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Abstract: Water is the basis of all life on this planet. Yet, approximately one in seven people in the
world do not have access to safe water. Water can become unsafe due to contamination by various
organic and inorganic compounds due to various natural and anthropogenic processes. Identifying
and monitoring water quality changes in space and time remains a challenge, especially when
contamination events occur over large geographic areas. This study investigates recent advances
in remote sensing that allow us to detect and monitor the unique spectral characteristics of water
quality events over large areas. Based on an extensive literature review, we focus on three critical
water quality problems as part of this study: algal blooms, acid mine drainage, and suspended solids.
We review the advances made in applications of remote sensing in each of these issues, identify the
knowledge gaps and limitations of current studies, analyze the existing approaches in the context
of global environmental changes, and discuss potential ways to combine multi-sensor methods
and different wavelengths to develop improved approaches. Synthesizing the findings of these
studies in the context of the three specific tracks will help stakeholders to utilize, share, and embed
satellite-derived earth observations for monitoring and tracking the ever-evolving water quality in
the earth’s limited freshwater reserves.
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1. Introduction

Water is a valuable natural resource that is essential to human and environmental
health. Earth’s drinking water sources are finite. Less than one percent of Earth’s freshwater
is accessible to the human population. By 2050, the global demand for freshwater is
expected to be one third higher than it is now [1]. Any changes to water quality could be
detrimental, affecting aquatic habitats, recreation, drinking water, and agriculture. Climate
change poses a significant risk to water quality as increasing temperatures and more
intense precipitation and storm events promote eutrophication with increased sediment
and nutrient inputs that throw off the balance of existing water systems [2]. Effective
water monitoring programs are essential to address the consequences of present and future
threats of contamination to water resources [3]. Although satellite remote sensing has been
around and applied thoroughly in water quality research since the 1970s, utilizing them for
regular water quality occurrences is still not a common practice.

Traditionally, water quality parameters have been measured using ground truth or in
situ instrumentation. Although they provide high accuracy, these devices can be expensive
and labor intensive to maintain. In situ data collection is also limited in its spatial coverage,
only analyzing small areas of the targeted water body at any given time. It does not allow
for easy monitoring and forecasting of a large geographic area, and accuracy and precision
can be questionable as these devices are prone to frequent sampling and lab errors [4]. Early
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detection and comprehensive monitoring of water quality is fundamental to effectively
manage and mitigate these potentially detrimental impacts.

Remote sensing makes it possible to monitor and identify large land and water bodies
that suffer from quality problems more effectively and efficiently. The National Oceanic
and Atmospheric Administration (NOAA) describes remote sensing as the act of collecting
data by detecting the energy that is reflected from the Earth. Sensors can be aboard
satellites or mounted on an aircraft. First used in the 1970s to observe the Great Lakes,
data obtained from the Landsat mission explored and identified particulate contaminants,
whiting events, and chlorophyll-a, or the greenness of waterbodies [5]. Since then, research
on the application of remote sensing techniques for water quality monitoring has greatly
expanded. The benefits of remote sensing are numerous. These sensors can deliver synoptic
water quality observations over large areas, with frequent and consistent revisit times, and
event-based monitoring. Combined with strong archival data systems, remotely sensed
datasets enable both short-term time series analyses and long-term retrospective analyses
dating back decades [5].

Optically complex waters can pose a challenge to the use of remote sensing data.
Different sensors can capture radiation at various wavelengths reflected from the water’s
surface, measuring a variety of water quality indicators, such as total suspended solids,
chlorophyll-a concentration, salinity, temperature, etc. [4]. It becomes critically important
to select the correct sensor and retrieval algorithm for water quality analysis to obtain the
best results. Binding et al. [5] described the struggle of analyzing optically complex water
when using Landsat data. Gilerson et al. [6] documented the use of inverse modeling to
link red and near infrared observations of the electromagnetic spectrum to chlorophyll-a as
a promising technique to evaluate optically complex waters. Ref. [3] analyzed six water
quality parameters to find the best techniques for retrieving water quality data using remote
sensing. For example, the authors found wavelengths between 700 and 800 nanometers to
be most useful for suspended matter detection.

A clear indicator of changes in water quality are changes in its color. Events of interest
can be correlated to specific color changes in the water. For example, algal blooms typically
present a green-blue color [5], acid mine drainage a red-orange color [7], and suspended
sediment a brown-tan color [8]. With the use of remote sensing, these color changes can
be documented and applied to monitoring and detection. Previous use of remote sensing
has concentrated on documenting algal blooms; however, monitoring acid mine drainage
and suspended sediment remain significant environmental challenges. They pose an equal
threat to human and environmental health and possess distinct optical signatures. However,
current practices to identify and monitor acid mine drainage and suspended sediments
are based on very local in situ measurements and require significant time and resources to
replicate over large geographic areas.

Many municipalities in the United States currently practice reactive harmful algal
bloom (HAB) management strategies, sending teams out after events are reported [2].
While effective, human health is put at risk in the latency between algal bloom occurrence,
the release of toxins, testing, and reporting. Remote sensing provides the opportunity to
forecast harmful algal blooms and subsequently inform earlier decision making in the in-
stance of a positive HAB event prediction. Additionally, remote sensing allows the accurate
identification of the extent of such blooms across large water bodies or along shorelines.
This not only offers better protection of human health but also saves communities funds.
Ref. [2] conducted a study at Utah Lake and predicted that the difference between integrat-
ing remote sensing into their monitoring strategy versus just using in situ testing would
have saved a local municipality nearly $370,000 in medical expenditures due to illness
contracted from HABs in the lake.

Acid mine drainage and suspended sediment, while not as common as algal blooms,
have been documented and monitored using remote sensing techniques in some limited
settings. Acid mine drainage is the contamination of water with heavy metals from
abandoned mining operations, and the formation and movement of highly acidic water
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in natural water systems. Debris and heavy metals leach from these mines polluting
waterways with harmful discharge, which may be visible with a notoriously bright, red-
orange color when iron is the dominant metal. Ref. [7] created a time series of physical and
chemical changes in acid mine lakes in Turkey using Landsat, Quickbird, and Worldview
satellite images. Optical signatures of acid mine drainage can vary based on the chemical
makeup of the leachate. On the other hand, suspended sediment is a result of buildup from
runoff or erosion of mud and clay. Overall, these conditions prevent penetration of sunlight
into the water and create unsuitable, toxic conditions for aquatic life. Suspended sediments
scatter light rather than absorbing and transmitting it in straight lines, making it feasible to
detect using satellite remote sensing [8].

As mentioned above, numerous studies have attempted to use satellite remote sensing
for analyzing water quality from space, especially the growth of algal blooms and eutroph-
ication events over large regions. However, limitations and knowledge gaps remain in
the adaptation of remote sensing applications in water quality monitoring, especially in
specific contexts such as acid mine drainage or turbidity problems. With rapid global
environmental change due to both climatic and anthropogenic stressors, the need for robust
and continuous monitoring of water quality across the water cycle remains a challenge for
the scientific community.

Therefore, in this review study, we analyze and synthesize the recent advances made in
applications of remote sensing for three specific water quality problems: algal blooms, acid
mine drainage, and suspended solids. For each of these issues, we identify the knowledge
gaps and limitations of current studies, analyze the extent and scope of the approaches
in the context of rapid environmental changes, and identify different wavelengths and
potential ways to develop multi-sensor methods and to develop improved approaches. We
look at pertinent documentation from the body of scholarly literature and contextualize our
findings by: (1) summarizing information known about current remote sensing platforms
and commonly used sensors, (2) providing an overview of the three core water quality
events of interest, and (3) discussing next steps the field can take to improve color-changing
water quality event planning and response.

2. Satellite Technology

In remote sensing there are two categories of mechanical platforms that sensors are
placed on. Airborne sensors are those mounted on platforms that remain within the Earth’s
atmosphere, such as airplanes or drones. Spaceborne sensors are carried on satellites that
orbit the Earth capturing images from outside the atmosphere [4]. Multi- and hyperspectral
airborne data provides a highly flexible approach to remote sensing. They have higher
spectral and spatial resolution than spaceborne sensing and can be configured according
to the survey site [9]. Airborne data is good for water quality research because in situ
testing can be easily coordinated with flyovers. However, airborne remote sensing can
be complex and costly compared to spaceborne surveys. They require a great deal of
planning in accordance with other air traffic, solar and weather conditions, and flight
orientation [4]. They also cover smaller geographic areas at lower altitudes and data
from these missions are not as publicly available as data from satellite remote sensors.
Furthermore, they lack longevity in observation time, only collecting data for a short
continuous period relative to spaceborne sensors. Spaceborne sensors are useful for studies
requiring a longer continuous time series of data, such as climate studies and macroscopic
weather forecasting. Image processing tends to be less complex and more automated than
that of airborne sensors. Public policy has dictated that data from these sensors are more
frequently offered free and available to all [10]. Compared to modern airborne sensors such
as drone-based methods, spaceborne sensors have coarser spatial resolution, cloud cover
can be limiting, and analyzing images may be more difficult due to file size resulting in
over or underestimations of water quality parameters [11].



Environments 2022, 9, 125 4 of 19

Landsat is by far the most well-known satellite utilized for water quality monitoring.
Landsat offers the longest continuous global record of the Earth’s surface since the 1970s [5].
This National Aeronautics and Space Administration (NASA)/United States Geological
Survey (USGS) joint venture mission is also the most refined (nine satellites and count-
ing) and arguably the most reliable Earth observation satellite mission. Landsat’s main
disadvantage is a long revisit time of sixteen days relative to the Sentinel mission’s five-day
revisit time and the MODIS instruments aboard the Aqua and Terra satellites at two to
three days.

The Landsat-8 satellite launched on February 11, 2013, and consists of two instruments,
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These sensors
provide seasonal coverage of the globe in the visible, near infrared (NIR), short wave
infrared (SWIR), and thermal infrared (TIR) spectrum [12]. Table 1 below describes the
bands incorporated into the Landsat 8 satellite in terms of wavelength, spatial resolution,
and applicability.

Landsat 9 successfully launched in September 2021. It, too, has a 16-day revisit time.
However, Landsat 8 and 9 are positioned in orbit to complement each other, effectively
cutting revisit time in half. Imagery from these missions is intended to help make science-
based decisions on key environmental issues such as freshwater use, wildfire impacts, coral
reef degradation, glacier and ice-shelf retreat, and tropical deforestation [13].

Table 1. Landsat 8, Landsat 9 Electromagnetic Spectrum Bands of Observation.

Band Spatial Resolution in Meters (m)—
Observable Parameters 1

Wavelength
Nanometers (nm)

1 30—coastal, aerosol, shallow water, coral, dust, smoke 435–451
2 30—blue, aerosols, land 452–512
3 30—green, aerosols, land 533–590
4 30—red, aerosols, land 636–673
5 30—infrared, aerosols, land 851–879
6 30—infrared, vegetation 1566–1651
7 30—infrared, vegetation 2107–2294
8 15—high resolution grayscale 503–676
9 30—cirrus, atmospheric correction 1363–1384
10 100—thermal infrared, surface temperature, crop water use 10,606–11,190
11 100—thermal infrared, surface temperature, crop water use 11,500–12,510

1 An adaptation from information provided on NASA.gov (accessed on 27 March 2022) by B. Markham [14].

Sentinel-2 is the European equivalent of Landsat as part of the European Union’s
Earth observation program, Copernicus. The Sentinel-2 key mission objectives are: (1) to
provide systematic global acquisitions of high-resolution multispectral imagery with high
revisit frequency, (2) to provide enhanced continuity of multispectral imagery provided
by the Satellite Pour l’Observation de la Terre (SPOT) series of satellites, and (3) to gen-
erate operational products such as land cover maps, land change detection maps, and
geophysical variables [14]. Sentinel-2 features a 13-band multispectral imager (MSI) for
visible and infrared ranges of the electromagnetic spectrum depicted in Table 2. Spatial
resolution varies from 10 to 60 m depending on the spectral band, and the instrument has
a 290 km swath width. This unique combination of high spatial resolution, wide field of
view, and large spectral coverage was a major step forward compared to multi-spectral
missions at the time [14]. Sentinel-2 is made up of two identical satellites, Sentinel-2A,
launched on 23 June 2015, and Sentinel-2B, launched 7 March 2017, operating in the same
sun synchronous orbit, 180◦ from one another providing a revisit time of five days at the
equator and two to three days at mid latitudes [15].

NASA.gov
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Table 2. Sentinel-2 MSI Electromagnetic Spectrum Bands of Observation.

Band Spatial Resolution in Meters (m)—
Observable Parameters 1

Wavelength
Nanometers (nm)

1 60—aerosols 443
2 10—blue, aerosols, land parameters 490
3 10—green, aerosols, land parameters 560
4 10—yellow, aerosols, land parameters 665
5 20—red, vegetation, land parameters 705
6 20—infrared, land parameters 740
7 20—infrared, land parameters 783
8 10—infrared, water vapor, land parameters 842
8a 20—infrared, water vapor, land parameters 865
9 60—infrared, water vapor 940
10 60—infrared, cloud detection 1375
11 20—infrared, land parameters 1610

1 An adaptation from information provided on eoportal.org and sentinel.copernicus.eu (accessed on 27
March 2022).

NASA launched the Terra satellite on 18 December 1999, and Aqua on 4 May 2002 [16].
Both satellites carry a Moderate Resolution Imaging Spectrometer (MODIS), a cross-track
scanning radiometer with thirty-six channels measuring visible and infrared spectral bands
in the wavelength range of 400–14,500 nanometers. Terra and Aqua are sister satellites,
programmed to work together to observe and process the entire Earth’s surface every
1–2 days. These satellites are aimed at monitoring the health of the planet, with Terra
emphasizing land and Aqua emphasizing water [16]. The satellites have been preferred
in the past for monitoring algal blooms. However, with a coarser spatial resolution of
250, 500, and 1000 m, monitoring becomes difficult in small and medium inland lakes [17].
MODIS is thus better suited for larger water bodies; the wide availability of bands and
low revisit rates are valuable and have been used successfully in many studies observing
primary productivity, chlorophyll fluorescence, suspended solids, sea surface temperature,
and others. Table 3 describes the attributes of each of the thirty-six bands.

Table 3. Terra & Aqua MODIS Electromagnetic Spectrum Bands of Observation.

Band Spatial Resolution in Meters (m)—
Observable Parameters 1

Wavelength
Nanometers (nm)

1 250—aerosols, land 620–670
2 250—aerosols, land 841–876
3 500—aerosols, land 459–479
4 500—aerosols, land 545–565
5 500—aerosols, land 1230–1250
6 500—aerosols, land 1628–1652
7 500—aerosols, land 2105–2155
8 1000—ocean color, biogeochemistry, phytoplankton 405–420
9 1000—ocean color, biogeochemistry, phytoplankton 438–448
10 1000—ocean color, biogeochemistry, phytoplankton 438–493
11 1000—ocean color, biogeochemistry, phytoplankton 526–536
12 1000—ocean color, biogeochemistry, phytoplankton 546–556
13 1000—ocean color, biogeochemistry, phytoplankton 662–672
14 1000—ocean color, biogeochemistry, phytoplankton 673–683
15 1000—ocean color, biogeochemistry, phytoplankton 743–753
16 1000—ocean color, biogeochemistry, phytoplankton 862–877
17 1000—atmospheric water vapor 890–920

eoportal.org
sentinel.copernicus.eu
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Table 3. Cont.

Band Spatial Resolution in Meters (m)—
Observable Parameters 1

Wavelength
Nanometers (nm)

18 1000—atmospheric water vapor 931–941
19 1000—atmospheric water vapor 915–965
20 1000—surface temperature, cloud temperature 3.660–3.840
21 1000—surface temperature, cloud temperature 3.929–3.989
22 1000—surface temperature, cloud temperature 3.929–3.989
23 1000—surface temperature, cloud temperature 4.020–4.080
24 1000—atmospheric temperature 4.433–4.498
25 1000—atmospheric temperature 4.482–4.549
26 1000—cirrus clouds, water vapor 1.360–1.390
27 1000—cirrus clouds, water vapor 6.535–6.895
28 1000—cirrus clouds, water vapor 7.175–7.475
29 1000—cloud properties 8.400–8.700
30 1000—ozone 9.580–9.880
31 1000—surface temperature, cloud temperature 10.780–11.280
32 1000—surface temperature, cloud temperature 11.770–12.270
33 1000—cloud top altitude 13.185–13.485
34 1000—cloud top altitude 13.485–13.785
35 1000—cloud top altitude 13.785–14.085
36 1000—cloud top altitude 14.085–14.385

1 An adaptation from information provided by modis.gsfc.nasa.gov (accessed on 27 March 2022).

3. Algal Blooms

Harmful algal blooms (HABs) have emerged as one of the most prevalent and severe
environmental problems of inland water bodies in recent decades [18]. They are caused
by microscopic, photosynthetic organisms that, like all other organisms, require sunlight
and nutrients to grow. They are the foundation of food chains and webs in aquatic environ-
ments. When nutrient loading occurs from agricultural and urban runoff, the abundance
of nutrients causes the concentrations of these microorganisms to grow uncontrollably,
resulting in HABs [19]. Blooms typically occur in the spring when longer days provide
stronger sunlight. Water warms and becomes less dense, allowing stratification. The upper
stratified layer retains the bacteria where the sun is bright, and nutrients are plentiful [19].

Eutrophication is the process of excessive loading of nutrients. It can disrupt the
natural cycling and retention of essential nutrients in a water system. This imbalance
promotes the formation of HABs, further degrading the aquatic system [20]. As the
organisms grow, a thick layer of algae begins to form on the surface of the water as depicted
in Figure 1. Sunlight is blocked from reaching lower levels of the waterbody inhibiting
growth of benthic, photosynthetic organisms. In addition, when algae and bacteria from
HABs die, the decomposition process uses up most of the surrounding oxygen. This
results in “dead zones” where there is so little oxygen that aquatic life cannot survive [21].
Cyanobacteria is the most common type of freshwater HAB. About 60% of cyanobacteria
samples contain toxins. Toxins released from HABs move quickly through the food chain.
One of the primary threats HABs pose to human health is contaminated drinking water
and aquaculture [2]. Not only do HABs pose a risk to human health, but they can also be
costly and detrimental to the economy by decreasing tourism, recreation, and property
values while increasing need for monitoring, testing, and water treatment. It is estimated
that freshwater algal blooms cost the nation nearly $4.8 billion annually [21].

modis.gsfc.nasa.gov
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Figure 1. Cyanobacteria (blue-green algae) blooms on Lake Erie in (a) 2009 and (b) 2011. 
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Magnitude and frequency of HABs are increasing globally [19]. Early detection and
comprehensive monitoring of HABs is needed to effectively manage and mitigate detri-
mental impacts [11]. In Ref. [22], research showed that air quality has improved drastically
in the past thirty years. Acid rain occurrence has decreased across the Northern Hemi-
sphere, decreasing sulfate deposition into surface waters. Previously, sulfate deposition
contributed to changes in algal community abundance, spatial distribution, and taxonomic
composition. However, studies conducted by Ref. [23] noted cyanobacteria were signifi-
cantly reduced below pH 5.1 and increased during recovery at pH 5.5 and 5.8. As surface
waters continue to recover from past sulfate deposition, algal communities may recover as
well, a phenomenon to consider in future studies. Additionally, droughts, rising sea levels,
increased withdrawal of freshwater or agricultural use, and application of road salt are all
contributing to ideal conditions for cyanobacteria to thrive [24].

Before effective mitigation techniques can be taken, spatial and temporal distribution
of HABs must be understood. While some algae move throughout the water column
unnoticed, algae formed in calm weather on the surface can be detected [25]. Chlorophyll-a
(Chl-a) pigments act as an optical signature of algal blooms. Chl-a mainly reflects green
wavelengths, absorbing energy from violet-blue and orange-red wavelengths [8]. Satellite
measurements of reflectance can pick up on the green wavelengths, presenting an efficient
way for monitoring HABs [19]. Previously, in situ measurements of HABs were limited both
spatially and temporally due to the time and cost involved. However, by utilizing satellite
technology and its ability to pick up on optical signatures of water quality parameters,
like the chlorophyll in HABs, alternative means of assessing HABs can be explored using
remote sensing. It can be used to identify blooms and quantify abundance [26].

HABs are a pressing issue across the world in all types of waterbodies, and thus an
extensive amount of research has been conducted by the scientific community on this topic.
Satellite remote sensing was first used for HAB detection in the Great Lakes area in the
1970s. Landsat data were used to explore identification of particulate contaminants, whiting
events, and Chl-a concentrations [5]. Since then, various satellites and algorithms have been
put into practice with various levels of strengths and weaknesses in detecting water quality
related to HABs over coastal and inland waters [17,27]. Most HAB retrieval algorithms
are based on blue/green band ratios as blue-green algae are the most common species to
be found. However, detection in optically complex waters can be challenging [28]. There
are many algae that come in other colors, ranging from red to purple, and have different
photosynthetic pigments that they are able to utilize for photosynthesis by absorbing the
light of different wavelengths. In addition, detection of algal blooms of different pigments
such as Red Tides (red pigments) and many higher latitude seaweeds (brown pigments)
require detection approaches with modified algorithms [25]. Limitations of remote sensing
(cloud cover, image frequency) are mitigated by the integration of hydrodynamic and
ecological monitoring [5]. Ref. [25] used a color-based algorithm. Ref. [4] and Ref. [19] also
obtained promising results in algal bloom detection using Landsat data.
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Ref. [8] stressed the importance of using more than one band to discern optical proper-
ties of chl-a with wavelengths residing near 675 nm and 700 nm. Ref. [19] used a threshold
point, meaning that any readings above the threshold represented cyanobacteria in the
water and anything lower than the threshold represented clear waters. This method, while
effective, is highly debated in other papers as it is unclear amongst researchers what that
threshold number should be. Ref. [20] utilized data from the MERIS instrument to focus
on peak radiance near 700 nm as an index of HAB risk. A HAB flag was raised on a
pixel-by-pixel basis when chlorophyll-a measurements exceeded a particular mean chloro-
phyll concentration of ten micrograms per liter. The authors found that results of satellite
data were skewed heavily by weather, specifically wind. The wind causes agitation and
algae will mix into lower parts of the water column where it is not detectable via satellite,
resulting in lower readings. This insight is not related to a particular sensor, but may impact
readings from similar sensors as well.

Many recent studies have begun testing a multi-sensor approach to detect HABs.
Ref. [26] used MERIS and Sentinel-3A with a spectral shape algorithm. Their approach is
similar to that of Ref. [19] and derived from Ref. [29]: if the spectral shape of the 681 nm
frequency band falls below an intensity threshold, this indicates that cyanobacteria is
present in the water body. Ref. [17] used a combination of MODIS, Landsat 8 OLI, and
Sentinel-2A/B MSI. Two indices, normalized difference vegetative index (NDVI) and
chlorophyll reflection peak intensity index, are used in this study to avoid misidentification
of water and algal mixed pixels. A combination of these sensors provides monitoring up to
three times per day, providing more efficient and accurate data. Ref. [30] used a similar
approach using Landsat 8 OLI and Sentinel-2A.

Given the vast expanse of knowledge and methods utilized across different studies,
there is no clear best practice. However, there are key questions that stand out across the
reviewed literature: which sensors have performed the best, and which combination of
wavelength measurements provide the best indication of HABs? Furthermore, the authors
of this study have found a limited number of studies on detecting algal blooms of pigments
other than blue green using non-chlorophyll-based detection approaches. Regardless of
sensors used, more than one reference band should be utilized, and these wavelengths
should range between 550 and 700 nm peak reflectance. More specifically, one band around
665 nm and another around 709 nm are most frequently utilized to retrieve chlorophyll
reflectance data. Atmospheric correction is also important for mitigating error in readings,
and it is important to find the right algorithms to apply. The floating algae index (FLI)
created for MODIS is sensor independent, meaning it can be applied across a wide range
of different satellites and can be used to calibrate other algorithms [31]. The multi-sensor
approach provides higher observation frequency and more detailed spatial information
on algal blooms [17]. This practice shows tremendous promise; however, it will require
more research to find algorithms that can be applied across various sensors. In situ testing
is important for validating results and moving forward with remote sensing techniques.

4. Acid Mine Drainage

According to the US Environmental Protection Agency, environmental risks due to
acid mine drainage (AMD) are “second only to global warming and ozone depletion” [32].
Mining activities across the world cause environmental damage and changes to the earth’s
surface and underground. According to recent studies, approximately 19,300 km of streams
and rivers and about 720 km2 of lakes and reservoirs worldwide are affected by mine
effluents [33]. In the US alone, thousands of abandoned coal mines have been polluting
rivers and streams for decades, and only about a quarter of the damaged areas have been
cleaned up in the past forty years [34]. Thus, AMD remains a critical water quality issue in
need of improved remediation efforts.
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When water comes in contact with rocks that contain sulfate compounds, a chemical
reaction causes waters to become highly acidic and encourages the dissolution of other
heavy metals present in the mining area. The chemical equation for these reactions is:

4FeS2 + 15O2 + 14H2O→ 4Fe(OH)3
(am/s) + 4SO4

2− +16H+ (1)

The reactants of this equation are represented by pyrite, from mining activity (FeS2)
coming in contact with oxygen from the air (O2) and water (H2O). The reaction between
these three elements produces ferric hydroxide Fe(OH)3, sulfate (SO4

−2), and hydrogen
(H+). Ferric hydroxide is the precipitate that contributes to the bright orange color of AMD
depicted in Figure 2. The increase in hydrogen ions is what contributes to the significant
decrease in pH resulting in acidic waters [35]. The acidic water enhances dissolution
of minerals from surrounding rocks and soils, leading to high levels of total dissolved
solids (TDS) and metal contamination in mine discharge. The geochemical processes
ultimately render stream water and sediments toxic, making the water unfit for drinking
and recreation. It also adversely affects aquatic ecosystems and mining equipment [34].
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Figure 2. (a) Rio Tinto, a river in South Spain, affected by mine drainage; (b) Acid Mine Drainage in
Central Sweden as seen by Copernicus Sentinel satellites.

Treatment of acid mine drainage is often complex, costly, and challenging and may
vary with site conditions, composition of acid mine water, and treatment methods [35].
In 2021, the United States Senate passed an infrastructure bill providing $11.3 billion for
cleanup of defunct coal mines to be distributed over fifteen years. The federal program
funds cleanups in order of priority. Those that pose safety hazards to human health and
pose risk to drinking water sources are at the top of the list. US officials estimate $10.6 billion
in construction costs will be needed to fix more than 20,000 problems nationwide. However,
there is controversy about whether such resources will be enough [35]. This presents an
urgency to develop an efficient way of detecting priority waterbodies so action can be taken,
and funding allocated appropriately. Remote sensing may prove to be a useful resource in
this sense thanks to its accessibility, affordability, and wide spatial range.

Traditional remote sensing techniques use optical properties of watercolor to detect the
presence of spectral variation in contaminated waters [36]. The spectral characteristics of
AMD are unique as the oxidized iron creates a bright orange or red color in the water, which
should be distinguishable using remote sensing techniques. Earth remote sensing data
can substantially improve environmental monitoring of mining areas. Image spectroscopy
can be considered as a substantial addition or alternative to conventional methods and an
efficient way to estimate AMD-related contamination [37].
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In Ref. [38], researchers performed lab scale simulation of AMD to study the unique
spectral response of AMD from a lab setting to better interpret affected water bodies using
remote sensing imagery. Researchers explored the potential use of visible to short wave
infrared wavelengths to analyze water quality in pit lakes. They prepared solutions with
increasing Fe3+ and Fe2+ concentrations to mimic the chemical properties of local AMD. The
spectral response of synthetic and local AMD was measured using a field spectrometer, and
synthetic solutions were compared to local AMD for quantitative assessment. The results
showed that the spectral signatures of Fe3+ dominated, possessing distinct characteristics
worthy for use in diagnostic identification experiments. There was virtually no reflectance
below 400 nm. Peak reflectance occurred at 660 nm followed by a broad absorption feature
centered at 975 nm, with near 100% absorption beyond 1150 nm. Generally, reflectance was
seen to decrease as ferric sulfate concentrations increased. The Continuum Removed (CR)
spectra showed a correlation between Fe+3 concentration in solution and Visible-to-Short-
InfraRed (VSWIR) diagnostic features. The depth and extent of absorptive features in the
350 to 625 nm range may provide a reliable approximation of Fe3+ in aqueous solutions.

Methodology for studies that utilized remote sensing technology to detect AMD varied
vastly. Some studies used Landsat and Sentinel datasets while others utilized unmanned
aerial systems. In many of these studies, relationships between spectral characteristics of
contaminated water, measured pH, and total Fe concentrations have been found. AMD as
well as technogenic sediment formed during acidification had higher spectral reflectance
in wavelength ranges of 650–750 nm than neutral waters [37]. These characteristics can
be utilized by satellite imaging like Landsat and Sentinel. The relatively high temporal
resolution of Sentinel (3–4 images per week in cloud free conditions), and the availability of
ten spectral bands in the visible near infrared region provide great potential for identifying
AMD related water contamination [39].

Ref. [40] utilized Landsat-7 ETM+ to create hybrid false color composites using dif-
ferent combinations of band ratios and stacking with red, green, and blue filters. They
found that the best image that highlighted iron precipitates on dry stream beds had a
specific combination (B3/B1, B5/B4, B5/B7 = red, green, blue, respectively). The ratio
B3/B1 is suitable for detecting iron oxides, B5/B4 for ferrous minerals, and B5/B7 for
clay minerals. These findings were based on high resolution imagery from an ensemble
of satellites. Band ratios showed vegetation appearing blue and barren land appearing
yellow and green. The riverbed appeared in shades of red-orange-yellow in the presence of
iron in water/suspended sediments. In Ref. [39] they introduce a new index based upon
Sentinel-2 data. This index creates the ability to differentiate between AMD and secondary
minerals such as jarosite and other oxyhydroxides. The largest spectral differences between
the two groups of minerals were seen between 560 and 782 nm. The threshold value to
differentiate between the two mineral groups was set using the standard deviation method.
Values higher than mean plus one standard deviation were classified as oxyhydroxide-
dominant pixels, and values higher than mean plus two standard deviations were classified
as jarosite-dominant pixels.

Ref. [41] used Sentinel-2A and field data to identify and map iron bearing minerals to
determine AMD production. The spectral angle parameter method was applied to Sentinel-
2A images to identify AMD minerals and classify the study area. The map produced was
then verified with field surveys. Like Ref. [39], researchers in this study also looked to
identify spectral differences in secondary AMD minerals such as jarosite, goethite, and
hematite. Sentinel-2A spectra presented absorption features in the 430–480 nm range for
all classes (band 1 for jarosite bearing classes and band 2 for all others), in the 500–670 nm
range for hematite, goethite-hematite, goethite and jarosite-goethite classes (band 4 for
hematite and goethite bearing classes), and in the 850–940 nm range for goethite-hematite
and goethite classes (band 8 for goethite bearing classes).

Development of hyperspectral imaging has proved useful at expanding opportuni-
ties for remote sensing of AMD in both airborne and satellite-borne missions. Airborne
hyperspectral data provides higher spatial and spectral resolution, crucial for identifying
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AMD [39]. Sensors can also detect AMD minerals within the water. These measurements
can serve as proxies for low pH, acid mine waters, and mine waste byproducts. Ref. [9]
used high resolution point clouds and digital elevation models built from drone data. The
hyperspectral data was able to detect secondary AMD minerals. Specific iron absorption
bands in the drone data were identified and features were confirmed by in situ spectroscopy
and in situ pH results.

When using hyperspectral data, reference libraries can be utilized as in Ref. [42] to
ensure the output of a reasonable map when diagnosing spectra. Referencing spectral
libraries is a useful technique to assess oxidation or hydration stage of a mineral mixture.
They also help establish statistical evaluations of scores produced by mineralogical diag-
noses. Researchers of this study restricted the map area so that contaminated areas can
easily be detected, and patterns could be assessed to interpret climate change trends, metal
contamination, and make AMD predictions. This study has established the potential of
using hyperspectral satellite imagery for AMD detection.

Current research of remote sensing data in detecting and monitoring mine-related
water pollution impacts is limited. There is a need for more research in the effective use of
remote sensing techniques for understanding AMD relative to ground truth soil and water
samples, as well as better integration of hyperspectral images with field data. Which bands
are ideal for the detection of AMD? How and when might remote sensing measurements
of AMD be skewed? Can remote sensing be used to determine the true spatial extent of
AMD pollution events? There is a need for regular monitoring of AMD and water quality
from refuse piles, mine tailings, and diffuse seeps to determine emerging problems, seek
proper treatment designs, and reclaim mine sites for future use [35].

From available research literature, some recommendations can be utilized across
all platforms. Similar to measuring harmful algal blooms, influences such as vegetative
material or the atmosphere must be accounted for and avoided as much as possible for
reliable results. Reflectance peaks between 570 and 700 nm are found to be common across
almost all studies. The red and red edge spectral bands are crucial in detecting AMD-related
contamination in separating polluted water from pure water. It is also important to note
that across many studies, a seasonal signature was found in relation to the hydrology of
the basins; in the dry season, metal contaminants seemed to increase, and they conversely
diluted in the wet season.

5. Suspended Sediment

Light transmittance through water bodies is an important indicator of water quality
and ecosystem health [43]. Suspended sediments, depicted in Figure 3, are a dominant
water constituent in inland and coastal waters, making total suspended solids a key param-
eter to describe water transparency and quality [31]. Suspended Solid Concentrations (SSC)
includes a wide range of particulate matter for the water column. The water column can
contain organic matter, inorganic matter, and microorganisms that are insoluble in water.
Each of these constituents pose a significant impact on spatial and temporal aspects of the
optical properties of a water body [44]. As the world continues to urbanize, populations
in coastal areas are growing rapidly [45]. This creates a growing need to monitor water
quality in adjacent watersheds consisting of aquatic ecosystems like lakes, lagoons, and
estuaries [46]. Human induced stresses are negatively affecting biological and physical
processes in water bodies. Pollution, sediment accumulation and introduction of exotic
biology break the ecological balance of these ecosystems. Suspended sediments reduce
storage capacity of reservoirs, minimizing flood control and reduced light penetration
to benthic aquatic communities [11]. Assessment of sediment influx is crucial to under-
standing processes that sustain water quality and geomorphic balance [46]. Degradation
of lakes happens gradually, but once degraded, it can be nearly impossible to reverse the
conditions [11]. Regular monitoring of suspended solid fluctuations is thus essential for
understanding how they impact different ecosystems, effects on aquatic communities, and
how the problems can be mitigated.
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Secchi disks have been relied on for measurements of water transparency in field
settings. However, this method can be both labor and cost intensive for large water bodies
and typically has low sampling efficiency [47]. It is technically challenging to monitor
SSC and distribution in large water bodies let alone numerous systems across large scale
regions [48]. However, Secchi disk transparency has a strong correlation with satellite
spectral-radiometric observation in lakes. Clearer water absorbs relatively little energy
having wavelengths less than 600 nm, in the blue-green portion of the spectrum. As
turbidity changes, transmittance, and reflectance change, resulting in much higher visible
light reflectance. Lakes loaded with sediment reflect less blue and more red light. Overall,
when the amount of blue light reflectance is high and red-light reflectance is low, this
indicates good water quality [11]. Studies have found that the red to near infrared spectra
is the most appropriate when monitoring suspended sediment concentrations. Red bands
provide detailed information on horizontal distribution due to the effects of size, shape,
and the texture of particles [46].

Satellite remote sensing can provide synoptic observations from visible to near in-
frared spectral regions, which can be used to derive suspended sediment concentrations in
water [31]. The assessment of water’s optically active parameters relies on knowledge of
the behavior of light in water. Molecular scattering of pure water follows a parabolic trend
with higher values at short wavelengths, while absorption is highest in the red to infrared
spectrum. Light scattering by suspended sediment strongly depends on the particle size,
shape, and composition. The inorganic fraction of suspended sediments scatters light
significantly while absorption is negligible [49]. Absorption and backscattering of light by
suspended components influence the shape and magnitude of the water leaving reflectance,
which is information that can be retrieved by remote sensing sensors [49].

In terms of recent satellite data, the most common sources for total suspended sediment
concentration retrieval have been Landsat’s thematic mapper and optical land imager (OLI),
and the Sentinel-2′s multispectral imager. Beyond satellites, many highly suitable models
have been developed in a variety of studies to accurately predict suspended sediment
concentrations. Previous studies have shown the feasibility of using red spectra-based
models to estimate water transparency and related parameters with good accuracy in
moderately turbid lakes. In Ref. [48], researchers developed a new algorithm for remotely
estimating suspended solid concentrations based on samples from lakes and reservoirs
across Eastern China. Ref. [46] used Landsat 8 OLI and in situ measurements to develop
a site-specific algorithm for retrieval of suspended sediment concentration data. In this
study algorithms were tested to establish a relationship between remote sensing reflectance
of OLI2, OLI3, OLI4 and in situ observed suspended sediment concentrations. The model
results show that the spatial distribution of satellite estimated SSC and in situ observed
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SSC follow a similar pattern. Landsat 8 OLI was also able to capture seasonal variability
across the lake.

Out of all the algorithms, the multi-band linear regression models with site-specific
coefficients were found to be the most suitable for the estimation of SSC as compared
to the single band linear regression models. Ref. [31] used Sentinel-2′s MSI device to
identify the appropriate spectral bands for retrieval of suspended sediment concentration.
Researchers found that models based on B7 located at 783 nm were the most accurate
retrieval methods. Suspended sediment concentrations were generally consistent in spatial
distribution and magnitude to those derived from MODIS. Specifically, the Sentinel-2 MSI
B4, at 665 nm, was recommended for low loadings and B7, at 783 nm, was recommended
for high loadings. The high-quality SWIR bands of Sentinel-2 MSI were important for the
success of suspended solid concentration retrieval because they facilitated atmospheric
correction over Case II waters.

Overall, regular monitoring of suspended sediment concentration using Landsat
8 OLI can be helpful for monitoring different environmental problems in lakes such as
accumulation of sediment, effectiveness of dredging activities, areas with high probability
of algal blooms, impact of sediment on seagrass habitats, overall water transparency, and
productivity of the lake. Satellite data may also reduce the necessity of expensive and
extensive fieldwork for collecting ground data. Use of remote sensing data will enhance un-
derstanding of ecosystem responses against environmental changes in lake ecosystems [46].
However, further research will be needed in this field to develop algorithms so remote
sensing data can be more heavily relied on. Furthermore, using a multi-sensor approach
would mitigate the problem of revisit frequency in Landsat data, combining data retrieved
from Sentinel-2 and Landsat 8 would provide a revisit time of 2.9 days, improving the
availability to retrieve water quality parameters.

Some important questions to consider include: Which sensors are ideal for monitoring
suspended sediment concentrations? How can images of suspended sediment from satel-
lites be reliable? Future research should focus on datasets from Landsat 8 & 9′s OLI and
the Sentinel-2 MSI. Images selected for assessment should be high quality and cloud free.
Atmospheric correction is necessary as well as masking vegetative patches and areas where
subsurface vegetation may skew results. The red to near infrared range is most suitable
for detecting suspended solid concentrations, thus, bands that fall in the 700 to 800 nm
range. To establish a significant statistical relationship, a large number of ground-based
measurements over large geographic areas and different water bodies will be needed to
validate the application of remote sensing data.

6. Discussion

Watercolor is influenced greatly by suspended and dissolved particles and contami-
nants. Algal blooms appear green because of the chlorophyll content of the algae in water.
Acid mine drainage appears red or orange due to the high concentration of heavy metal
compounds, especially iron and sometimes oxidation of sulfur compounds from the soil.
Suspended sediments appear brown or tan from the natural dissolved organic matter. Gen-
erally, colored water is an indicator of poor water quality that can impart adverse effects
on human health and aquatic environments. Typically, in situ measurements have been
relied upon as an indicator of water quality; however, this approach is limiting. Ground
truth measurements are subject to human and sampling errors and are sometimes not
reflective of conditions for the entire water body. Such measurements are expensive to
perform and replicate over large areas. Satellite remote sensing provides the opportunity
for water quality to be monitored and quantified across entire waterbodies simultaneously.
Historical remote sensing data over large areas can also be used to map spatiotemporal
trends and forecast future water quality events.

Amongst the water quality events analyzed in this study, there are commonalities in
practices and techniques. Overall, when the amount of blue light reflectance is low and
red-light reflectance is high, this is indicative of poor water quality. To retrieve reliable data,
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atmospheric correction is a vital aspect of data processing. In addition, vegetation can cause
skewed results, especially when measuring algal blooms given the importance of green
reflectance. It is important to mask off heavily vegetative areas and utilize algorithms that
remove vegetative influences in images such as the Normalized Difference Vegetative Index
(NDVI). Landsat and Sentinel appear to be the most reliable and frequently used datasets
in water quality applications. The main limitation of Landsat is its infrequent revisit time of
sixteen days, especially if a revisit coincides with cloudy conditions that result in unusable
data. The launch of Landsat 9 should aid in resolving this problem, cutting revisit time
down to eight days. However, multi-sensor approaches also prove useful for mitigating this
problem. In a recent study, [21] utilized this approach by integrating MODIS, Landsat 8 OLI,
and Sentinel-2 A/B MSI to attain high temporal and spatial resolution observations of
algal blooms in Chaohu Lake. In situ measurements are vital for verifying results gathered
from remote sensing. The recently developed AquaSat platform provides a useful example,
correlating in situ data with data received from Landsat [50].

Beyond general best practices, specific bands and wavelengths also work better for
detecting different water quality events. Table 4 summarizes the key water quality problems
along with the relevant satellite capabilities, wavelength, usage information. For remote
sensing of algal blooms using more than one band is ideal with reflectance peaks targeted
around 665 and 709 nm for retrieving chlorophyll reflectance data. For acid mine drainage
related contamination, crucial red and red edge spectral bands range between 570 and
700 nm. With AMD, it is important to note that metal contamination tends to increase in
the dry season, when heavy metal contaminants are less diluted. Thus, the dry season may
provide the most reliable results when determining water bodies of highest priority. Finally,
for suspended sediments, the red to near infrared spectra is the best fit with wavelengths
ranging between 700 and 800 nm, 650 nm for less severe cases.

Table 4. Corresponding Wavelengths for Water Quality Assessment.

Event Reflectance
Color/Spectra Satellite Wavelengths Additional Information

Algal Blooms Blue/Green
Multi-sensor

Approach with Landsat and
Sentinel

665 and 709 nm Utilize algorithms and masks to
remove vegetative influences

Acid Mine
Drainage Orange/Red Airborne hyperspectral

data, HyspIRI 570–700 nm
Monitor during dry season;

reference libraries can be useful for
determining mineral mixtures

Suspended
Sediments Brown/Tan

Landsat TM
Landsat OLI

Sentinel-2 MSI

700–800 nm
*650 nm

if less severe

Utilize multi-band linear regression
models with site-specific coefficients

Studies have revealed a correlation between increasing water temperatures, changing
land use, and degrading water quality [5]. By building a better understanding of contribut-
ing factors to degrading water quality, scientists will be able to better forecast and predict
when and where water quality events are going to occur [20]. Such an understanding
will also allow lead time to inform the public about water resources that pose a potential
health risk and allows for proper management and testing practices to ensue. Building an
understanding of how water quality events develop will provide information for mitigation
strategies to develop as well.

Water temperature is an important parameter for understanding the physical and
biochemical processes occurring within a waterbody. It influences solubility, and thus
availability of chemical constituents in water [8]. This is important when considering con-
centration of heavy metals from acid mine drainage or suspended sediment concentrations.
More importantly, water temperature has an indirect relationship with dissolved oxygen.
Oxygen solubility decreases with increasing temperatures. Coupled with algal blooms
which thrive in warmer waters, as noted in Ref. [24], this poses a detrimental effect on
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aquatic ecosystems. As algae grows thicker, the darker surface of the algae absorbs more
sunlight resulting in even warmer waters and more dissolved oxygen depletion [21]. Water
temperature can be recorded with thermal infrared bands, located on most recent satellites.
Readings are derived from radiometric observations at wavelengths near 10,000 nm [49].

Ref. [51] compared Landsat 7 ETM+ and MODIS imagery to determine the reliability
of sea surface temperature data from both satellite platforms. Results showed that MODIS
band 11 and Landsat-7 obtained similar accuracy with in-situ data with a root mean square
deviation of 1.05 ◦C and 1.07 ◦C, respectively; the latter was recommended for smaller
lakes because of its more precise spatial resolution. Similarly, land and water surface
temperature data collected via Landsat-8 were verified with in situ measurements with root
mean squared differences of 0.7 K and 1 K for bands 10 and 11, respectively [52]. Remote
sensing of water temperature in rivers can be specifically challenging because of the smaller
dimensions and rapid movement of water, as remote measurement of water temperature
occurs in the upper first millimeter of the water surface. Despite these challenges, remote
sensing can still provide an improved understanding of spatial and temporal trends of
water quality events. Future research may consider looking into ways to collect more
reliable coastal and inland water temperature data using remote sensing.

Land use and land cover also play a complex multi-faceted role in the hydrological
cycle. Surface runoff is a major source of non-point source pollution and is responsible
for the relationship between land use/cover and water quality. River discharge from
watersheds with natural vegetation are being gradually replaced with agriculture and
pastureland, promoting surface runoff and sediment transport. Natural vegetation inter-
cepts and reevaporates precipitation influencing other hydrological parameters such as
percolation and surface runoff. When land is converted to impermeable surface or even just
agricultural land, it promotes overland flow and erosion, and prevents the replenishment
of the water table. All these effects in turn influence water quality of nearby streams
and rivers, and eventually in the estuarine areas as the discharge enters the ocean [53].
Fertilizers can influence levels of phosphorus and nitrate and grazing may increase the
presence of fecal bacteria resulting in contamination and algal blooms. Landscape pat-
terns are ever-changing and climate change poses a serious threat to current landscapes.
Quantifying these spatial patterns is not the end, but really the beginning to understanding
ecological processes. If better understood and practiced, landscape patterns can play a
useful role in understanding water quality causes and mitigation strategy [54].

6.1. Machine Learning & Water Quality

Statistical methods of analyzing water quality are rooted in general circulation rep-
resentations utilized to observe the evolution of the ocean’s quality parameters (salinity,
temperature, wind speed, sea ice). These techniques are also applied to surface waters
and precipitation through hydrological modeling. More recently, the machine learning
approach has gained popularity due to the evolution of computational ability and connect-
edness. One of the earliest documented research efforts of integrating machine learning
(ML) and water quality is the use of artificial neural networks to forecast salinity in the
Murray-Darling River System [55]. This approach uses a limited number of values as
the input and output for training. Now, multispectral images of large pixel size with at
times more than 100,000 values per input and/or output can be performed with equipment
available to the public [56]. Ref. [57] used a convolutional neural network (CNN) to classify
regions of two lakes in China by linking Landsat 8 data to ground truth observations of the
respective lake’s water quality.

AquaSat has recently emerged as a useful tool in this sector as described in Ref. [50].
This program uses ML to make accurate predictions of water quality at a global scale.
Images taken by Landsat, 5, 7, and 8 over a 30-year period were correlated with ground
truth samples obtained from the United States Water Quality Portal. The 600,000 matchups
of remote sensing and sample data used for training allow for more reliable predictions
of water quality based on Landsat images alone. AquaSat focused on chlorophyll-a as



Environments 2022, 9, 125 16 of 19

a measure of algae that turns water green, dissolved carbon that darkens the water and
indicates carbon leached from the landscape, and Secchi disk depth as a measure of total
water clarity, with sediments yielding a tan color.

Remote sensing spectroscopy combined with the analysis and monitoring power of
cloud data systems may prove useful in monitoring water quality associated with AMD
across vast mining districts. The spectral signature of Fe3+ possesses distinct characteristics
that may prove useful for diagnostic identification using Earth observations. The region
between 350 and 625 nm is especially helpful for quantifying Fe+3 concentrations. An
observed decrease in reflectance is also indicative of increased ferric sulfate concentrations.
An integrated tool for automated water quality monitoring can potentially leverage this
knowledge and Landsat data, taking as input reflectance measurements over water bodies
for monitoring sites affected by AMD.

Researchers can also train ML networks to look at historical time series observations to
identify significant pollution events and compare them to current conditions to understand
how AMD sites have changed annually and seasonally. Ref. [47] used a multi sensor
approach from both Landsat 8 OLI and Sentinel-2 MSI to provide a higher recurrence of
fused data. Combined with a convolutional neural network, water transparency data was
retrieved to determine the most reliable methods. Reflectance obtained from MSI and OLI
sensors were used as inputs for the model. This model used five consistent band reflectance
and twenty band ratio combinations in Landsat OLI and Sentinel-2 MSI images as the
input variables.

6.2. Remote Sensing in Water Quality Applications

Although satellite remote sensing has been around and used thoroughly in water
quality research since the 1970s, utilizing satellite earth observations and imagery in order
to mitigate water quality events is still not a common practice. In Ref. [10], researchers
interviewed various stakeholders and environmental managers to determine why this was
the case. The results mainly came down to cost, accuracy of data products in particular
waterbodies, satellite mission continuity, and obtaining management approval for including
satellite data in their work. Interestingly, it is not widely known that data from many reliable
satellites such as Landsat, Sentinel, and MODIS can be accessed free of charge. Typical
up-front costs may include hardware and required expertise to get started. Furthermore,
many stakeholders are not able to rely on the accuracy of remote sensing data. There is
widespread perception that traditional in situ samples represent ‘truth’, and there is less
concern that in situ measurements do not represent entire waterbodies.

It should be noted that the value of remote sensing is not always about absolute
accuracy, but the synoptic and frequent coverage of numerous waterbodies over large
geographic areas and about detecting relative changes and anomalous events in the obser-
vations. Some stakeholders have expressed concern about relying on a satellite that may
end up going offline in a few years, which is a valid concern. However, satellite missions
are typically designed for long lifecycles of decades and are followed up by similar but im-
proved sensors. Such missions are also necessary to provide continuity in derived products
in changing climate settings, which will be of the utmost importance.

Why are not environmental managers utilizing remote sensing data and what would
they need to start? Understanding and addressing this problem will facilitate growth in the
field, creating an environment where more research and data is collected making remote
sensing a more reliable data collection tool for future use. To further bridge the knowledge
gap and facilitate growth in the field, future research of remote sensing of water quality
parameters should focus on the creation of tools to aid in monitoring and data collection
techniques. Creating easy to use tools for modeling, management, and risk communication
such as in Ref. [58] opens this field to researchers who may not otherwise have the skill
or knowledge to do work with remote sensing data. For example, ref. [58] developed an
easy-to-use open-source neural network framework for modeling high resolution water
quality and quantity changes based on radiometer observations of water flux forcings.
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In summary, NASA has made significant progress in standardizing methods for suc-
cessful missions [12]. Satellite remote sensing is too useful and readily available as a tool to
be ignored. There needs to be a push to inform the environmental community about how
they can integrate remote sensing into their work. Especially, emerging contaminants and
critical water quality problems such as mine drainage pollution and water quality degrada-
tion in coastal areas due to upstream land-use practices need large scale solutions that are
robust, accurate and continuously monitoring. In addition, the scientific and technologi-
cal progress in earth observations, geosciences and engineering has allowed continuous
evolution and improvement of methodologies to be adapted. Providing workshops and
engaging with environmental managers about the benefits of water quality remote sensing
will prove useful in accomplishing this task. The water quality community needs to use
remote sensing techniques and earth observation datasets in their own work to facilitate
growth in the field, creating an environment for more research, and so that remote sensing
of water quality becomes a reliable resource.
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