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Abstract: Jordan is characterized as a “water scarce” country. Therefore, conserving 

ecosystem services such as water regulation and soil retention is challenging. In Jordan, 

rainwater harvesting has been adapted to meet those challenges. However, the spatial 

composition and configuration features of a target landscape are rarely considered when 

selecting a rainwater-harvesting site. This study aimed to introduce landscape spatial 

features into the schemes for selecting a proper water-harvesting site. Landscape metrics 

analysis was used to quantify 10 metrics for three potential landscapes (i.e., Watershed 104 

(WS 104), Watershed 59 (WS 59), and Watershed 108 (WS 108)) located in the Jordanian 

Badia region. Results of the metrics analysis showed that the three non–vegetative land cover 

types in the three landscapes were highly suitable for serving as rainwater harvesting sites. 

Furthermore, Analytic Hierarchy Process (AHP) was used to prioritize the fitness of the 

three target sites by comparing their landscape metrics. Results of AHP indicate that the 

non-vegetative land cover in the WS 104 landscape was the most suitable site for  

rainwater harvesting intervention, based on its dominance, connectivity, shape, and low degree  
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of fragmentation. Our study advances the water harvesting network design by considering 

its landscape spatial pattern. 
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1. Introduction 

Water scarcity is one of the biggest challenges that Jordan currently faces. The current per capita 

share of water is estimated at 140 m3 per year, which is well below the 1000 m3 threshold [1]. 

Increasing temperatures, coupled with changing precipitation patterns, are expected to increase water 

scarcity there [2]. By the year of 2025, although water resources are limited and the population in 

Jordan is expected to rise, the per-capita water supply is expected to fall to less than 91 m3 per year [2]. 

A large proportion of Jordanian agriculture is based on dry land farming systems, where production 

depends on low and extremely variable rainfall. Under these conditions, there is a great need to 

manage water in special ways [3]. Rainwater harvesting has emerged as a crucial means for water 

management and conservation in water scarce environments [4]. Rainwater harvesting is the process of 

concentrating precipitation through runoff; instead of leaving unharvested runoff, which causes 

erosion, it is harvested and utilized for beneficial uses [5]. The objectives of rainwater harvesting 

include improving water availability for plants, improving soil structure, decreasing soil erosion rates, 

reducing the impact of drought, reducing surface runoff, maintaining soil organic matter, and 

improving the capacity of the soil to hold water [6]. Therefore, rainwater harvesting is a directly 

productive form of soil and water conservation. Both yields and production reliability can be significantly 

improved with this method [4,5]. Consequently, human intervention through use of water harvesting 

can advance the ecosystem functions in water scarce areas [7]. 

Rainwater harvesting systems are typically classified into three categories that are based on the size 

of the runoff producing area: on-farm systems, in situ, micro-catchment systems, and macro-catchment 

systems [8]. In situ systems capture rainfall where it falls and ensures that crops make the most 

effective use of scarce water, for example through deep tillage, dry seeding, mixed cropping, ridges 

and borders, terraces, and trash lines [8]. Micro-catchment systems create a distinct division between a 

runoff generating catchment area and a cultivated basin where the runoff is concentrated, stored, and 

productively used by plants. The catchment area and cultivated basin are adjacent to one another [9], 

such as pitting, strip catchment tillage, contour bunds, and semi-circular bunds. Macro-catchment 

rainwater harvesting is characterized by large catchment areas, where the catchment area for this 

system is located outside the cropped area. These systems include intermediate components for collecting, 

transferring, and storing runoff. Macro-catchment systems are difficult to differentiate from conventional 

irrigation systems [9], but are considered rainwater harvesting systems as long as the harvested water 

is not available beyond the rainy season [8]. 

Many previous researchers have developed criteria and procedures for rainwater harvesting site 

selection; most of the criteria are based on soil, topographic suitability, land cover and land use, and 

surface runoff, and most procedures use hydrologic modeling, remote sensing, and/or a geographical 

information system (GIS) approach [1,3,4,6,10,11]. The implementation of rainwater harvesting will 
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lead to subsequent changes to the ecosystem functions at a landscape level [7]; however, little consideration 

has been given to landscape spatial features when selecting rainwater harvesting sites. Spatial composition 

and configuration of a landscape play a critical role in determining hydrological processes, energy 

flows, nutrient cycles, and natural habitats [12–14]. Many studies have explored the impact of  

water provision, regulation, and purification from landscape changes on ecosystem services [13,14].  

These studies have suggested that spatial configuration factors that should be considered include the 

extent, distribution, intensity, and frequency of human land use [13,14]. Therefore, further research is 

needed to develop methodologies that explicitly identify and prioritize regions that show potential for 

water harvesting [15]. Moreover, spatially explicit assessment of rainwater harvesting sites at a 

watershed scale can be used to develop landscape management strategies, not only for water regulation 

but also for the other ecosystem services such as soil retention and biodiversity conservation. 

2. State of the Art of the Methodologies Applied 

Landscape spatial structure has two components: composition (e.g., the number and amount of 

different land use types) and configuration (i.e., the spatial arrangement of those types) [16]. These days, 

many spatial landscape properties can be quantified through a set of metrics [17] that are aggregate 

measurements derived from digital analysis of thematic categorical maps that show spatial 

heterogeneity at a specified scale and resolution [18]. This methodology has been effectively used to 

capture landscape dynamics that describe ecological functions and services [19]. Software such as 

Fragstats and APACK is available to researchers worldwide to quantify the areal extent and spatial 

configuration of a landscape [20]. In this study, we quantified the landscape special structure and then 

used the Analytic Hierarchy Process (AHP) to prioritize the site suitability for water harvesting. 

AHP is a multi-criteria decision making approach in which factors are arranged in a hierarchic 

structure [21]. AHP is a theory of measurement that uses pairwise comparisons, and it relies on the 

judgments of experts to derive priority scales [22]. Judgments in AHP may be inconsistent, therefore, 

obtaining better consistency is a concern of the AHP that is addressed through measuring the inconsistency 

and improving the judgments [22]. AHP has become a mathematical science today [23] and one of the 

most widely used multi-criteria decision support system tools [24]. AHP has the flexibility to  

be integrated with different techniques so as to extract benefits from the combined methods [24].  

Many outstanding AHP-based approaches have been used in various fields, and it allows users to allocate 

and optimize resources to select the best alternative [24]. In environmental studies, AHP has served as a 

useful decision aid [25–27], in particular for identifying potential rainwater harvesting sites [11] and for 

handling certain watershed management and related issues such as reservoir system management, 

irrigation scheduling, and risk management [28]. 

The objective of this study is to introduce the landscape spatial composition and configuration 

features into the schemes for selecting appropriate rainwater harvesting sites, through use of a 

combined landscape metrics and AHP analysis. Three Jordanian landscapes (i.e., Watershed (WS) 104, 

WS 59, and WS 108) were studied; ten different landscape metrics were identified for each landscape. 

These metrics were then used as input data in an AHP model, in order to prioritize the suitability of 

each landscape for water harvesting. 
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3. Methodology 

3.1. Study Area 

The study area includes the three Jordanian landscapes WS 104, WS 59, and WS 108 as shown in 

Figure 1. A description of the studied landscapes is provided in Table 1. These landscapes are located 

in the Badia region of Jordan, which falls within an arid and semi-arid climatic zone. The Badia region 

covers approximately 72,600 km2 and constitutes 81% of the total area of the country [6]. The study 

area is characterized by low annual rainfall that varies from 250 mm in WS 108, 220 mm in WS 59, to 

150 mm in the eastern parts of WS 104, and an erratic distribution throughout the rainy season. These 

study areas were selected based on the following criteria: existence of a well-identified watershed, 

representative of the Badia area, presence of fulfilling facilities (i.e., size, boundary conditions, and data 

availability), and designation by Jordanian agricultural policy as potential rainwater harvesting locations. 

Table 1. The studied landscapes. 

Landscape Name Area Name Surface Area (m2) 

WS 104 Mohareb 9356 

WS 59 Mansheyat Bani Hasan 6060 

WS 108 Urainbeh Al-gharbieh 6149 

 

Figure 1. Landscapes location. 

3.2. Procedure for Using Combined Landscape Metrics and Analytic Hierarchy Process Analysis 

This study integrates landscape metrics analysis and AHP for selecting a proper rainwater 

harvesting site. The methodology is detailed below. 
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 Compile Land Cover/Use Data 

To incorporate considerations of landscape structure into the site selection process, the first step was 

to collect and compile land cover/use data. Land use maps for the three landscapes were prepared by 

the Jordanian National Center for Agricultural Research and Extension for the purposes of conducting 

a rapid environmental impact assessment (unpublished report). We used these maps in this study. 

These maps show that there are five different land cover types that exist in the WS 59 and WS 108 

landscapes (Figure 2), which are barley, non-vegetative land, mixed agricultural area, quarries, and urban. 

In contrast, WS 104 only has two dominant land cover types, barley and non-vegetative. The urban 

land cover type (LCT) includes residential, built-up, industrial, and commercial areas. The non-vegetative 

land is composed of bare rocks, bare soil, shrub, and herbaceous rangelands. Mixed agricultural areas 

include horticulture, field crops, and orchards. The barley LCT includes rain-fed areas planted with 

barley (Hordeum vulgare L.). Quarries are rocks and sand mining areas. 

 

Figure 2. Land use satellite imagery for WS 59, WS 104 and WS 108. 

 Determine Landscape Metrics for Analysis 

Landscapes metrics can quantitatively represent the spatial composition and configuration of a 

landscape. They are used to analyze the importance of both composition and configuration in rainwater 

harvesting site selection. Previous research studies indicate that different ecosystem functions would be 

maintained under conditions of less fragmentation, a large core area [14,29–31], high connectivity [32], and 

less complex patches [33]. Therefore, we decided that the metrics that represent dominance, connectivity, 

shape, and fragmentation should be included in the analysis. In this study, 10 metrics associated with the 

presence and abundance of LCTs were selected: Class Area (CA), Class Area Proportion (CAP), Mean 

Patch Size (MPS), Radius of Gyration (GYRATE), Proximity Index (PROX), Number of Patches (PN), 

Total Edge (TE), Edge Contrast (ECON), Shape Index (SHAPE), and Euclidean Nearest Neighbor 
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Distance (ENN) [16] (For a detailed definition of each metric, please see appendix Supplementary  

Table S1). The CA, CAP, MPS, and PN were selected to represent the landscape composition (i.e., 

measure landscape characteristics such as dominance and fragmentation) [12,34]. The ENN, SHAPE, 

ECON, GYRATE, TE, and PROX metrics were selected to represent the landscape configuration (i.e., 

measure landscape characteristics such as connectivity, shape, and fragmentation) [8,34–38]. 

 Analyze the Landscape Metrics and Find Inferior Solutions 

Landscape spatial features shape various ecosystem functions and interactions. We sought to find 

the spatial features that provide better rainwater harvesting network benefits such as improving the 

water availability for plants and decreasing soil erosion rates (i.e., ecosystem services). Two assumptions 

were built up that were based on the perspectives of conserving ecosystem services through landscape 

structure management. The first assumption is that the suitability of rainwater harvesting site increases 

as its dominancy and connectivity increases (i.e., CA, CAP, MPS, GYRATE, and PROX; Table 2). 

The second assumption is that the suitability of rainwater harvesting site decreases as its fragmentation 

and shape complexity increases (i.e., PN, TE, ECON, SHAPE, and ENN; Table 2). These assumptions 

were developed in focus group discussions; the focus group was composed of three rainwater harvesting 

specialists and two landscape metrics specialists. In this study, the 10 landscape metrics for each potential 

rainwater harvesting site were calculated using Fragstats software version 3.3 [18]. Calculation of 

these landscape metrics enabled us to compare each potential site along these 10 dimensions in order to 

choose three candidate sites that possess the most optimal combination of these desired characteristics 

(recognizing, of course, that there might be a tradeoff in the benefits provided between locations). 

 Use the Analytic Hierarchy Process Model to Prioritize the Candidate Sites 

To find the most suitable location within the candidate sites, an AHP model was built up using 

Supper Decision 2.2.6 software (www.superdecisions.com). We built an AHP model to rate each 

potential site according to the 10 landscape metrics, with the goal of identifying three candidate sites 

that best maximized these metrics. Therefore, our AHP model was set up with three major components: 

alternatives, criteria, and goals. The alternatives were the candidate rainwater harvesting sites (i.e., the 

three sites identified from landscape metrics analysis). The criteria were the landscape metric associated 

with each alternative. The goal was to prioritize the candidate sites’ suitability for rainwater harvesting 

as shown in Figure 3. 

 

Figure 3. The AHP model. 

Goal 
(prioritize the candidate sites suitability for rainwater harvesting)

Criteria
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Table 2. Rainwater harvesting benefits according to various landscape metrics values. 

Implement Rainwater Harvesting 

under Different Landscape Metrics 

Values 

Metrics 

Comparisons 

Benefits from rainwater harvesting 

Suitability of 

Rainwater 

Harvesting 

(S) 

Amount 

of Water 

Collected 

Decrease 

the Soil 

Erosion 

Rates 

Improve 

the Soil 

Water 

Holding 

Capacity 

Improve 

the Water 

Availability 

for Plants 

Improve 

the Soil 

Structure 

Reduce 

the 

Surface 

Runoff 

Maintain 

Soil 

Organic 

Matter 

Reducing 

the 

Impact of 

Drought 

A 

 

B 

 

MPS(B) > MPS(A) 

PN(A) > PN(B) 
B > A B > A B > A B > A B > A B > A B > A B > A S(B) > S(A) 

C 

 

D 

 

CA(C) > CA(D) 

CAP(C) > CAP(D) 
C > D C > D C > D C > D C > D C > D C > D C > D S(C) > S(D) 

E 

 

F 

 

PROX(E) > PROX(F) E > F E > F E > F E > F E > F E > F E > F E > F S(E) > S(F) 

G 

 

H 

 

ENN(H) > ENN(G) H > G H > G H > G H > G H > G H > G H > G H > G S(H) > S(G) 
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Table 2. Cont. 

Implement rainwater harvesting under 

different landscape metrics values 

Metrics 

comparisons 

Benefits from rainwater harvesting 

Suitability of 

rainwater 

harvesting (S) 

Amount 

of water 

collected 

Decrease 

the soil 

erosion 

rates 

Improve 

the soil 

water 

holding 

capacity 

Improve 

the water 

availability 

for plants 

Improve 

the soil 

structure 

Reduce 

the 

surface 

runoff 

maintain 

soil 

organic 

matter 

reducing 

the 

impact of 

drought 

I 

 

J 

 

GYRATE(I) > 

GYRATE(J) 
I > J I > J I > J I > J I > J I > J I > J I > J S(I) > S(J) 

K 

 

L 

 

SHAPE (K) > 

SHAPE(L)  

TE(K) > TE(L) 

L > K L > K L > K L > K L > K L > K L > K L > K S(L) > S(K) 

M 

 

N 

 

ECON(M) > ECON(N) M > N M > N M > N M > N M>N M>N M>N M>N S(N) > S(M) 

       Rainwater harvesting construction; 

       Patch from a LCT; 

       Direction of collecting the rainwater. 
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Relative importance/preference matrices were formed and used for computing the priorities of the 

corresponding alternatives. Each alternative is compared against each other alternative with respect to 

one particular decision criterion at a time. The total number of matrices was 10 (i.e., three square 

matrices of values (pairwise alternatives comparison] repeated 10 times (one pairwise comparison for 

each of the 10 criteria)). In these matrices, a scale from one to nine was used to express the strength of 

the preference or perceived importance of each criterion. The scale used for the purpose of this study is 

consistent with Satya’s [27,39] one to nine numerical recommendations, where a verbal judgment 

preference of “equally preferred” is given a numerical rating of one and a verbal judgment preference 

of “extremely preferred” is given a numerical rating of nine. The importance/preference matrices were 

weighted by the same focus group mentioned above (i.e., the experts who compared the rainwater 

harvesting benefits and different landscape metrics values). Since the importance/preferences of the 

matrices were weighted through a judgment process, we expected to see some inconsistency. Therefore, 

AHP was selected due to a small inconsistency in the decision-making process [24], and the AHP can 

create a better consistency through measuring the inconsistencies and improving the judgments [22]. 

AHP ratio scales are derived from principal Eigen vectors, and the consistency ratio is derived from 

the principal Eigen value; if the value of the consistency ratio is smaller than or equal to 10%, then the 

inconsistency is acceptable [24,40]. Results of the AHP model synthesized the priorities for the 

alternatives (i.e., candidate rainwater harvesting sites) and were reported as a “Normal” column (i.e., 

the results presented in the form of priorities), an “Ideals” column (i.e., dividing the entries in the 

“Normal” column by the largest value in that column), and a “Raw” column (i.e., obtained directly 

from the limit super matrix) [41]. 

4. Results 

The results of landscape metrics analysis gained from the Fragstats software were as follows: 

4.1. Landscape Spatial Patterns 

The number of LCTs in a given landscape is usually measured by patch richness metrics [12].  

The total number of patches, patch richness, and mean patch size were analyzed at the landscape level 

(Table 3). Results of these analyses clearly show that WS 59 is more fragmented than WS 108, while 

WS 104 is considered a non-fragmented landscape because WS 104 has a small patch number and 

large mean patch size, whereas WS 59 and WS 108 have a high number of patches and consequently,  

a small mean patch size. 

Table 3. Landscape level analysis. 

The studied 

landscapes 
Patch Richness PN MPS (m2) 

WS 59 5 124 75 

WS 104 2 6 1013 

WS 108 5 40 154 
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4.2. Spatial Features of Land Cover Types 

Results of the special feature of the LCTs were organized according to characteristics of dominancy, 

connectivity, shape, and fragmentation as follows: 

4.2.1. Dominancy and Fragmentation 

Both class area and class area proportions were used as measures of landscape composition [12].  

In particular, class area and class area proportion are indicators of the dominant land use/cover type in 

a given landscape (Table 4). Results show that the non-vegetative LCT in WS 59 and WS 104 

occupies an area of 4665 m2 and 4908 m2 (CAPnon of 50% and 81%, respectively). These results 

indicate that the non-vegetative LCT dominates both landscapes and might be identified as the 

landscape matrix (i.e., background ecological system). Whereas in WS 108, barley is the dominant/matrix 

LCT since it occupies an area of 2893 m2 with a CAPbarley of 47%. 

The size, number, and shape of patches are all metrics that have been widely used to assess patch 

fragmentation at both small and large scales [34].The number of patches and mean patch size for each 

LCT were analyzed (Table 5). WS 59 has two major patches, non-vegetative (number of patches = 39) 

and barley (number of patches = 41). Of all the patches within WS 59, the non-vegetative patches in 

WS 59 have the largest mean patch size (mean patch size = 110 m2). WS 104 has five barley patches 

and one non-vegetative patch (mean patch size = 4908 m2); the non-vegetative patch is approximately 

21 times larger than the mean size of the barley patches. WS 108 has two major patches, urban 

(number of patches = 11, mean patch size = 27 m2) and non-vegetative (number of patches = 15, mean 

patch size = 157 m2). The urban LCT in WS 108 appears to be highly scattered with small size patches, 

whereas the barley LCT is located in five main patches (mean patch size = 579 m2). 

Table 4. Class Area and Class Area Proportion of all land cover type (LCT). 

LCTs  
CA(m2) CAP (%) 

WS 59  WS 104 WS 108 WS 59 WS 104 WS 108 

Barley 2361 1171 2893 25 19 47 

Urban 1350 - 297 14 - 5 

Non-vegetative 4665 4908 2349 50 81 38 

Quarries 75 - 11 0.8 - 0.2 

Mixed Agriculture 904 - 597 10 - 10 

Table 5. Number of patches and mean patch size for each LCT. 

LCTs  
Number of Patches Mean Patch Size (m2) 

WS 59 WS 104 WS 108 WS 59 WS 104 WS 108 

Barley 41 5 5 58 234 579 

Urban 18 - 11 75 - 27 

Non-vegetative 39 1 15 110 4908 157 

Quarries 4 - 1 19 - 11 

Mixed Agriculture 22 - 8 41 - 75 
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In addition, the degree of fragmentation of each LCT in each landscape is estimated by the total 

edge matrices. The results for the total length of the edges of each LCT show that the non-vegetative 

LCT in WS 59 has the longest total edge reach (approximately 471 km; Figure 4). Moreover, the  

non-vegetative LCT was fragmented in WS 59 and WS 108 but was not fragmented in WS 104. Even 

though the class area and class area proportion for non-vegetative LCT are larger in WS 104 than in 

WS 59, the total edge of non-vegetative LCT in WS 59 is still longer than it is in WS 104.  

This difference can be attributed to the fact that the total number of non-vegetative patches in WS 59 is 39, 

whereas there is only one patch in WS 104. 

The proximity index is another measure of landscape fragmentation that relates to the distribution of 

distances between patches and patch sizes in a defined neighborhood [8]. Area-weighted mean proximity 

(PROX_AM) was calculated for all LCTs (Figure 4). Results show that the non-vegetative LCT has a 

higher proximity index in WS 108 and WS 59, as compared to WS 104 (PROX_AMnon = 922 and 

PROX_AMnon = 813 in WS 108 and WS 59, respectively). These results align with the other metrics, 

as WS 108 and WS 59 contain 15 and 39 non-vegetated patches, and their mean patch size is 157 m2 

and 110 m2, respectively. In contrast, PROX_AMnon = 0 in the WS 104 because there is only one  

non-vegetative patch there. 

4.2.2. Connectivity and Shape 

The shape index is a measure of aggregation or clumpiness, so that if a patch comprises one single 

compact area, then the shape index will be small (i.e., approaching 1.0), and if the landscape contains 

dispersed patches with complex and convoluted shapes, then the shape index will be large [35].  

Figure 4 illustrates the results of the area-weighted mean shape (SHAPE–AM) index. As the SHAPE–AM 

index increases, the complexity of the patch increases. The complexities of the barley and non-vegetative 

patches in WS 104 are the highest among all of the LCTs, whereas the complexity drops dramatically 

in the quarries, mixed agriculture, and urban LCTs, where the patches have small class area proportions as 

compared to the barley and non-vegetative LCTs and they are human-made and thus likely to be near 

compact patches. Moreover, in spite of the fact that the CAP for mixed agriculture is nearly the same 

in WS 59 and WS 108, the SHAPE-AM for mixed agriculture is nearly twice as high in WS 59 as 

compared to WS 108, and this difference is because WS 59 has both a high CA and NP (CAmix = 904 m2, 

NPmix = 22) as compared to WS 108 (CAmix = 597 m2, NPmix = 8). 

GYRATE is a measure of patch extent and connectivity, thus it is affected by both patch size and 

patch compactness [36]. Figure 4 illustrates the results of the area-weighted mean radius of gyration 

(GYRATE_AM). Results show that the non-vegetative patch in WS 104 is the most elongated patch 

within the three landscapes. The barley patches in the three landscapes are elongated as well (i.e., 

GYRATE_AMbarley is 1470 m, 1956 m, and 2238 m in WS 59, WS 104, and WS 108, respectively). 

The quarries and urban patches in WS 108 are the least elongated patches (GYRATE_AM of 128 m 

and 408 m, respectively). 
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Figure 4. Landscape metrics analysis results.
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The distribution of small, isolated patches from the complex cluster configuration of larger patches 

is measured by the Euclidean nearest neighbor distance metric [37]. The area-weighted mean of the 

Euclidean nearest neighbor distance (ENN_AM) indicates that the quarry patches in WS 59 have a 

high ENN_AM and are thus located far apart from one another (ENN_AM = 3745 m). Conversely, all 

other LCT patches are relatively close to one another and have a low ENN_AM (Figure 4). This is a 

reasonable result as the three landscapes all have relatively small total areas. 

Edge contrast (ECON) metrics represent the magnitude of difference between classes in one or more 

attributes [38]. The results of area-weighted edge contrast (ECON_AM) show a general trend that the most 

extensive patches (i.e., barley and non-vegetative) have the lowest edge contrast (Figure 4). Moreover, the 

least extensive patches (i.e., quarries and urban) have the highest contrast, except for the quarries in 

WS 59; these quarries are both extensive and have high edge contrast (GYRATE_AMquar = 1112 m, 

ECONquar = 75). 

4.3. Determination of Candidate Rainwater Harvesting Sites 

All characteristics of candidate rainwater harvesting sites were summarized in Table 6. The candidate 

sites were determined using the value of the landscape metrics; as the location dominancy and connectivity 

of a candidate site increases (i.e., CA, CAP, MPS, GYRATE, and PROX), its suitability for use as 

rainwater harvesting site increases. In contrast, as the fragmentation and shape complexity increases 

(i.e., PN, TE, ECON, SHAPE, and ENN), the location suitability decreases. Quarries and urban LCTs 

were excluded from this comparison since they were not suitable to implement in situ, micro and 

macro rainwater harvesting. The results clearly show that the non-vegetative LCT in WS 59, WS 104, 

and WS 108 were the most promising candidate rainwater harvesting sites (Table 6). The barley LCT 

was the second most promising candidate rainwater harvesting site in WS 108. 

Table 6. Features of candidate rainwater harvesting sites. 

Landscape 

Metrics 

WS 59 WS 104 WS 108 

Non-Vegetative Barley 
Mixed 

Agriculture 
Non-Vegetative Barley Non-Vegetative Barley 

Mixed 

Agriculture 

PN    * *  *  

MPS *   *  * *  

CA *   *  * *  

CAP *   *  * *  

TE   * *    * 

SHAPE * *    *   

GYRATE  *  *   *  

ENN *    * *   

PROX *     * *  

ECON *   * * *   

Total 

number of * 
7 2 1 7 3 7 6 1 

* The LCT with the highest dominance and connectivity (i.e., CA, CAP, MPS, GYRATE, and PROX) value 

or with the lowest fragmentation and shape complexity (i.e., PN, TE, ECON, SHAPE, and ENN) value. 
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4.4. Analytic Hierarchy Process Results 

The AHP results prioritize the fitness of the three candidate sites for harvesting rainwater. They show 

that the non-vegetative LCT in WS 104, WS 59, and WS 108 have a rainwater harvesting priority of 

1.0, 0.61, and 0.49, respectively (Table 7). This means that the non-vegetative LCT in WS 104 would 

be the best location to implement a rainwater harvesting intervention, and that the non-vegetative LCT 

in WS 59 is only 61% as good for harvesting rainwater as the non-vegetative LCT in WS 104. 

Likewise, the non-vegetative LCT in WS 108 is only 50% as good for harvesting rainwater as the  

non-vegetative LCT in WS 104. Furthermore, the model consistency ratio was 9% (i.e., within the 

acceptable consistency range of less than 10%). 

Table 7. The overall synthesized priorities for the candidate rainwater harvesting sites. 

Alternatives Ideals Normals Raw 

Non-vegetative LCT in WS 59 0.609923 0.289810 0.144905 

Non-vegetative LCT in WS 104 1.000000 0.475159 0.237579 

Non-vegetative LCT in WS 108 0.494637 0.235031 0.117516 

5. Discussion 

Rainwater harvesting is a useful measure of landscape management for conserving ecosystem 

functions in water scarce areas [7] (Figure 5). Therefore, the spatial pattern of rainwater harvesting 

sites should be considered in landscape planning. Previous rainwater harvesting site selection methods 

are dependent on many site-specific criteria, such as careful assessment of geographic locations, or the 

evaluation of surface and groundwater hydrology [1,3,4,6,7,10,11,15], without consideration of the 

spatial pattern of the selected sites. In this study, we focused on the use of landscape patterns in selecting 

appropriate rainwater harvesting sites. Our case study showed that our method can identify a rainwater 

network with good landscape structure under conditions of degraded landscape, lower vegetation, soil 

erosion, and with an annual rainfall of 100–250 mm [6]. Therefore, the proposed method is compatible 

with the general criteria of establishing a rainfall water harvesting network [6]. 

  

Figure 5. Before/after rainwater harvesting in a non-vegetative LCT. (A) Establishing 

rainwater harvesting in a barren non-vegetative LCT; (B) The growth of vegetation cover 

after implementing rainwater harvesting in a non-vegetative LCT. Source: The Jordanian 

National Centre for Agricultural Research and Extension. 
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Spatial features such as dominance, fragmentation, shape, and connectivity are important variables 

to consider when designing a rainfall water harvesting network, due to the need to maintain ecosystem 

functions in a large, aggregate area. In this study, the non-vegetative and barley LCTs dominate the 

three landscapes. The non-vegetative LCT is a nearly barren area without vegetation or any other land use. 

The amount and distribution of rainfall are the main controllers of barley productivity [42] and the main 

reasons behind the presence and size of barren non-vegetative LCTs. Many authors have demonstrated that 

both runoff and sediment loss decrease exponentially as the percentage of vegetation cover increases, 

and this is true in a wide range of environments [42]. Therefore, our class area and class area 

proportion metrics (i.e., dominancy feature) indicate that a large area of non-vegetative LCT might 

enhance the potential for runoff, erosion, and sediment loss in these landscapes. The barley LCT might 

have the same problems since barley is a rain-fed crop. However, both non-vegetative and barley LCTs 

offer a large catchment area. Our findings align with Hernandez’s [43] findings that the highest 

contributors to sediment yield are areas with agricultural and desert scrub (i.e., vegetative communities 

that are characterized by significant areas of barren ground devoid of perennial vegetation) [43]. 

Selecting the dominant non-vegetative LCT in WS 104 as a site for rainwater harvesting will conserve 

the ecosystem services in several ways: (1) rainwater harvesting will reduce the potential for runoff, 

erosion, and sediment loss in the non-vegetative LCT; (2) the large patch offers a large catchment area that 

can significantly increase plant production by concentrating rainfall/runoff in parts of the total area [44];  

(3) the installation, management, and maintenance of a rainwater harvesting system will be easier to 

oversee if the system is located in one large patch; and (4) it will be easier to protect the rainwater 

harvesting system from overgrazing. Therefore, our assumption regarding the preference of patch 

dominancy in selecting rainwater harvesting site is true as long as the sites have nearly the same vegetation 

cover percentage. 

Fragmentation is a landscape-level process in which a specific ecosystem is progressively subdivided 

into smaller and more isolated patches [18,44]. In this study, analyses revealed that the fragmentation 

process was present in WS 59 and WS 108, whereas WS 104 consisted of non-fragmented landscapes. 

In addition, the fragmentation of each LCT in each landscape indicated that the non-vegetative LCT 

was fragmented in WS 59 and WS 108 but not in WS 104. Fragmentation of the natural ecosystem 

leads to large changes in water and nutrient cycles, radiation balance, and wind regimes [29], and can also 

be attributed to the complex interaction between policy, biophysical characteristics, and socioeconomic 

development pressures [30]. Fragmentation of patches can result in more conflicting edges, which 

creates greater opportunities for externalities that produce positive or negative effects on neighbors [31]. 

Avoiding fragmentation and its negative impact on an ecosystem would be in accordance with our 

assumption that fragmented areas are not suitable locations to implement rainwater harvesting techniques. 

Patch shape influences the magnitude and nature of edge effects; as shape complexity increases, the 

proportional abundance of edge-influenced habitat increases as well. More complex or convoluted 

LCT shapes lead to more positive or negative interactions between each patch and its surroundings. 

Patch shape also influences a variety of cross-boundary ecological processes (i.e., the movement of 

energy, materials, and organisms across patch boundaries) [33]. In this study, the complexity of the 

barley and non-vegetative patches in WS 104 was the highest among all other LCTs, and this 

complexity, in conjunction with the available climatic conditions, might facilitate LCTs to shift 

between barley and non-vegetative. On the other hand, landscape connectivity also represents the degree of 
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physical linkage of native vegetation cover within a landscape [45]. For the most part, non-vegetative LCT 

is the dominate structural connectivity in the three landscapes, and it is also the spatial shape feature 

that will facilitate shifts in land use such that the sprawl of non-vegetative LCT will threaten other 

LCTs (particularly barley) and convert them to barren land. Moreover, this dominant structural 

connectivity may not be efficient for water retention or soil conservation at the regional level. 

Therefore, it is important to prevent such LCT conversion by adopting rainwater harvesting as a 

sustainable landscape management tool. Selecting patches with the highest connectivity and lowest 

complexity to serve as rainwater harvesting sites may advance the protection, retention, and 

rehabilitation of natural connections among habitats within ecosystems at the landscape level [32]. 

Figure 5 shows the effect of implementing rainwater harvesting systems in non-vegetative LCT in two 

different landscapes. 

Due to the long edge, high shape index, low edge contrast, and high GYRATE of the barley LCT,  

it is expected that current trends will result in an increase in the rate of evapotranspiration along barley 

edges, exposure to sunlight, wind effect, and livestock overgrazing. Furthermore, subpopulation isolation 

of plants and animals will lead to decreased gene exchange [12]. All of these conditions, in addition to 

climate change, will threaten the barley LCTs. Establishing rainwater harvesting systems in the  

non-vegetative LCT, followed by good plant management, will offer additional landscapes for animals 

to forage in and thus indirectly protect the barley LCT; this strategy might be considered a climate 

change mitigation scenario in water scarce areas. However, the decreases in edge length, shape index, 

GYRATE, and high edge contrast of mixed agricultural LCTs will lead to decreases in the bird, insect, 

and wild plant species population inside of these patches, due to increased predatory pressures [12]. 

Mixed agricultural patches will intercept surface runoff and increase human movement along the landscape. 

Implementing rainwater harvesting systems in the non-vegetative LCTs will reduce surface runoff, 

decrease predatory pressures, and decrease human movement inside the mixed agriculture patches. 

The AHP model results indicate that the non-vegetative LCT in WS 104 would be the best site to 

implement a rainwater harvesting intervention. The non-vegetative LCT in WS 59 is 61% as good as 

the non-vegetative LCT in WS 104, and the non-vegetative LCT in WS 108 is 50% as good as the  

non-vegetative LCT in WS 104. These location suitability rankings are reasonable since the CA, CAP, 

MPS, and GYRATE for the non-vegetative LCT in WS 104 are higher than the corresponding results 

in WS 59 and WS 108, whereas the PN, TE, ECON, and ENN for the non-vegetative LCT in WS 104 

are lower than they are in WS 59 and WS 108. 

Finally, our results suggest that landscape metrics analysis in combination with AHP is a useful tool for 

spatially assessing the suitability of rainwater harvesting sites. The ecosystem benefits of rainwater 

harvesting can be maximized by locating this technique within a large, non-fragmented, non-isolated,  

non-complex, and connective patch. Our tool might be integrated with previous rainwater harvesting site 

selection methods to build a new comprehensive method that considers all of the landscape criteria together. 

6. Conclusions 

This study provides a novel approach to the process of rainwater harvesting site selection. It extends 

prior rainwater harvesting site selection methods by quantifying the spatial composition and 

configuration of a target landscape. Our spatial analyses indicate that the non-vegetative LCT in WS 
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104 provides the most suitable spatial pattern to implement rainwater harvesting. The dominancy, 

connectivity, and decreased fragmentation features of the non–vegetative LCT are features that would 

increase the efficacy of rainwater harvesting systems. The ecosystem benefits of rainwater harvesting 

can be maximized by locating this technique within a large, non-fragmented, non-isolated, non-complex, 

and connective patch. Landscape metrics in combination with AHP can be a useful tool for assessing 

the suitability of a rainwater harvesting site to account for subsequent changes in landscape composition, 

configuration, and land use patterns. Our findings could be expanded into new viewpoints that 

simultaneously advance landscape ecosystem services and water management systems in the future. 
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