium
bicarbonate content. This occurrance was rare. The diatoms, which were identified as
single, constituted 97.18% of the flora.

The diatom assemblages of the Avusor Great Lake and the Koçdüzü Great Lake formed
by cosmopolitan species. A major part of them is alpine and subalpine origin. This result is
consistent with other studied high mountain lakes in the region. The diatom flora of both
lakes is composed of indifferent (45.31%), alkaliphiles (31.25%), acidophiles (21.87%), and
acidobiontes (1.56%) species. North alpine and alpine diatom species were also identified.
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Figure 4. (a) Achnanthidium minutissimum, (b) Amphora ovalis, (c) Aulacoseira italica, (d) A. lacustris,
(e) A. valida, (f) Brachysira brebissonii, (g) Caloneis alpestris, (h) C. silicula, (i) Cocconeis placentula
var. euglypta, (j) Cymbella affinis, (k) C. cistula, (l) Cymbopleura amphicephala, (m) Diatoma vulgaris,
(n) Didymosphenia geminata, (o) Diploneis elliptica, (p) Encyonema minutum, (q) Epithemia gibba, (r)
Eunotia mucophila, (s) Frustulia crassinervia, (t) Gomphonema montanum, (u) Hannaea arcus, (v) Iconella
linearis, (w) Navicula radiosa, (x) Neidium dubium, (y) Odontidium hyemale, and (z) Pinnularia major.
Scale bar: 10 µm.

3.3. Bioindicators Analysis

Diatoms usually represent a major part of the algae community and all of them can
be indicators of their environment. As can be seen in Table 2, the ecological preferences of
each species in both lakes were revealed in respect to nine environmental variables. The
bioindicator analysis was summarized for each lake in respect to each indicative variable.
Figure 6 represents the distribution of indicator species number over the ecological groups
in both studied lakes. The number of indicator species in Lake Avusor is always higher than
in Koçdüzü Great Lake. Despite this, the overall distribution in each group of indicators
by the displayed parameter shows the most representative groups when a trend line is
plotted. That is, we see that among the indicators of confinement to a particular substrate,
the largest number of species are benthic or planktonic–benthic in both lakes. The water in
both lakes is well saturated with oxygen. However, the pH of the water in Avusor Great
Lake is noticeably higher than in Koçdüzü Great Lake, as seen in the trend lines. Both lakes
are fresh and of moderate temperature. Two separate groups represent the indicators of the
trophic state in both lakes with a predominance of oligo-mesotrophic species in one and
meso-eutrophic species in the other. Diatom communities in both lakes are represented by
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autotrophic species. In both lakes, organic pollution according to Watanabe indicators is
characterized as low or moderate, and in Avusor Great Lake, there are more indicators of
xenosaprobes, which indicates clearer waters. Indicators of organic pollution according to
V. Sládeček [47] belonged to four classes of water quality with a predominance of a group of
indicators of class 2 in both lakes. Moreover, there were twice as many of class 2 indicators
in Avusor Great Lake than in Koçdüzü Great Lake, which indicates cleaner waters in the
first lake. At the same time, the saprobity index C calculated by us for the abundance of
indicator species in the community of each of the lakes and the species–specific index is
1.08 in Avusor and 0.87 in Koçdüzü. This shows that self-purification was more active in
Avusor compared to Koçdüzü, but at the same time, it characterizes the waters of both
lakes as clean, since the index values differ slightly and belong to the 2nd class of water
quality [48].
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Figure 6. Distribution of indicator species number over the ecological groups in the Avusor Great
Lake (AGL) and Koçdüzü Great Lake (KGL). Abbreviations: Substrate (a) B, benthic; P-B, planktonic–
benthic; P, planktonic. Oxygenation (b) str, streaming well oxygenated waters inhabitant; st-str, low
streaming medium oxygenated waters inhabitant; st, standing low oxygenated water inhabitant.
Water pH (c) acf, acidophilic species; ind, indifferent; alf, alkaliphilic species; acb, acidobiontes.
Water salinity (d) hb, halophobe; i, oligohalobious-indifferent; hl, oligohalobious-halophilous). Water
temperature (e) cool, cool-loving species; temp, temperate temperature water inhabitants; eterm,
eurythermic species, warm, warm water inhabitants. Trophic state (f) ot, oligotrafentic; o-m, oligo-
mesotraphentic; m, mesotraphentic; me, meso-eutraphentic; e, eutraphentic; o-e, oligo- to eutraphen-
tic. Nutrition type as Nitrogen uptake metabolism (g) ats, nitrogen-autotrophic taxa, tolerating very
small concentrations of organically bound nitrogen; ate, nitrogen-autotrophic taxa, tolerating elevated
concentrations of organically bound nitrogen; hne, facultative nitrogen-heterotrophic taxa, needing
periodically elevated concentrations of organically bound nitrogen. Organic pollution, Watanabe
diatom indicators (h) sx, saproxenes, es, eurysaprobes; sp, saprophiles. Class of water quality based
on species–specific saprobity index S (k) Class 1, S = 0.0–0.5; Class 2, S = 0.5–1.5; Class 3, S = 1.5–2.5;
Class 4, S = 2.5–3.5.

Figure 7 is a generalized view of the bioindicative characteristics of both lakes. The
heat map was based on the distribution of the abundance of indicator species by ecological
groups. The abundance of indicator species in Avusor Great Lake is generally higher. The
predominance of indifferent indicators in terms of salinity and moderately oxygenated
waters is well expressed (red). At the same time, the abundance of a group of plankton–
benthic and benthic species, as well as indifferences in water pH and the second quality
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class (yellow) is confirmed by an analysis of the distribution of the number of indicator
species.
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Figure 7. Comparative heat map of indicator species distribution in the ecological groups of the
Avusor Great Lake (AGL) and Koçdüzü Great Lake (KGL). The heatmap temperature ranges from 0
(white) to 33 (red). Abbreviations from down to up on axis y: Substrate: B, benthic; P-B, planktonic–
benthic; P, planktonic. Water pH: acf, acidophilic species; ind, indifferent; alf, alkaliphilic species;
acb, acidobiontes. Water salinity: hb, halophobe; i, oligohalobious-indifferent; hl, oligohalobious-
halophilous). Trophic state: ot, oligotrafentic; o-m, oligo-mesotraphentic; m, mesotraphentic; me,
meso-eutraphentic; e, eutraphentic; o-e, oligo- to eutraphentic. Nutrition type as Nitrogen uptake
metabolism: ats, nitrogen-autotrophic taxa, tolerating very small concentrations of organically bound
nitrogen; ate, nitrogen-autotrophic taxa, tolerating elevated concentrations of organically bound
nitrogen; hne, facultative nitrogen-heterotrophic taxa, needing periodically elevated concentrations
of organically bound nitrogen. Oxygenation: str, streaming well oxygenated waters inhabitant; st-str,
low streaming medium oxygenated waters inhabitant; st, standing low oxygenated water inhabitant.
Water temperature: cool, cool-loving species; temp, temperate temperature water inhabitants; eterm,
eurythermic species, warm, warm water inhabitants. Organic pollution, Watanabe: sx, saproxenes,
es, eurysaprobes; sp, saprophiles. Class of water quality based on species–specific index saprobity S:
Class 1, S = 0.0–0.5; Class 2, S = 0.5–1.5; Class 3, S = 1.5–2.5; Class 4, S = 2.5–3.5.

3.4. Comparative Floristic Analysis

In order to identify the features of the studied flora of two glacial high mountain lakes,
a comparative floristic analysis was carried out using statistical methods. For calculations,
floras of only diatoms were selected from similar habitats, that is, lakes located in the same
climatic region. A general list of diatom floras was compiled for (1) the studied lakes, (2)
the high mountain lakes of the Artabel Nature Park [42], and (3) some lakes of central
and northern Turkey [49]. All species in the list have been brought into line with modern
taxonomy [32]. Then, the Bray–Curtis similarity indices were calculated, and a similarity
tree was built, and then a correlation analysis was carried out in the JASP 0.16.4 program.

Figure 8 demonstrate the similarity level of compared diversity of diatoms in the lakes
of Turkey. Two of the clusters divided studied lists of diatoms into the group of other lakes
in northern Turkey (cluster 1) placed on the altitude 30–1512 m a.s.l. and group of high
mountain lakes on altitude 2382–2678 m a.s.l. (cluster 2). The flora of the studied lakes,
Avusor and Koçdüzü, was included in cluster 2.
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A JASP Network plot of species composition correlation of studied lakes AGL and
KGL in Rize with other alpine lakes in Gümüşhane province and other lakes in northern
Turkey (Figure 9) shows two different clusters. Cluster 1 combined other lakes in northern
Turkey diatom floras and cluster 2 included the mountain floras group to which the diatoms
of Avusor and Koçdüzü lakes are also included.
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Figure 9. JASP Network plot of correlation on the level more than 50% for species composition of
the lakes in Rize province, of the Artabel Lakes in Gümüşhane province, and other lakes in northern
Turkey. Abbreviations: Artabel Lakes (ARL), Beş Lakes (BL), Yıldız Lakes (YL), Acembol Lakes (ACL),
İsimsiz Lake (IL), and Yıldız Lake (YLP) according [42]; the Avusor Great Lake (AGL), Koçdüzü Great
Lake (KGL); other lakes in northern Turkey: Mogan (Mog), Abant (Aban), Poyrazlar (Poyr), Karagol
(Karag) according [49]. The line thickness between lakes reflects the correlation value (represented
significant only); blue is positive, red is negative. Clusters are outlined by dashed lines.

The data on the species content in the studied lakes and some other diatom floras of
the similar climatic zone lakes were combined in Table 3 to reveal the role of altitude in the
formation of diatom floras. All combined lakes are protected as a part of the natural parks.
It shows that species richness of diatoms was similar in the presented lakes. At the same
time, the lake altitude ranged between 30 and 2980 m a.s.l. All other available variable
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values fluctuated in a narrow range. Calculation of Pearson correlation coefficients [39]
revealed only one variable—electrical conductivity of the lake water, which was negatively
correlated to the lake altitude (r = −0.975; p < 6.87 × 10−8). All other variables have no
significant correlation.

Table 3. Distribution of major environmental variables (averaged) and the diatom species number
in the studied lakes Avusor and Koçdüzü, Artabel Lakes and other lakes in northern Turkey for
comparative analysis.

Lake Altitude, m a.s.l. Temperature,
◦C

DO,
mg L−1 pH Conductivity,

µSm cm−1 No Species

Poyrazlar 30 14.6 6.98 7.90 425 44
Mogan 972 14.3 11.50 8.80 258 41
Abant 1350 16.5 8.80 8.25 264 41

Karagol 1512 18.6 6.90 8.01 138.5 76
KGL 2382 21.0 9.20 8.45 104.7 34

IL 2668 19.1 4.25 6.78 12.0 38
AGL 2678 15.9 10.2 7.58 45.3 46
ACL 2712 16.2 2.80 7.20 32.3 43
ARL 2834 15.3 6.60 7.00 33.4 53
BL 2883 13.0 9.00 7.00 26.0 46

YLP 2980 14.5 2.34 7.20 29.2 21
YL 2980 13.4 2.80 6.90 26.6 41

Note. Abbreviations: Artabel Lakes (ARL), Beş Lakes (BL), Yıldız Lakes (YL), Acembol Lakes (ACL), İsimsiz Lake
(IL), and Yıldız Lake (YLP) according [42]; the Avusor Great Lake (AGL), Koçdüzü Great Lake (KGL); other lakes
in northern Turkey: Mogan (Mog), Abant (Aban), Poyrazlar (Poyr), Karagol (Karag) according [49].

In this case, the surface plots were constructed to follow the analysis. Figure 10
show that diatom species richness can be greater if the altitude decreased but the water
temperature increased (Figure 10a) and if water pH decreased (Figure 10b). Species number
also increased in lower altitude and dissolved oxygen (Figure 10c) and lower conductivity
(Figure 10d).
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based on Table 3. Distance Weighted Least Squares dependence of species richness on environmental
parameters: (a), water temperature and altitude; (b), pH and altitude; (c), Dissolved oxygen and
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At the same time, the interrelations in environmental variables were revealed and
represented in Figure 11. Dissolved oxygen as one of the important factors for diatoms
development, was slightly increased with the water temperature decreasing (Figure 11a) but
with its distribution over the lake altitude having a threshold in altitude 2000 m, after which
oxygen concentration can rapidly decrease. Lake water temperature was an indifferent
factor for electrical conductivity that decreased with altitude increasing (Figure 11b).
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4. Discussion

The influence of climatic gradients on the freshwater algae community has been
best studied for diatoms [50], which usually contain more indicator species than other
aquatic organisms [51]. The recognition of the influences and major impacted factors
now can be used with many different approaches, the majority of which are statistics and
bioindication [52].

The objects of our research were diatoms of benthos and periphyton of glacial lakes at
an altitude of about 3000 m in the mountains of northern Turkey. The identified diversity,
including 71 taxa of species rank and below, turned out to be similar in species richness to
other high mountain lakes, such as Artabel, as well as some others in northern Turkey [42,49].
The head part of studied diatom flora of both lakes represented only four genera species:
Eunotia (8), Gomphonema (6), Pinnularia (6), and Navicula (5) that is similar to the other high
mountain lakes in Turkey and Europe [4,42,53–59]. With the dominance of Eunotia species,
as well as the noticeable presence of Pinnularia, which both prefer low conductivity and
slightly acidic freshwater [60], the results of this study characterize the lake water as mostly
circumneutral and acidic and have low mineral content [38].

The dominating species of Eunotia have been important in diatom flora and also in
other high mountain lakes in the Eastern Black Sea region [42,55,56] because they have
favorable conditions in which Eunotia species can grow. The members of this genus prefer
waters with acidic or circumneutral pH and low or medium conductivity [29,38,61,62].
Water pH and conductivity values of water are the main factors in the distribution of
individuals of this genus; water temperature is not effective [63]. We think that this situation
is because the Eunotia species reached the lake by streams and adapted successfully to
this pH value. In addition, Eunotia hexaglyphis has been identified as a new record for the
Freshwater Algal Flora of Turkey. Detailed knowledge about this species were given in a
separate paper [64]. As has been revealed for studied lakes in Rize, the dominated species
of Eunotia and Pinnularia prefer low conductivity and slightly acidic fresh waters while the
genus Gomphonema occurs in circumneutral lakes and streams [37,38].
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Hannaea arcus, which was abundant in both studied lakes, does not prefer acidic
freshwater habitats and tolerates some organic enrichment [31]. It was found in the
epilithic samples of the Artabel Great Lake. Encyonema minutum (Figure 4), which was
found in the epipelic and epilithic habitats of the Avusor Great Lake, has a wide geographic
distribution [25] and prefers circumneutral waters [65]; this was rare. Tabellaria flocculosa
(Figure 5) was recorded in both lakes. This species, which has a wide tolerance, is found in
acidic, oligotrophic, and mesotrophic waters [25]. According to H. Van Dam et al. [65], it
occurs in acidophilic, β-mesosaprobic, and mesotrophic waters. Therefore, the dominating
species can characterize the lake water as having low conductivity and slightly acidic
freshwaters.

Regarding eutrophication and the effects of acidification that are among the important
problems faced by glacial lakes [66,67], these problems were not identified in either lake
based on the bioindication and chemical data results. The statistical heat map of indicator
species abundance shows the similarity of the results with the analysis of the distribution
of the number of species, which indicates the low diversity of the identified diatoms, on the
one hand, and the absence of a pronounced domination in the communities, on the other
hand [68]. This is most often inherent in undisturbed ecosystems of natural clean lakes,
especially high mountains [8,9,69].

The critical altitude for species richness in the Hindukush piedmonts of Pakistan was
about 1400 m a.s.l. [70]. However, in the Caucasus Mountains, this barrier was found at an
altitude of about 2000 m [44]. Our investigation results confirm that diatom diversity in
northern Turkey lakes increased in species richness before 2000 m a.s.l. and decreased after
this altitude.

The diatoms of the studied glacial lakes in the province of Rize form a separate
group of high mountain lakes in northern Turkey in terms of taxonomic composition
and bioindicators. Consequently, the environmental conditions of high mountains act as
selection factors on the flora of diatoms, which was noted earlier [8,9,44,69,71].

Comparison of the influence of individual environmental parameters on diatom com-
munities in the 12 lakes showed that the northern Turkey environment influenced diatoms
that prefer waters of temperate temperature, circumneutral pH, moderately saturated with
oxygen, and medium content of mineral ions. At the same time, the altitude negatively
affects the species richness of diatoms as was revealed in Pamir lakes [9] and 2000 m was
found as an environmental barrier upper of which diatom communities in mountain lakes
partly lost their diversity as in Georgia [44,45,50].

5. Conclusions

An analysis of the diatom community using statistical and bioindicator methods has
identified water salinity and lake altitude as regulatory factors that can negatively affect
diatom diversity in Turkey’s high mountain lakes. Thus, we only partially confirmed our
hypothesis after analyzing the composition of the diatom community. The diatom flora
of the high mountain lakes has its own peculiarities, different from the lowland lakes
of northern Turkey. Increasing water purity and decreasing diatoms diversity in high
mountain lakes will mean that the lakes can be safe and productive sources of water in the
face of future warming.
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visualization, B.Ş. and S.B.; supervision, B.Ş.; project administration, B.Ş.; funding acquisition, B.Ş.
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57. Şahin, B. Species composition and diversity of epipelic algae in Limni Lake (Gümüşhane, Turkey). Acta Bot. Hung. 2008, 50,
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