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Abstract: Sound environments in cars are becoming quieter and receiving attention because of
the prevalence of low-noise engines such as hybrid and electric engines and the manifestation of
automated driving. Although the car cabin has potential as a listening space, its acoustic quality
has not been examined in detail. The present study investigated sound field characteristics in the
car cabin using acoustic parameters obtained by impulse response analysis. In particular, effects
of the passenger position, open windows and the use of an air conditioner on acoustic parameters
were investigated. The passenger position affected the sound strength at low frequencies. Rear seats,
except for the rear central seat, had lower interaural correlation than the front seats, suggesting that
rear seats have more diffused sound fields. The opening of windows and use of air conditioners
attenuated the ratio of early- and late-arriving energy at high frequencies, suggesting a loss of clarity
for music.
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1. Introduction

Sound environments in cars are becoming quieter because of technological advances in active
noise control [1], acoustic insulation and absorption, as in the case of a rubberized road surface [2]
and the prevalence of low-noise engines such as hybrid and electric engines [3]. In the near future,
automated driving will change the roles of sounds in cars and sound will be able to be used to
improve the in-car sound environment. A car cabin therefore has appreciable potential to be a safer
environment through the reduction of background noise and the emphasis of informative signals and
to be a listening space.

Many sounds are heard in a car cabin such as sounds generated by interaction of the road
pavement and rolling tires, the engine, gears, brakes and wind. These sounds affect a passenger’s
safety and comfort. Many studies have therefore evaluated the sound quality in car cabins, considering
sounds of the engine [4,5], doors closing [6,7], power windows [8–10], switch buttons [11], hard disk
drives [12], heating, ventilation and air-conditioning [13–15], tires [16] and wind [17]. An objective
sound quality evaluation model for the cabin noise of cars idling or moving at constant speed
and cars accelerating and decelerating has been constructed on the basis of sound metrics used
in psychoacoustics and an artificial neural network technique [18–21]. Dimensions of vehicle sound
perception have been investigated by conducting an online survey [22]. The important dimensions
are timbre, loudness and roughness/sharpness. These three dimensions are consistent with the three
dimensions of more general human perception of sound [23]. The quality and design of sound in car
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cabins are thus receiving much attention. However, previous studies have not paid much attention to
the sound field characteristics of car cabins.

There has been much research on the reproduction of the sound field in car cabins. The majority
of studies acquired impulse responses in a car cabin using microphones, typically dummy-head
microphones. The obtained signals were then used to reproduce the binaural field over headphones
or loudspeakers [24,25]. An extension to the method has been proposed, allowing for natural head
movement during evaluation by dynamically updating the appropriate measurement angle [26].
The analysis and synthesis of microphone array measurements provide more accurate spatial sound
reproduction when compared with dummy-head measurements [27–29]. Using such sound field
reproduction methods with higher accuracy, the effects of physical characteristics of a sound field in
the car cabin on human perception have been investigated [29–32]. Perceptual attributes, such as the
bass, brightness and envelopment, have been proposed as important attributes for acoustic evaluation
in the car cabin. In addition, binaural measurements have been made to identify unwanted sounds
in the environment [33,34]. Such sounds should also be avoided inside a car while studying noise
attenuation from the outside to inside to ensure a better listening environment for music.

The relationships between human perception and physical acoustic characteristics in car
environments are not well understood. Although studies investigated the acoustic characteristics in
a car cabin [35,36], basic characteristics, such as the reverberation time (RT) and balance between early-
and late-arriving energy (Cx), have not been clarified. In addition, the effects of passenger position,
open windows and the operation of an air conditioner on the sound field have not yet been clarified.
Understanding acoustic characteristics in the car cabin could aid the development of the evaluation
and optimization of automotive audio.

The present study found factors that change the sound field characteristics in car cabins.
To understand the present situations of drivers and passengers, the effects of the passenger position,
absorption by passengers, open windows and use of an air conditioner were specifically investigated
as a first step although there are many other factors that may affect sound field characteristics, such as
the characteristics of loudspeakers, settings of car audio systems and interior materials. The present
study investigated sound fields for only two car cabins. The findings of the study are but a starting
point for the investigation of a wide variety of car cabins.

2. Methods

Two cars equipped with normally tuned audio systems were chosen for the measurement.
Car A was a sedan while car B was a small car. Six loudspeakers were installed in each car as shown in
Figure 1. Midrange loudspeakers were installed at the bottom of the left and right front and rear doors
in both cars. Tweeters were installed at the left and right A pillars in car A and at the dashboard in car
B. The frequency characteristics of the loudspeakers in car A and B are shown in Figure 2.

Impulse responses were measured three times for each setting in each car. A sinusoidal signal
with an exponentially varying frequency sweeping from 20 Hz to 20 kHz over a period of 20 s, recorded
on a compact disc, was sent through the installed loudspeakers and recorded by a laptop computer
at a sampling rate of 48 kHz and a sampling resolution of 24 bits via a head and torso simulator
(HATS, Type 4128C, Brüel & Kjær, Nærum, Denmark) and an AD/DA converter (Fireface UCX, RME,
Haimhausen, Germany). The recorded signals from the HATS were deconvolved to obtain the impulse
responses [37].
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Figure 1. Photographs of (a) car A, (b) car B and the position of the loudspeakers used in the
measurements in (c) car A, (d) car B. The position of the head and torso simulator (HATS) is shown at
the driver’s position.

Figure 2. Frequency characteristics of the midrange loudspeaker in cars (a) A, (b) B and the tweeters in
cars (c) A, (d) B.
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To clarify the effect of the position in the car, the HATS was located on the driver, passenger,
or rear seat in Experiment 1. The HATS always faced forward. The effects of an open window, air
conditioner and absorption by a person were investigated in Experiment 2. The HATS was fixed on
the driver seat. All windows were open and the air conditioner was turned off in the open-window
setting. The effect of the air conditioner was investigated by setting the air-conditioning mode to off,
weak and strong. To clarify the effects of the absorption by a human, passenger and rear seats were
occupied by a person for one experimental setting. When all seats were occupied, the air conditioner
was set off in car A and set to weak in car B. The background noise level was measured according
to the A-weighted equivalent continuous sound pressure level (LAeq) and is summarized in Table 1.
The car was in an idling state and stationary during the measurement.

Table 1. Background noise level, LAeq [dB], for each setting.

Setting Window Open, Air
Conditioner Off

Air Conditioner
Off

Air Conditioner
Weak

Air Conditioner
Strong

Car A 59.2 37.2 46.3 60.6
Car B 52.6 40.5 49.2 60.3

Orthogonal parameters obtained from the binaural impulse responses in a sound field have been
proposed to evaluate the subjective preference at each seat in a concert hall [38,39]. The four orthogonal
parameters are the sound pressure level (SPL), initial time delay gap between the direct sound and first
reflection (ITDG), reverberation time (RT) and magnitude of the interaural cross-correlation function
(IACC). Three subjectively different aspects of an objective parameter have been proposed to describe
the properties of a sound field [40]: loudness (sound strength (G), which corresponds to the SPL),
reverberance clarity (RT, early decay time (EDT) and balance between early- and late-arriving energy
(Cte)) and spaciousness (IACC). te denotes the time limit of either 50 or 80 ms while C80 denotes the
clarity for music. To evaluate sound fields in car environments, we calculated G, ITDG, RT, EDT, C80
and IACC from the impulse response according to the ISO 3382 standard [41] although we could not
comply with some rules such as those of the sound sources. G values were normalized by all-pass
values. RT was derived from the times at which the decay curve first reaches 5 and 25 dB below
the initial level and is denoted T20. G, RT, EDT, C80 and IACC values were obtained at one-octave
band enter frequencies between 125 Hz and 4 kHz. Sharpness was also calculated to evaluate the
high-frequency content of the impulse response [42]. The sharpness of the impulse response was
calculated via the addition of a weighting function to the specific loudness spectrum. The values
obtained for the binaural impulse response were calculated as arithmetic means for the two ears.
The analyses were conducted using a Matlab based analysis program (Mathworks, Natick, MA, USA).
The effect of the position in the car, an open window, air conditioner, the absorption by a human and
the type of a car on G, ITDG, RT, EDT, C80, IACC and Sharpness values were statistically analyzed
using a repeated-measures analysis of variance (ANOVA). The analyses were carried out using SPSS
statistical analysis software (SPSS version 24.0, IBM, New York, NY, United States).

3. Results

Figure 3a,b shows G values at each position in cars A (Figure 3a) and B (Figure 3b). Repeated-
measures-ANOVA indicated significant effects of the seat position and the type of a car on G values
(p < 0.01). The driver and passenger seats had smaller G values than other seats at 125 and 250 Hz in
car A. Figure 3c,d shows G values for open-window, air-conditioner and multiple passenger settings
in cars A (Figure 3c) and B (Figure 3d). The G values between 125 and 1000 Hz were lower than
those at 2000 and 4000 Hz. One-way ANOVA indicated significant effects of the frequency on G
values (p < 0.01). This attenuation at lower frequency has not been observed in concert halls, churches,
or temples [43–45] although the attenuation at lower limited frequency by seat dip effect was observed
in concert halls and theaters [46–48].
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Figure 3. Measured G [dB] at each passenger position in cars (a) A and (b) B and under open-window
(OW), air-conditioner (AC) and multiple passenger settings in cars (c) A and (d) B.

Tables 2 and 3 gives the ITDG values in each setting. Repeated-measures-ANOVA indicated the
ITDG values for car B were significantly longer than those for car A (p < 0.05). The positions in the
car, open windows, use of the air conditioner and the absorption by a human did not have significant
effects on ITDG values.

Table 2. Measured initial time delay gap (ITDG) [ms] for Experiment 1.

Seat Position Driver Passenger Back Center Left Right

Car A 5.3 5.7 6.0 6.6 5.3
Car B 7.8 6.5 8.4 7.8

Table 3. Measured initial time delay gap (ITDG) [ms] for Experiment 2.

Setting Window Open, Air
Conditioner Off

Air
Conditioner

Off

Air
Conditioner

Weak

Air
Conditioner

Strong

Four or Five
Passengers

Car A 5.4 5.3 5.3 5.6 5.0
Car B 6.3 7.8 7.4 8.6 6.4

Figure 4a,b shows RT values at each position in cars A (Figure 4a) and B (Figure 4b).
Repeated-measures-ANOVA indicated significant effects of the seat position and the type of a
car on RT values (p < 0.01). RT values were lowest for the driver seat at 125 and 250 Hz and
highest for the back-right seat at 125, 250 and 500 Hz in car B. Figure 4c,d shows RT values for
open-window, air-conditioner and multiple passenger settings in cars A (Figure 4c) and B (Figure 4d).
Repeated-measures-ANOVA indicated significant effects of the air conditioner on RT values (p < 0.01).
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RT values were longest for the strongest air-conditioning setting at 125 and 250 Hz in car A and at
125 Hz in car B.

Figure 4. Measured reverberation time (RT) [s] at each passenger position in cars (a) A and (b) B and
under open-window (OW), air-conditioner (AC) and multiple passenger settings in cars (c) A and (d) B.

Figure 5a,b shows EDT values at each position in cars A (Figure 5a) and B (Figure 5b). Repeated-
measures-ANOVA indicated significant effects of the seat position on EDT values (p < 0.01).
The passenger seat had the highest EDT values at 125 and 250 Hz and lowest between 500 and
4000 Hz in car A. The back seat had longer values between 125 and 1000 Hz in car B. Figure 5c,d shows
EDT values for open-window, air-conditioner and multiple passenger settings in cars A (Figure 5c)
and B (Figure 5d). Repeated-measures-ANOVA indicated only the effect of the type of a car on EDT
values was significant (p < 0.01).

Figure 6a,b shows C80 values at each position in cars A (Figure 6a) and B (Figure 6b).
Repeated-measures-ANOVA indicated significant effects of the seat position on C80 values (p < 0.01).
The passenger seat had the maximum values between 1000 and 4000 Hz and the back-left seat had
the minimum values at 2000 and 4000 Hz in car A. The driver seat had the maximum values between
500 and 4000 Hz and the back-right seat had the minimum values between 500 and 4000 Hz in car B.
Figure 6c,d shows C80 values under open-window, air-conditioner and multiple passenger settings
in cars A (Figure 6c) and B (Figure 6d). Repeated-measures-ANOVA indicated significant effects of
the open window, air conditioner and the absorption by a human on C80 values (p < 0.01). The strong
air-conditioner setting reduced C80 by more than 3 dB between 250 and 8000 Hz in car A and between
500 and 8000 Hz in car B. The weak air-conditioner setting reduced C80 by more than 3 dB between
1000 and 4000 Hz in cars A and B. The open-window setting reduced C80 between 1000 and 4000 Hz;
in particular, there was a reduction of more than 30 dB at 4000 Hz.
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Figure 5. Measured early decay time (EDT) [s] at each passenger position in cars (a) A and (b) B and
under open-window (OW), air-conditioner (AC) and multiple passenger settings in cars (c) A and (d) B.

Figure 6. Measured C80 [dB] at each passenger position in cars (a) A and (b) B and under open-window
(OW), air-conditioner (AC) and multiple passenger settings in cars (c) A and (d) B.
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Figure 7a,b shows IACC values at each position in cars A (Figure 7a) and B (Figure 7b). Repeated-
measures-ANOVA indicated significant effects of the seat position on IACC values (p < 0.01). The back
center seat had the highest IACC values between 250 and 1000 Hz in car A. The back-left and back-right
seats had lower values at 1000 and 2000 Hz than the driver and passenger seats in both cars. Figure 7c,d
shows IACC values under open-window, air-conditioner and multiple passenger settings in cars A
(Figure 7c) and B (Figure 7d). Repeated-measures-ANOVA indicated significant effects of the open
window on IACC values (p < 0.05). Under the open-window condition, IACC values increased at 500
and 1000 Hz and reduced at 2000 Hz in car A and increased at 4000 Hz and decreased at 1000 Hz
in car B. The air-conditioner settings and the absorption by a human had no significant effects on
IACC values.

Figure 7. Measured inter-aural cross correlation (IACC) at each passenger position in cars (a) A and (b)
B and under open-window (OW) and air-conditioner (AC) settings in cars (c) A and (d) B.

Tables 4 and 5 gives the sharpness values in each setting. Repeated-measures-ANOVA indicated
the sharpness values for the open-window condition were significantly longer than those for other
settings (p < 0.01).

Table 4. Measured sharpness [acum] for Experiment 1.

Seat Position Driver Passenger Back Center Left Right

Car A 2.2 2.2 1.2 2.6 2.2
Car B 2.2 2.5 2.1 2.2

Table 5. Measured sharpness [acum] for Experiment 2.

Setting Window Open, Air
Conditioner Off

Air Conditioner
Off

Air Conditioner
Weak

Air Conditioner
Strong

Four or Five
Passengers

Car A 3.5 2.2 2.2 1.9 2.2
Car B 3.5 2.2 2.2 2.0 2.2
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4. Discussion

Effects of the passenger position on G, EDT, C80 and IACC were observed yet the effects were not
always the same for cars A and B because of differences in, for example, the volume and upholstery.
G values between 125 and 1000 Hz were different between front and rear seats, although the tendency
was not same in cars A and B. EDT values were longer in the passenger and rear-left seats of car A
and rear seats of car B. C80 values decreased around 2 kHz in the rear seats of cars A and B. IACC
values were high below 1 kHz in the rear central seat of car A because of the strong direct and reflected
sounds received from the front direction. IACC values averaged in the range from 125 to 4000 Hz
octave bands in rear-left and rear-right seats were smaller than those in front seats, suggesting more
complex reflections and diffused sound fields in rear seats. No effects of passenger position on ITDG
were observed.

Opening windows attenuated G values at 125 and 250 Hz and C80 values above 1 kHz, suggesting
that lower-frequency components of the reflections emitted from windows and higher-frequency
components of the reflections were delayed. Opening the windows increased sharpness, confirming
the emission of lower-frequency components. IACC values at 500 Hz increased under the open-window
condition. A prominent increment was also observed when there were multiple passengers. Open
windows and absorption by passengers, in combination with small volumes and differences in
upholstery, affect the IACC behavior in a car cabin. No effects of opening windows on ITDG, RT and
EDT were observed.

A fluctuation in SPL due to the use of the air conditioner was observed in the frequency domain
above 2 kHz in a large space [49]. This is explained as the result of the combination of the direct wave
(regular) and the changing delay time of reflected sound (irregular). In this study, the use of an air
conditioner reduced C80 values from 1 kHz under the weak mode and from 500 Hz under the strong
mode, suggesting that noise generated by the air conditioner blurred high-frequency components.
RT values became slightly longer under the strong air-conditioning mode, although the increment
was less than a threshold [50]. No effects of using the air conditioner on G, ITDG, EDT and IACC
were observed.

5. Conclusions

Factors that affect sound field characteristics in a car cabin were investigated. An effect of the
passenger position on sound strength, G, was found between 125 and 500 Hz. The rear central seats had
the highest magnitude of the interaural cross-correlation function, IACC. Opening windows and using
an air conditioner attenuated the balance between early- and late-arriving energy, C80, above 1 kHz,
resulting in a loss of clarity of music.

In the field of architectural acoustics [38,39,51], theory proposes optimal ranges of acoustical
factors, such as the reverberation time, RT, early decay time, EDT and balance between early-
and late-arriving energy, C80 and is used in the actual design of concert halls, opera houses and
churches [44,52]. The theory can also be applied to sound fields in car cabins although the optimal
ranges of acoustical factors may be different. The present study is part our investigation of the optimal
ranges of acoustical factors in car cabins.

The optimal range of an acoustic factor is affected by the type of music [38,39,51] and the
characteristics of the music source [53,54]. Sound field characteristics in the car cabin can affect which
music is suited to the car cabin. It is possible to harmonize music to the car cabin using the acoustic
factors used in this study and factors calculated for the music source. These results will be helpful in
understanding sound fields, guiding improvements to the sound field and finding appropriate music
for car cabins. The presented study thus provides results that are needed to commence further studies.
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