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Abstract: We used the Climate Change and Adaptation Modeler (CCAM), a Terrset software
toolset, to project the effects of global climate change on crops in New Jersey. We selected two
scenarios—A1FI-MI and B1TME. We found that temperatures will increase by the end of this century
compared to 1981–2010 normal temperatures baseline downloaded from PRISM. The temperature
increase will vary from 3 to 6 ◦C depending upon the scenario while the precipitation remains
relatively the same. These changes will negatively affect the suitability of many economically valuable
crops in New Jersey including blueberry, cranberry, squash, sweet corn and tomato. Many crops that
are highly or very suitable will move into marginal or very marginal categories.

Keywords: climate change; Terrset/CCAM; MAGICC/SCENGEN; crop suitability; downscale;
New Jersey

1. Introduction

Human health, community resiliency and the economy have always depended upon a functioning
and sustainable environment. Over the past few decades, however, increasing temperatures, alteration
of precipitation patterns, and more intense storms associated with global climate change have begun
to remind us how inextricably linked we are to the environment. Inevitably, changes in the climate will
continue to affect many aspects of our lives and our communities, including our health and welfare [1],
water [2,3], air quality [4], economy [5,6], natural ecosystems [7], and agriculture [8–11].

Previous studies of the bioclimatic trend over the last several decades have found a worldwide
increase in temperatures. For instance, in Spain, most of the country has experienced a temperature
increase of 0.3 ◦C per decade between 1961 and 2006 [12]. The mean annual temperature increase in
Pakistan was about 0.36 ◦C per decade between 1952 to 2009 [13]. While in China, the temperatures
have risen more than 0.17 ◦C per decade since the 1950s [14]. These climatic changes have had adverse
impacts on the environment and agriculture. For instance, in Andalusia, Spain, a 30-year study found
that temperatures have significantly increased, and irregularity in temperatures and rainfall have
negatively affected crops and led to yield losses [15].

Studies of future climate change impacts commonly depend upon climate projections from
coupled atmosphere–ocean general circulation models (AOGCMs). These models have used a wide
range of scenarios that take into account greenhouse gases emissions, fossil fuel use, population
growth rate, and economic development [8,16,17]. Some models have been global [14–17] while others
are more regional [18–23] including models for the United States of America (USA) [24]. The key
limitation of global models has been the coarse ground resolution, so many researchers have used
or proposed downscaling as a method to get finer resolutions and improve spatial analyses and
interpretation [8,25–27].

Environments 2020, 7, 76; doi:10.3390/environments7100076 www.mdpi.com/journal/environments

http://www.mdpi.com/journal/environments
http://www.mdpi.com
http://www.mdpi.com/2076-3298/7/10/76?type=check_update&version=1
http://dx.doi.org/10.3390/environments7100076
http://www.mdpi.com/journal/environments


Environments 2020, 7, 76 2 of 18

In the Northeast region of the USA, a region that includes the states of Maine, New Hampshire,
Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania,
studies have used downscaling to analyze the effects of climate change on a wide range of
aspects/environments [28–33]. In this study, we use downscaling at the state level for New Jersey to
examine the potential impact of climate change on the geospatial distribution of some of the most
common crops grown in the state. We selected five crop species that are important to the state’s
agricultural history and provide several million USD annually to the economy. Many of them have
been ranked among the top valuable crops in New Jersey [34]. They include Blueberry (Vaccinium
corymbosum), Cranberry (Vaccinium macrocarpon), Squash (Cucurbita maxima), Sweet corn (Zea mays var.
saccharata) and Tomato (Lycopersicon esculentum) [35].

We focus our study on the effects of climate change on crops in New Jersey, commonly known
as “The Garden State”. As the third highest source of revenue in the state, agriculture brings in
billions of USD to New Jersey’s economy and supplies over 100 types of fruits and vegetables from
over 720,000 acres (291,374 hectares) of land (https://www.nj.gov/agriculture/about/overview.html).
Therefore, widespread changes in growing conditions inevitably affects the economy, culture, and
environment within the state. For example, fruit crops like blueberries, apples and peaches which bring
in USD 125 million in revenue for state farmers, have struggled over the last four decades as the changing
climate has already caused planting zones to shift north and west (https://njenvironmentnews.com/

2019/04/15/climate-change-poses-a-threat-to-new-jerseys-cash-crops/). While the effects of climate
change have been previously studied for the Northeastern US region, [8–11], we think that decision
makers at the state level are not able to take appropriate actions because they do not have spatial
detailed information to evaluate the scope and scale of the impacts.

The purpose of this article is of twofold. First, we will evaluate and characterize the spatial
extent of the future climate by the end of this century. We will specifically look at the patterns of
temperature and precipitation under two scenarios that differ in the level of commitment the world
makes to shift away from fossil fuels. Second, we will assess the likely impact of climate change
on the future suitability of five crops important to the economy of New Jersey. The goal is to help
decision makers and spatial planners take necessary and appropriate strategies for a better and more
sustainable approach to socio-economic development of the state. Importantly, however, the relevancy
of study is not limited to New Jersey nor to the crops we discuss. The methods used in this study
can be incorporated into other regions to understand and predict possible changes based on varying
localized conditions.

2. Materials and Methods

2.1. Study Site and Crop Species

New Jersey covers a land area of 22,610 km2 (Figure 1). With the 2019 population estimate of
8,882,190 [36], New Jersey is the most densely populated state in the United States of America with 458
people per km2 [37,38]. Despite its small size and large population, New Jersey has approximately
9000 remaining farms and is one of the top 10 producers of blueberries, cranberries, peaches, tomatoes,
bell peppers, eggplant, cucumbers, apples, spinach, squash, and asparagus in the United States
(https://www.nj.gov/agriculture/about/overview.html).

The growth of crops in the state depends not only on bioclimatic factors but also on the spatial
distribution of soil texture and structure. For instance, the New Jersey Pine Barrens occupies
1.1 million acres in the southern region of the state is characterized by sandy and acidic soil.
Blueberry and cranberry are native to that region and farming of these two species has been
fundamental to the Pine Barrens culture and economy for generations. Even though cranberry
can grow wild in wet fields, meadows, bogs and along streams in the region it is mass produced in
human-made bogs (https://whyy.org/segments/how-farmers-in-new-jerseys-pinelands-grapple-with-
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the-environmental-toll-of-thanksgiving-cranberries/). Blueberries, on the other hand, grow in the
more upland, dry soil [39].

The other crops that we are focusing on grow predominantly in well-drained soils. They include
loamy and sandy loamy soils. These types of soils are formed in loamy fluviomarine deposits and are
suitable for agricultural use [40]. New Jersey has plenty of loamy and sandy loamy soils that are best
for tomato production [41]. New Jersey’s clay loam is ideal for sweet corn [42]. The state is the 6th
leading squash producer in the nation [34]. The last crop in our study is squash. It also prefers, well
drained, fertile soil, high in organic matter [43]. This type of soil is mostly found in the southern part
of the state where 70% of squashes are produced in summer [44].
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2.2. Data and Software

We used TerrSet Geospatial Monitoring and Modeling System software [45]. One of the eight
toolsets on this software is the Climate Change and Adaptation Modeler (CCAM). Its purpose is
to address the issues of a rapidly changing global climate [46]. CCAM has an interface to predict
future global climate change up to 2100 under a variety of management scenarios using the coupled
MAGICC [16,47] and SCENGEN models [48]. It was developed in conjunction with the fourth
assessment of the Intergovernmental Panel on Climate Change (IPCC) [49].

We specified the parameters prior to running MAGICC. We used A1FI-MI and B1TME [46] as the
two types of the emission scenarios for our study. A1FI-MI represents the world that is in a situation of
high-energy demand, global cooperation and new alternative technologies [46,48]. It is the world of
the fossil fuel-intensive combination of coal and oil. We selected this scenario because we believe this
situation is relatively similar to the one in which we live today. B1TME represents global cooperation
and economic, social, and environmental sustainability with a shift away from fossil fuels and towards
enhanced energy conservation—the goal of the Paris Agreement [50,51]. Previous studies have used
A1F1 which is a scenario closer to ours [16,31]. The B1 scenario family is slightly similar to A1 and the
main difference is the emphasis on clean and sustainable energy production. It is a situation very close
to the description we provided for B1TME.

In addition to A1FI-MI and B1TME we applied the following parameters to each of these scenarios.
We set the carbon cycle to the mid-range of 1.1 GtC/Year [52–54] as also advised by the software
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builders. We included carbon cycle climate feedbacks. We set thermohaline circulation to variable with
the assumption that it will likely slow as the temperature increases. The aerosol forcing was set to the
moderate level of −1.3 W/m2 [55–57]. The vertical diffusion, a rate of mixing ocean water, was set at
2.3 cm2/s. It is the median value of seven models included in the software [46]. The level of ice melt was
based on the central estimates specified in the IPCC Third Annual Report [58]. The sensitivity, Earth’s
temperature reaction to doubling of CO2, was set to 3 ◦C. This value is within the IPCC-recommended
values between 0.5 and 5.5 ◦C [25]. The reference year for climate model output was 1990 and the last
year is 2100.

We then run the model for the two scenarios to generate the temperatures in degrees Celsius.
Outputs from running SCENGEN generated eight projected global images including four for
precipitation and four for temperatures. We averaged 18 models to generate the data we used
in this study. The two models, that had a very low statistical correlation, were removed from the
suggested 20 models after a preliminary run (Table 1) [46].

Table 1. Correlation between the models.

Unweighted Statistics Cosine Weighted Statistics

MODEL Correlation RMSE Correlation RMSE
◦C ◦C ◦C ◦C

BCCRBCM2 0.807 0.428 0.744 0.36
CCCMA-31 0.857 0.324 0.834 0.251
CCSM–30 0.779 0.706 0.709 0.409

CNRM-CM3 0.678 0.391 0.677 0.31
CSIR0-30 0.657 0.429 0.693 0.339

ECHO—G 0.706 0.608 0.673 0.48
FGOALS1G 0.196 1.961 0.278 1.849
GFDLCM20 0.774 0.532 0.725 0.431
GFDLCM21 0.883 0.259 0.859 0.22

GISS–EH 0.569 0.466 0.64 0.346
GISS–ER 0.147 1.054 0.153 0.86

INMCM-30 0.795 0.386 0.713 0.335
IPSL_CM4 0.854 0.315 0.812 0.278
MIROC-HI 0.804 0.356 0.745 0.277

MIROCMED 0.81 0.397 0.791 0.312
MPIECH-5 0.869 0.279 0.868 0.224
MRI-232A 0.77 0.382 0.703 0.309

NCARPCM1 0.50 0.513 0.511 0.404
UKHADCM3 0.80 0.363 0.741 0.333
UKHADGEM 0.874 0.395 0.828 0.299

SCENGEN image outputs include four maps projected global spatial distribution of monthly,
seasonal as well as annual temperatures and precipitation patterns by the end of the century. The first
one represents the average of absolute changes in temperatures or precipitation for the 30-year interval
centered on 2064, averaged over the 18 selected models (ABSDEL). A second image characterizes the
new mean state using a model-mean baseline when including aerosols (ABS-MOD). A third illustrates
the new mean state using an observed baseline when including aerosols (ANS-OBS). The fourth image
is the scaled change field when only aerosols are included (AEROSOL). Our study focused on ANS-OBS
in part because it uses observed data as the baseline and the difference from ABS-MOD was relatively
small in most cases it was less than 1 ◦C.

The ground resolution of maps resulting from running SCENGEN is 2.5 longitudes by 2.5 degrees
latitudes. That is, the pixel ground resolution of this global model is about 85 km longitude by 110 km
latitude when calculated within the state of New Jersey. The state is elongated and relatively small
covering about 22,610 km2, with the south-north distance averaging 240 km and east–west distance of
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100 km. The state is actually spread only over smaller parts of each of the four pixels resulting from
SCENGEN’s images. A detail spatial analysis of climatic variables and crops distribution is relatively
difficult at this coarse resolution.

We decided to run the Downscale Scenario model within the CCAM. This model produces a higher
resolution image from a low-resolution image generated through SCENGEN. Previous studies have
found no clear evidence of a difference when using downscaling techniques [26,27,59]. The datasets
for the entire United States including average monthly and annual climatic conditions over 30 years
(1981–2010) were downloaded from PRISM Climate Group [60]. These Climate Normals had pixels
representing an 800-m ground resolution, which is a finer resolution compared to SCENGEN’s image
resolution. Since our study area is New Jersey, we extracted datasets related only to the state using
Geographic Information Systems (GIS) and used these datasets as a baseline. The fine resolution
baseline of each image from PRISM Climate group represents an average of climatic variables from
1981–2010 while SCENGEN uses reference datasets over a period from 1980 to 1999. We are assuming
in our study that these conditions are relatively similar between these reference periods.

We also run the Crop Climatic Suitability Modeling tool within the CCAM for the following
crops: blueberry, cranberry, squash, sweet corn and tomato. The purpose is to project the global
suitability distribution of the 5 selected crops in New Jersey based on future monthly temperature and
precipitation data, and the length of a crop’s growing season within the state [20,45]. We retrieved
required crop bioclimatic parameters from a database developed by the FAO located within CCAM
model. We run the model to create suitability maps of our selected crops within New Jersey.

We run Habitat suitability mapping and species modeling. This module relies on a variety of data to
detect environmental variability. It derives bioclimatic variables from extreme and average temperature
and precipitation data to facilitate a better spatial and temporal environmental interpretation. These
derived data represent annual trends, seasonality, and extreme or limiting factors.

We also used additional data for the purpose of having a more general view of spatial patterns
for a graphical analysis. The georeferenced dataset of 2015 Land Use/Land Cover of New Jersey was
downloaded from [61]. Using GIS, we only selected agricultural lands managed as they related to this
study. Unfortunately, this category included cropland and pastureland. It did not provide a detail
spatial distribution of specific crops, such as sweet corn, cranberries, potatoes and many more that are
farmed in New Jersey.

There is considerable confidence that climate models provide credible quantitative estimates of
future climate change, particularly at continental scales and above. This confidence comes from the
foundation of the models in accepted physical principles and from their ability to reproduce observed
features of current climate and past climate changes. Confidence in model estimates is higher for some
climate variables (e.g., temperature) than for others (e.g., precipitation) [49]. Over several decades of
development, models have consistently provided a robust and unambiguous picture of significant
climate warming in response to increasing greenhouse gases [49].

3. Results

3.1. Global Pattern of Climate Change

There are similarities in the overall spatial distribution of bioclimatic variables between the
projection from our two scenarios and the results from IPCC AR4 report [49]. Images from A1FI-MI
and B1TME scenarios (Figure 2a,b,d,e), display latitudinal variabilities as one moves away from the
equator. According to Table 2 Scenario A1FI-MI, the lowest temperature is −47.34 ◦C and is located in
South Pole regions and in the B1TME scenario it is −50.42 ◦C. The global temperatures from our models
is on average 3 ◦C cooler in scenario B1TME than in scenario A1FI-MI. The largest difference between
our two scenarios is found in the North Pole region while the lowest is in the northern Atlantic Ocean
and the southern ocean regions. On land, it varies mostly between 2.7 and 4.3 ◦C (Figure 2c). With
reference to global distribution of annual precipitation, there are no significant differences between the
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two scenarios (Figure 2d–f, and Table 3). The part of the world likely to have more precipitation is
concentrated along the Equatorial region. It decreases as one moves away from this region.
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Figure 2. Projected global annual average temperature change in degree Celsius and annual precipitation
change in mm/day by 2100 based on scenario A1FI-MI and B1TME (a,b,d,e). Difference between
A1FI-MI and B1TME (c,f).

Table 2. Summary of global statistics of annual temperatures under the two scenarios from
Figure 2 images.

Annual Temperatures (◦C) Difference between the Two Scenarios (◦C)

A1FI-MI B1TME A1FI-MI minus B1TME

Minimum −47.34 −50.42 3.08
Maximum 36.17 32.63 3.54

Mean 10.28 7.413 2.867
Stand. Deviation 19.29 19.76

Table 3. Summary of global statistics of annual precipitation under the two scenarios from
Figure 2 images.

Annual Precipitation (mm/day) Difference between the Two Scenarios (mm/day)

A1FI-MI B1TME A1FI-MI minus B1TME

Minimum 0.03 0.04 −0.01
Maximum 12.32 11.32 1

Mean 2.38 2.26 0.12
Stand. Deviation 2.03 1.92

3.2. Downscale Results of the State of New Jersey

3.2.1. Annual Overview of the Models

The data map from PRISM [60] (Figure 3a) shows a pattern similar to the one presented by
the Office of the New Jersey State Climatologist [62]. Warmer temperatures are found mostly in
the southern part of the state and becoming colder as one moves north especially in northwest in
mountainous areas. The hottest climate normal annual temperature of 13.54 ◦C is in the southwestern
part of the state while the coldest, 9 ◦C, is found in mountainous region in the northeast. Table 4
shows that the average temperature is consistent with the 30-year normal from the office of the New
Jersey State Climatologist [63]. The normal for the annual precipitation shows a south-north increase
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(Figure 3d). In the south, it is around 1000 mm while in the mountainous region of the northwest it is
on average more than 1200 mm a year. We averaged the annual precipitation for the entire state and
found that it is 1187.16 mm (Table 5).

Results from A1FI-MI and B1TME scenarios (Figure 3b,c) display a similar spatial pattern as in
Figure 3a. That is, the southern New Jersey is hotter and becoming colder toward the north of the
state. Despite the similarity in the spatial pattern, temperatures are hotter under the two projected
scenarios than those of the 30-year normal. The average mean annual temperatures for the entire
state of New Jersey using scenarios A1FI-MI and B1TME are 17.94 and 14.79 ◦C, respectively (Table 4).
Under A1FI-MI, the mean annual temperatures increase by more than 6 ◦C, while under B1TME it
increases by about 3 ◦C when using the 30-year normal as the baseline. The increase is about the same
whether we analyze the minimum or the maximum temperatures (Table 4). When we provided global
distribution of annual precipitation in the previous section, we found that there was no significant
differences between the two scenarios. We found the same results as we look at only the state of New
Jersey (Table 5).

Throughout the last century the annual temperatures increased by about 1.65 ◦C (3◦F) under a
high Greenhouse gases (GHG) emission scenario [64]. However, if we continue doing business as usual
(A1FI-MI scenario) our study projects that the annual temperatures increase will be 6.14 ◦C. Some
studies have projected that by the end of this century the annual precipitation will increase [8,64], our
model found that there will not be a significant difference compared to the 30-year (1981–2010) normal.
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from 30-year normals (1981 to 2010) (d) and projected annual average temperature change in degree 
Celsius (b, c) and annual precipitation change in mm (e, f) by 2100 based on scenario A1FI-MI and 
B1TME respectively. The temperature variation within the state (a, b, c) is represented by the red 
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distribution varies from red to green colors (d, e, f). More precipitation is represented by dark green 
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Figure 3. State of New Jersey: Downscaled mean annual temperatures (a) and annual precipitation
from 30-year normals (1981 to 2010) (d) and projected annual average temperature change in degree
Celsius (b,c) and annual precipitation change in mm (e,f) by 2100 based on scenario A1FI-MI and
B1TME respectively. The temperature variation within the state (a–c) is represented by the red color, the
darker the color the hotter the temperature and the lighter the color the cooler the temperature (Refer
to the legend to the right for related numerical detail). The precipitation distribution varies from red to
green colors (d–f). More precipitation is represented by dark green while less precipitation is in darker
red color (Refer to the legend to the right for numerical association and the amount of precipitation).
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Table 4. Summary statistics of temperatures from PRISM data and based on the two scenarios from
Figure 3 images.

Normal
Temperatures (◦C)

Average Annual
Temperatures (◦C)

Difference between Normal Temperatures
and Average Annual Temperatures under

the Two Scenarios (◦C)

A1FI-MI B1TME A1FI-MI B1TME

Minimum 8.12 14.60 11.27 6.48 3.15
Maximum 13.54 19.73 16.58 6.19 3.04

Mean 11.77 17.94 14.79 6.17 3.02
Stand.

Deviation 1.18 1.05 1.14

Table 5. Summary statistics of precipitation from PRISM data and based on the two scenarios from
Figure 3 images.

Normal Annual
Precipitation (mm)

Annual Precipitation
(mm)

Difference between Normal Annual
Precipitation and Annual Precipitation

(mm) under the two Scenarios

A1FI-MI B1TME A1FI-MI B1TME

Minimum 1004.07 999.21 999.08 −4.86 −4.99
Maximum 1349.94 1363.79 1350.11 13.85 0.17

Mean 1187.16 1187.48 1187.33 0.32 0.17
Stand.

Deviation 58.63 60.18 60.17

3.2.2. Monthly Analysis

We limited the monthly results to the comparison between data from PRISM and A1FI-MI. We
believe that results from these two types of data will highlight the impacts climate change will have on
our environment including farming. A1FI-MI is considered as an extreme case scenario and B1TME
as a median scenario and very close to the 1981–2010 normal based on the pattern of temperature
variation as displayed in Figure 4. By highlighting A1FI-MI scenario, we believe that these results
will serve not only as a wake-up call, but also will be useful to decision makers to take appropriate
measures to mitigate the impacts likely to prevail by the end of the century if we continue doing
business as usual (A1FI-MI scenario).

Our state monthly results show that there is no significant differences in the average precipitation
between the 30-year normal (1981–2010) and the projected average precipitation under A1FI-MI scenario
(Figure 4). There are, however, variabilities between months. Even though it rains every month in New
Jersey throughout the year, in both cases, February has the lowest and July the highest average amount
of precipitation. These findings are consistent with the amount of annual precipitation presented in
the above sub-section (Table 5) if all monthly precipitation measurements are added together.

As opposed to precipitation, the pattern of monthly average temperatures is variable (Figure 4).
The 30-year normal average monthly temperatures follow the seasonal pattern known in New Jersey [63].
Figure 4 shows that winter months are cold, and the coldest month is January with an average monthly
temperature of −0.32 ◦C. Summer is hot and the hottest month is July with an average monthly
temperature of 23.82 ◦C. Under A1FI-MI scenario the temperature is generally hotter than the 30-year
normal. The coldest temperature is February with an average of 0.45 ◦C and the hottest temperature of
19.24 ◦C in October. We believe these are inexplicable anomalies if we look at the overall pattern of
A1FI-MI scenario curve. Therefore, January will be considered the coldest and July the warmer under
this scenario. This increase in the coldest and hottest average monthly temperatures will have major
consequences on both natural and managed ecosystems including the timing of planting, sprouting,
and growing of crops [31].
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The spatial distribution of the average monthly temperatures is provided in Figure 5. We selected
only January (Figure 5a,b) and July (Figure 5c,d) for illustration. In both cases, the distribution follows
the pattern highlighted in Figure 3. That is, the southern part is warmer than the northern part of the
state. It also shows that the topography, proximity to water body and urbanization may play some
roles in the spatial distribution of these changes. For instance, the northwestern part is mountainous
while the southern part is in the lowlands. The northeastern and southwestern regions are densely
populated and more urbanized. Most of the southern and eastern are surrounded by ocean.Environments 2020, 7, x FOR PEER REVIEW  9 of 18 
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Figure 5. Change in average monthly temperatures: 30-year normal compared to projected A1FI-MI
scenario (January (a,b), and July (c,d)). The temperature difference between normal and A1FI-MI is
represented by the reddish and yellowish colors. The lighter yellowish color (a) is colder than the
reddish in January (b). July is represented by redder colors than January where the cooler temperatures
are represented by light red color under normal temperature conditions (c). Hotter temperatures are in
dark red under A1FI-MI scenario (d). (Refer to the legend to the right for related numerical detail).
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3.2.3. Impacts on Suitability to Crops

We used the 1981–2010 distribution map results as the baseline, as seen in Figure 6a,c,e,g,i. Table 6
provides the interpretation scheme presented on the legends of every map [65]. The baseline maps
show the potential extent to grow squash, sweet corn, and tomato varies from highly to very suitable
throughout the entire state (Figure 6e,g,i). For blueberry and cranberry (Figure 6a,b) it is highly and
very suitable in south and becomes medium and marginally suitable in the northern part of the state.
Compared to A1FI-MI scenario, results (Figure 6d,f,h,j) show that the suitability for cranberry, squash,
sweet corn, and tomato becomes very marginal throughout the state. For the blueberry (Figure 6b) the
suitability moves to very suitable in the south and very marginal in the north.

Table 6. Interpretation of the suitability results [66].

Suitability Range Suitability Category

0–0.2 Very marginal
0.2–0.4 Marginal
0.4–0.6 Medium suitable
0.6–0.8 Very suitable
0.8–1 Highly suitable
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Figure 6. Changes to spatial distribution of areas suitable for production of selected crops from 30-
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Geographic Information System digital data, the agricultural lands have not been verified by NJDEP 
and are not state-authorized or endorsed [61]. The ground resolution of the digital imagery from 

Figure 6. Changes to spatial distribution of areas suitable for production of selected crops from 30-year
normal climatic conditions (a,c,e,g,i) and under A1FI-MI scenario by the end of the century (b,d,f,h,j).
The suitability of the five crops varies from 0 to 1. It is represented by colors varying from dark green
color (highly suitable) and the black color representing the very marginal suitability. (Refer to the
legend to the right for related numerical detail).

The maps presented on Figure 6 display potential areas suitable for these crops. These areas
may include forested and grass lands, urbanized areas, the road network, water bodies where these
crops are not grown. The true extent of suitable crop lands is very restricted if we exclude these areas.
Figure 7 shows the actual agricultural lands and was obtained from 2015 Land Use/Land Cover using
Geographic Information Systems (GIS).
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4. Discussion

Although the map was developed using New Jersey Department of Environmental Protection
Geographic Information System digital data, the agricultural lands have not been verified by NJDEP
and are not state-authorized or endorsed [61]. The ground resolution of the digital imagery from which
the vector map was created is about 1 by 1 m and is characterized as fine resolution and the accuracy is
very high. It is remarkably clear that in this highly industrial and densely populated state, we are in
danger of losing what remains to future development. As such, Figure 7 is a warning to all of us—and
especially to the decision makers—that in order to sustain today’s environment we need to change our
behavior and take appropriate actions.

More importantly, these models do not take into account indirect effects of climate change on
crops. For example, a warmer climate will likely allow certain weeds [66], insect pests, and crop
diseases, to thrive in New Jersey. The New Jersey Agriculture Experiment Station warns that milder
and shorter winters may not kill off certain insect pests or crop diseases, increasing the chances for
greater issues [67]. For example, pest species, including the tomato pinworm, commonly found
in the southwestern states, was found in New Jersey starting in 2012. In addition, fires have been
increasing in severity globally by virtue of climate change. The Pine Barrens occupy of southern
New Jersey has evolved with low-intensity fires as part of the natural disturbance regime and it is
also the primary location of cranberry and blueberry farming in the state. Increasingly, however,
this fire-adapted ecosystem has accumulated more fuel, as trees have been lost to pests that thrive in
warmer temperatures, and therefore fires that do occur are in danger of becoming more intense and
damaging to the communities and farmland in the region [68].

New farming techniques have already started to be implemented in New Jersey to sustain the
impact of climate change. For instance, aeroponics is a technique that does not require soil and sun for
farming. AeroFarms’ system sprays plants with a nutrient-rich mist. Seeds are sown, germinated, and
grown on reusable sheets of fabric [69]. Hydroponic agriculture is another technique used in New
Jersey. The roots of the crops are “dangling down into water, and so they’re not only immersed in
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that water, and are able to take up that water when they need it, but the nutrients that those plants
need is also in the water itself” [70]. This technique makes it possible to grow crops all year around.
In addition to these alternative forms of agriculture, the farming industry is increasing relying on
genetically modified organism (GMO) for crops such as soy and corn [71,72]. The GMO technique
involves the transferring of one or more genes that tolerate herbicide or resist pests (such as from a
bacteria) into the plant. It is clear that with more people to feed, less land to farm, and a changing
climate, there will be an ever-increasing demand for innovative farming techniques such as these.

5. Conclusions

Our results are corroborated by other studies. For instance, we found that under A1FI-MI the
mean annual temperatures will increase by more than 6 ◦C, while under B1TME it will increase by
about 3 ◦C in New Jersey. Results from the Intergovernmental Panel on Climate Change (IPCC) found
an increase of global mean surface temperature by the end of the 21st century to vary between 2.6
and 4.8 ◦C under the RCP8.5 scenario [73]. Meehl et al. [21] also found that it will range from 2.4 to
6.4 ◦C under A1FI scenario. With reference to precipitation, our model found that there will not be a
significant difference compared to the 30-year (1981–2010) normal. The IPCC report found that some
areas in mid-latitude regions will experience a decrease while others an increase [73]. Meehl et al. [21]
projected an increase in precipitation extremes by 2100.

The United States Environmental Protection Agency (US EPA) reports that over the last century,
the mean annual precipitation in New Jersey has increased 5–10% and is projected to continue to rise.
The EPA projected that throughout the Northeast, precipitation from extremely heavy storms has
increased 70% over the past 60 years and will likely continue to increase during winter and spring,
but not change significantly during summer and fall. Simultaneously, however, rising temperatures
will melt snow earlier in spring causing river flooding, and dry the soil during summer and fall,
bringing drought during the growing season [74]. Our findings from this research bring these regional
predictions down to the state level and show that even though the mean annual precipitation will
remain relatively the same, it will become more extreme (Table 3). It is important to also note that
while steady annual precipitation is important for plants, the fact that our model predicts changes
distribution throughout the year is troublesome. The temperature increase will likely lead to more rain
and flooding in February and March (Figure 4) in New Jersey. Hotter temperatures are likely to lead to
more evaporation and drier soils.

We have demonstrated that climate change will affect the state of New Jersey. Using CCAM we
have shown how climate change will change the spatial extent of crops such as blueberry, cranberry,
squash, sweet corn and tomato. The impacts may not be limited to these crops. The negative effects on
crops has the potential to undermine the economy of the state and the wellbeing of its citizens. Our
study also demonstrates that downscaling is an appropriate method to project future climate and to
evaluate crop suitability resulting from climate change. This study will help decision makers and
spatial planers to come up with strategies to mitigate the impacts for a more sustainable future [75].
This study also may help promote climate-resilient staples and alternative crops [76].

Although the study focused on New Jersey, the effects of climate change on the environment
including agriculture do not have boundaries. Studies have found that climate change will have an
impact on agriculture and food security [9,77,78]. This emphasizes the need for global cooperation in
designing and adapting plans to cope with climate change. The Paris Agreement marks a step in the
right direction [51,79], presenting opportunities for the agricultural industry worldwide to mitigate
and adapt to climate change. Similarly, the Intergovernmental Panel on Climate Change’s report on
Food Security points out that climate change is already affecting food availability through increasing
temperatures, changing precipitation patterns and greater frequency of extreme events [73]. The IPCC
notes that there needs to be a global effort throughout the food system through policies, markets,
institutions and governance to mitigate and adapt to a rapidly changing climate on the global scale.
Through the research presented in this paper, we have demonstrated the need to recognize what
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climatic changes at the state level can have on specific crops. We have focused on five crops that play
important roles in the diet, economy and culture of New Jersey, recognizing that these crops are just
samples of the countless other species that are already being affected by climate change.
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