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Abstract: Over-fertilization and agrochemicals adversely affect soil quality and agricultural ecosys-
tem sustainability. Tomato (Solanum lycopersicum) is ranked as an important crop due to its high
profitability and nutritional value. In Argentina, tomato is mainly produced in horticultural belts
at peri-urban areas, whose soils frequently are contaminated by heavy metals and/or agrochemi-
cals. To explore safer alternatives, we investigated the effects of seed inoculation with a common
plant-growth-promoting rhizobacteria (PGPR), i.e., Bacillus subtilis subsp. spizizenii, on development
at various growth stages of two tomato varieties, “Platense” and “Río Grande”, and on production
and fruit quality at harvest time of the “Río Grande” variety. The experimental design consisted
of three treatments per variety: a control versus traditional planktonic or biofilm inoculation, with
three replicates per treatment. Germination at 10 days and seedling agronomical parameters showed
that the response to seed inoculation was superior in the “Río Grande” variety. At harvest time,
and irrespective of the inoculant, several agronomical parameters of the “Río Grande” variety were
significantly enhanced with respect to the control. The biofilm significantly increased tomato pro-
duction, as quantified by fruit number and weight, compared to the planktonic inoculum. This case
study demonstrates that the incorporation of bio-inoculants is relevant in sustainable agriculture to
promote crop growth and quality.

Keywords: seed inoculation; bio-fertilizer; planktonic inoculum; biofilm; tomato; sustainable environment

1. Introduction

Climate-change-induced abiotic (heavy metals, drought, salinity, organic matter de-
cline, etc.) and biotic (crop pathogens, weeds, etc.,) stresses have been demonstrated
to give rise to adverse effects on agricultural productivity [1,2]. In addition, the use of
agrochemicals has led to threats to food security and soil quality [2,3]. On the other hand,
there is a need to increase crop production worldwide to meet future food demands for
a growing population [4–6]. Therefore, to cope with global climatic change coupled with
a growing world population and increasing consumer demands for agrochemical-free
food, agricultural practices should link two vitally important functions: productivity and
sustainability. Subsequently, it is essential that environmentally friendly technologies are
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developed to meet food demands and to improve the physicochemical and nutritional soil
conditions, avoiding the risks associated with excessive agrochemical application [7].

The use of microorganisms as bio-inoculants is becoming increasingly important because
they are capable of promoting plant growth, increasing soil quality and suppressing different
soil-borne diseases [8–10]. In particular, PGPR bacteria (plant-growth-promoting rhizobac-
teria) have emerged as bio-fertilizers, phytostimulants and biocontrollers [11,12]. These can
work as biological fertilizers to promote nutrient acquisition by several mechanisms, for
example, biological nitrogen fixation, phosphate solubilization, potassium adsorption, iron
sequestration, etc., [13–16]; also, they can protect plants from pathogenic microorganisms by
releasing antibiotics, lytic enzymes and other metabolites [17–20] or by inducing resistance
under stresses [2]. Therefore, the incorporation of beneficial PGPR, inoculated as bio-fertilizers,
is becoming increasingly relevant in sustainable agriculture and is now viewed as a tool that
may contribute to food safety and environmental health [7,21]. Among PGPRs, an important
genus is Bacillus [14], which has been shown to be able to grow in various environments and
to produce beneficial substances for plants. Several species of Bacillus, in particular, B. subtilis
subsp. spizizenii, have been found to act as bio-fertilizers, phytostimulants and biological
control agents [20,22,23].

Biofilms consist of three-dimensional structures that protect cells from adverse en-
vironmental conditions. The biofilm structure embodies a matrix of exopolysaccharides,
with smaller amounts of proteins, DNA and various lysis products. Within the biofilm,
different cell types coexist, including vegetative cells and bacterial spores, the latter being
considered as resistant forms. Due to its spatial structure, biofilms facilitate the dispersal of
spores in the environment [24–26]. A major trait of Bacillus lies in its potential to develop a
biofilm at the air–liquid interface. Moreover, B. subtilis subsp. spizizenii can either develop
a biofilm attached to a substrate or a surface or live as a free planktonic form depending on
the cultivation environment [27,28]. Subsequently, this PGPR can be inoculated both as a
biofilm or as a liquid in the conventional planktonic mode.

Tomato (Solanum lycopersicum L.) is ranked as the highest-yielding vegetable in the
world, with 189 × 106 tons of fresh fruits produced in 2021 [29], covering a harvested area of
over 5 × 106 ha. Fresh tomato fruits are generally eaten and prepared like a vegetable, while
several processed products such as sauces, purees and juices are also ready to consume. In
addition to its high profitability, this crop also is important because of its nutritional value
and benefits for human health [30]. This is owing to the fact that tomatoes are rich in the
major dietary source of the antioxidant lycopene, a carotenoid pigment; also, they are a
great source of vitamin C, potassium, folate and vitamin K [31,32].

Peri-urban areas surrounding large metropolitan settlements may behave as green
belts; intensive vegetable cultivation in this environment has the competitive advantage
of being close to the consumer market [33]. Peri-urban soils, however, are not always the
optimal suitable crop substrate because often they have a poor structure and heterogeneous
surface horizons resulting from mixing the top and deep layers during tillage; frequently,
these soils also present high concentrations of organic pollutants and/or heavy metals.
This is the case in the Buenos Aires urban fringe as well [34]. Within the Argentinean
horticultural sector, tomato is one of the most important vegetable crops, with a per capita
consumption of around 16 kg/person/year. Its production reached 7.67 × 105 tons in 2020,
and the estimated harvest surface was at about 1.18 × 104 ha [35]. When cultivated in
peri-urban areas, this crop is subjected to several soil-borne diseases. Open-field cultivation
of horticultural crops, including tomato and most significant grain crops in Argentina,
makes use of commercial bio-inoculant formulations, which are commonly employed as an
agro-ecological practice.

The inoculation or imbibition of tomato seeds and/or seedlings with Bacillus sp.,
and other similar PGPR have been previously studied [36–39]. However, while the use
of bio-inoculants as a sustainable choice to avoid or shorten agrochemical demand has
been extensively documented, fewer works have evaluated its effects on crop productivity.
Moreover, until now, the majority of experiments were conducted using the traditional
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planktonic form. To reduce these gaps, seed inoculation treatments with Bacillus sp., both
in the planktonic form and as a biofilm, were investigated. We hypothesized that tomatoes
treated with biofilm will have a higher yield and quality compared to those subjected to a
planktonic treatment. Therefore, the current study aimed to (i) characterize inoculants from
B. subtilis subsp. spizizenii prepared both as a biofilm and as a liquid in the conventional
planktonic form and (ii) to evaluate and compare the effects of these two inoculant forms
on growth, production and quality of two different varieties of tomato.

2. Materials and Methods
2.1. Biofilm and Planktonic State Characterization and Inoculant Preparation

The bacterium B. subtilis subsp. spizizenii used in the current investigation was de-
posited in the AGRAL collection located at the Faculty of Agronomy, Buenos Aires Univer-
sity (FAUBA). The bacterium culture corresponded to an American Type Culture Collection
(ATCC) strain, accession number 6633. This subspecies was selected based on its beneficial
effects on soil microbial activity and vegetable growth [20]. The bacterium from the stock
culture was activated in nutritive agar media at 30 ◦C for 24 h.

2.1.1. Vegetative Cells and Spores in Biofilm and Planktonic State

The culture medium of the B. subtilis subsp. spizizenii was a liquid minimal salt
medium (MSM) with 1% glycerol and 35 mM L-glutamic acid. The MSM contained 1 g/L
K2HPO4; 0.3 g/L KH2PO4; 0.5 g/L NH4Cl; 0.1 g/L NH4NO3; 0.1 g/L Na2SO4; 0.01 g/L
MgSO4 7H2O; 1 mg/L MnSO4 4H2O; 1 mg/L FeSO47H2O; 0.5 g/L CaCl2 and 0.01 g/L
EDTA in deionized water at pH = 7 [40].

Bacteria populations in a planktonic state were produced from a culture grown at
30 ◦C with agitation at 150 rpm for 96 h in a rotatory agitation incubator. To produce
biofilm, cultivation was carried out under static conditions at 30 ◦C for 96 h. Figure S1 in
the Supplementary Materials shows an example of biofilm at the air–liquid interface.

We determined the number of spores and vegetative cells in both the planktonic
state and in the manually disaggregated and homogenized biofilm. Determination of
vegetative cells was performed with the serial dilution method and colony count on a
nutritive agar plate. Spore determinations in the planktonic state and in the disaggregated
biofilm involved heating at 80 ◦C for 1 h before performing the serial dilution method [41].

2.1.2. Biofilm Stability

B. subtilis subsp. spizizenii was cultivated in MSM with 55 mM L-glutamic acid and
either 1% glycerol or 1% glucose as a carbon source. Then, 150 mL of the inoculated
culture medium was incubated in a 250 mL Erlenmeyer flask and maintained under static
conditions at 30 ◦C for 96 h. Biofilms developed in the inoculated culture medium at the
air/liquid interface were used for stability estimations.

To assess the stability over time, biofilms developed in MSM were kept at room
temperature (23 ± 2 ◦C) and were removed and dried at 40 ◦C to constant weight every
5 days. To evaluate stability at different temperatures, the biofilms obtained in MSM were
maintained either at 23 ± 2 ◦C, room temperature, or at 4 ◦C; again, the biofilms were
removed every 5 days and processed in the same way.

2.1.3. Inoculant Preparation

Biofilm and planktonic inoculants were produced by the procedure outlined in Section 2.1.1.
Thus, again, B. subtilis subsp. spizizenii was cultivated in liquid MSM with 1% glycerol and 35 mM
L-glutamic acid. To obtain populations of bacteria in a planktonic state, cultures were grown at
30 ◦C for 96 h under continuous stirring at 150 rpm in a rotatory agitation incubator. To prepare
biofilm-inoculant-based treatments, cultures were grown at 30 ◦C for 96 h under static conditions.
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2.2. Experimental Site and Design

First, a seed germination assay in the laboratory was conducted, and then greenhouse
trials were carried out. Then, two independent greenhouse assays were performed to acquire
the agronomic parameters at the end of the vegetative growth stage (50 days after seed
planting) and at harvest time. Laboratory and greenhouse facilities were located at the Faculty
of Agronomy, University of Buenos Aires (FAUBA) (34◦45′ S latitude, 60◦31′ W longitude).

Two varieties of tomato (S. lycopersicum) were studied, namely, Platense and Río
Grande. The former is an indeterminate and the second a determinate variety type; indeter-
minate varieties show a trend of achieving the flowering stage and producing fruits later
than determinate types. Commonly, both varieties are commercially produced in Argentina.

A completely randomized design with three treatments was used. The treatments
consisted of (a) inoculation with the planktonic form, (b) the application of biofilm and
(c) a control. In the control treatment, non-inoculated seeds were used, and subsequently,
the experiment was conducted in a similar way to the inoculated treatments. The number
of replicates per treatment depended on each particular assay and will be given hereafter.

All laboratory and greenhouse experiments were conducted under natural light. They
took place over a 4-month time span, from October to February, during the austral spring
and summer.

2.2.1. Seed Germination Assays

Seeds of Platense and Río Grande tomato varieties were disinfected by washing, first
with 70% alcohol and then three times with sterile distilled water. A layer of sterilized
cotton covered with sterile filter paper with a pore size equivalent to Whatman Grade 3
was placed in sterile Petri dishes and moistened with 5 mL of sterile distilled water.

Ten seeds were placed in each Petri dish and maintained under dark conditions at
22 ◦C. In the planktonic culture treatment, each seed was inoculated with 0.1 mL of destilled
water. In the biofilm treatment, the seeds and biofilm were mixed, taking advantage of their
high adherence. In the control treatment, the seeds were infused with 0.1 mL of distilled
water. Each treatment had five replicates.

Observations were made 5 and 10 days after inoculation without uncovering the
boxes, and a visible radicle length of at least 2 mm was the criterion for germination
occurrence [42]. Then, the germination percentage (G%) was determined according to
Araya et al. [43].

G% =

(
germinated seeds

total seeds

)
·100 (1)

Moreover, 15 days after seed inoculation, the radicle and hypocotyl length in each
seedling were also measured.

2.2.2. Greenhouse Assays

Two successive greenhouse assays were carried out for two tomato phenological stages.
The first assays involved both the Platense and Río Grande tomato types and the length
was limited to the vegetative growth stage, i.e., 50 days. With the information obtained
from this experiment, a second assay was established, lasting for the complete growth cycle
until harvest time, which solely involved the Río Grande variety. In each assay, the three
treatments mentioned in Section 2.2. were investigated. The temperature in the greenhouse
was, on average, 30 ± 5 ◦C.

Seeds of the studied tomato types, i.e., Platense and Río Grande in the first assay and
Río Grande in the second assay, were soaked for 30 min using either planktonic or biofilm
inoculants. Subsequently, they were sown in seedling trays with cells of 5 cm in diameter
and 10 cm in depth, which contained a mixture of commercial substrate and compost in a
3:1 ratio. The commercial substrate had a 50% humidity; its pH was 5.8; on a dry basis, it
consisted of 55% organic matter and 45% ash, and its C/N ratio was 30% [44]. Twenty-five
seeds per treatment were placed in the respective cells.
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In the first assay, 15 days after seed inoculation, 25 seedlings per treatment of the
two studied varieties were transplanted into 3 L pots, placing one seedling per pot and
filling with the 3:1 mixture of commercial substrate and compost, as before, at an average
temperature of 24 ◦C. Plants were grown for 50 days, which corresponded to the end of the
vegetative growth stage, just before flowering.

Next, the Río Grande variety was chosen to perform the second assay. Again, a set of
seeds were inoculated and grown in pots as above described using 25 seeds per treatment.
Then, after 15 days, the seedlings were transplanted into 7 L pots, and the trial continued
for 4 months until fruit development, ripening and harvest.

2.3. Agronomic and Production Variables

At the end of the vegetative stage, i.e., after growing for 50 days, the plants were
harvested and dried in an oven at 70 ◦C until constant weight. Then, the plants were
separated in terms of shoot and root biomass, and each part was weighed.

At harvest time, in addition to dry shoot and root biomass, the fruits were measured
and weighed in the different treatments. Also, fruit quality was evaluated in the fruit
juice from total soluble solids (Brix) determinations, which were carried out using a hand-
held refractometer.

In each of the three treatments studied, leaf area (LA) at harvest time was evaluated
from 25 plants of S. lycopersicum, Río Grande variety. For each plant, 10 entire and fresh
leaves were sampled from successive branches of the central area of the canopy; the selected
leaves were of a medium size, and no more than a leaf per branch was taken. Each leaf
was put over a white background and fully expanded by covering it with a 3 mm wide
glass; then, it was photographed. The area of each leaf was estimated using the IMAGE J
software 1.8.0. for scientific image analysis [45].

2.4. Chlorophyll Estimations

To quantify chlorophyll in the Río Grande variety at harvest time, two discs of 1 cm in
diameter were cut from the central area of selected leaves. Three plants per treatment were
sorted out, and determinations were made in three representative leaves sampled from the
central part of the canopy of each selected plant. The discs were placed in an Eppendorf
flask, and 1.5 mL of dimethylformamide was added; thereafter, they were left for 48 h in a
refrigerator in the dark.

Absorbance was measured at 664 nm, 647 nm and 652 nm for quantification of chloro-
phyll a, chlorophyll b and total chlorophyll [46], respectively, in an Agilent 8453 UV–visible
spectrophotometer. Chlorophyll contents were reported on a wet basis as mg chlorophyll/g
fresh tissue.

The following equations were used for the quantitative estimation of the different
chlorophyll types:

Chlorophyll a = 12.7 × Abs 664 − 2.79 × Abs 647 (2)

Chlorophyll b = 20.7 × Abs 647 − 4.62 × Abs 664 (3)

Total chlorophyll = 17.9. Abs 647 + 8.08. Abs 652 (4)

where Abs 664, Abs 647 and Abs 652 are the absorbance at 664, 647 and 652 nm, respectively.

2.5. Bacterial Counts in Root Extracts of Solanum lycopersicum var. Río Grande

The method described by Dobereiner et al. [47] was used to assess the number of
bacteria inside the roots. Determinations were made in plants sorted out at harvest time.
Root samples of 10 g were taken and superficially disinfected by immersion in a 70◦ alcohol
solution for 10 min and by shaking at 200 rpm; then, the solution was transferred to sterile
Erlenmeyer flasks with a 3% sodium hypochlorite solution for 10 min and with shaking at
200 rpm; finally, the samples were washed 3 times with sterile water to remove traces of
sodium hypochlorite for 10 min and once with sterile saline. The tissues were homogenized
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in sterile saline, and CFUs were determined by serial dilution of the supernatant on a
nutrient agar medium. Roots from non-inoculated plants were used as controls.

2.6. Statistical Analysis

Data were subjected to a one-way analysis of variance (ANOVA). Means were com-
pared using Tukey’s test to identify significant pair-wise differences at p < 0.05.

3. Results
3.1. Content of Vegetative Cells and Spores in the Planktonic State and in Biofilm

Most suitable inoculants developed to be used as a bio-fertilizer are expected to
incorporate a high number of both vegetative cells and spores. Therefore, first total counts
of vegetative cells and spores were made. The estimated populations varied depending
on the culture medium, as shown in Figure 1. The planktonic inoculant exhibited about
1012 cells, while the biofilm counts resulted in about 109 cells. The number of spores
counted in the two inoculant forms were almost identical, in amounts of about 106. Spores
are resistant structures that can remain dormant for long periods under non-favorable
conditions; later, spores may again produce vegetative cells if the conditions are appropriate
for germination. Therefore, bacterial spore richness is important in that it ensures micro-
organism viability over time as long as the spores remain a source of vegetative cells.
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Figure 1. Populations of vegetative cells and spores of B. subtilis subsp. spizizenii used either as a
biofilm (in static conditions) or as planktonic inoculum (at 150 rpm). Culture medium was MSM
plus 55 mM L-glutamic acid and 1% glycerol at 30 ◦C during 96 h. Error bars represent standard
deviations (n = 3).

The proportion of spores to vegetative cells was higher in the biofilm than in the
planktonic inoculant. However, the opposite was true in absolute terms, so that for the
biofilm, the count of vegetative cells was three orders higher than that of spores, while for
the planktonic state, the count of vegetative cells was six orders higher than that of spores.

3.2. Biofilm Stability
3.2.1. Effect of Carbon Source

Figure 2 shows the biofilm stability as a function of the carbon source. The air–liquid
interface biofilms, obtained at 25 ◦C, were much more stable using 1% glycerol than using
1% glucose.
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Figure 2. Stability curves of biofilms grown in MSM and 55 mM L-glutamic acid plus either 1%
glycerol or 1% glucose. Error bars represent standard deviations (n = 3).

The biofilm gained from glycerol was stable for 20 days, and it then began to break up
until it completely discomposed by day 35. In contrast, the biofilm obtained from glucose
only was stable for 4 days, and it was completely disintegrated in by day 15.

3.2.2. Effect of Temperature

The effect of temperature was studied on the biofilm obtained using glycerol as a
carbon source. As shown in Figure 3, the biofilm that developed at the air–liquid interface
at 25 ◦C started to slowly disintegrate by day 12, and this trend was intensified by day 25;
total degradation was observed by day 40. In contrast, the biofilm kept at 4 ◦C started to
disintegrate by day 30, and only 36% of the biofilm had degraded by day 40, as counted
from the start of the trial.
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Figure 3. Effect of temperature on biofilm stability grown in MSM and 55 mM L-glutamic acid plus
1% glycerol. Error bars represent standard deviations (n = 3).

The higher biofilm stability at 4 ◦C suggests that bacteria cultured at low temperatures
could be a good strategy to increase the lifespan of the biofilm inoculum.

3.3. Effects of Inoculation Form on Germination and Growth of Two Varieties of S. lycopersicum
3.3.1. Effects on Germination Percent of Platense and Río Grande Varieties

The germination percentages of the two varieties of S. lycopersicum inoculated either
with biofilm or with the planktonic form obtained from B. subtilis subsp. spizizenii are shown
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in Table 1. The varieties evaluated were Platense and Río Grande, while the germination
tests were performed by days 5 and 10 after inoculation. Regardless of time and treatment,
the Platense variety showed a lower germination rate.

Table 1. Effect of seed inoculation treatment, i.e., planktonic form or biofilm of B. subtilis subsp.
spizizenii, on germination percentages of S. lycopersicum at days 5 and 10. Mean and standard
deviations are given (n = 5). Different lowercase letters indicate differences between treatments at the
0.05 probability level.

Germination (%)
5 Days

Germination (%)
10 Days

Tomato
varieties Control Planktonic Biofilm Control Planktonic Biofilm

Platense 74.2 ± 1.3 b 82.4 ± 0.8 a 27.0 ± 0.9 c 80.3 ± 2.1 b 87.0 ± 0.9 a 90.1 ± 0.9 a

Río Grande 88.0 ± 1.1 a 90.0 ± 1.5 a 30.0 ± 1.1 b 90.4 ± 1.4 b 95.2 ± 1.3 a 96.0 ± 0.8 a

After 5 days, the germination percentages per treatment were ranked as follows:
planktonic inoculation > control > biofilm inoculation, so that the biofilm application
resulted in a slowing down of the germination capacity of the two studied varieties.
Moreover, by day 5, the percent germination of both the Platense and Río Grande varieties
inoculated with the planktonic form were 8% and 5% higher than their specific controls,
respectively. This meant that the differences were significant (p < 0.05) in the former variety
and non-significant (p < 0.05) in the latter variety (Table 1).

Irrespective of the inoculation treatment, the maximum percent germination for the
two varieties was recorded by day 10. At this time, the germination percentages of the
Platense and Río Grande varieties were ranked as follows: biofilm > planktonic > control.
There were significant differences between the control and the two seed inoculation treat-
ments (p < 0.05). However, no significant differences were found between the planktonic
and biofilm treatments (Table 1).

3.3.2. Effects on Seedlings of Platense and Río Grande Varieties after Germination

Inoculation of S. lycopersicum seeds with B. subtilis subsp. spizizenii showed a clear
effect on seedlings growth of the Platense and Río Grande varieties compared to the control;
the magnitude of this effect varied, depending on the application mode, i.e., planktonic
or biofilm. In the Platense variety, both the planktonic and biofilm inoculants yielded
increases in radicle length with respect to the control treatment of 14% and 32%, respectively;
the radicle length differences between the inoculated and control treatments were not
significant (p < 0.05) using the planktonic form, while they were significant (p < 0.05) using
the biofilm. The radicle length increments in this variety with respect to the control were
3.3% and 10% using the planktonic and biofilm inoculants, respectively, and did not show
any significant differences between the treatments. Therefore, the biofilm application to
the Platense variety was demonstrated to be more efficient than the planktonic inoculation,
so that the former treatment resulted in a 15% larger radicle and a 7% larger hypocotyl
compared with the latter treatment (Figure 4a,b).

Greater seed inoculation effects were observed on the seedlings of the Río Grande
variety; in this case, the inoculation using the planktonic and biofilm inoculum resulted
in significant (p < 0.05) increments in the radicle length of 25% and 57%, respectively,
with respect to the control (Figure 4a). The hypocotyl extension of the Río Grande variety
was also significantly higher (p < 0.05) when the inoculated treatments and the control
treatment were compared, so that increments of 20% and 41% for the planktonic and for
biofilm treatments, respectively, were recorded (Figure 4b). Again, the biofilm inoculation
was most effective in the Río Grande variety, with increments of 25% in the radicle and 18%
in the hypocotyl lengths, respectively, relative to the planktonic form (Figure 4a,b).
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Figure 4. Effect of seed inoculation treatment on root (a) and hypocotyl (b) length of seedlings from
Platense and Río Grande varieties from S. lycopersicum. Differences between lowercase letters indicate
differences at the 0.05 probability level.

3.3.3. Effects on Biomass of Platense and Río Grande Varieties at the End of Vegetative
Growth Stage

After 50 days of plant growth, the end of the vegetative growth stage was achieved in
the two varieties studied; at this stage, neither the indeterminate Platense variety nor the
determinate Río Grande variety still showed signs of flowering. The two inoculation meth-
ods produced significant increments in root development compared to the non-inoculated
control in the Platense treatment; the planktonic cell inoculation resulted in a 62% increase,
while biofilm application resulted in an 80% increase in root biomass on a dry weight basis.
Although the greatest root development was observed after the biofilm application, the
differences between both inoculation methods were not statistically significant (Figure 5a).
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Figure 5. Effect of seed inoculation treatment on root (a) and shoot (b) biomass at day 50 of Platense
and Río Grande varieties from S. lycopersicum. Differences between lowercase letters indicate differ-
ences at the 0.05 probability level.

Also, in the Río Grande variety, the two inoculation methods showed significant
differences (p < 0.05) when compared to the control treatment; the shoot dry biomass
became 60% and 120% greater when using the planktonic film and the biofilm, respectively.
In contrast to the Platense variety, the Río Grande variety showed significant differences
(p < 0.05) between the inoculation methods, so that the biofilm application resulted in a
30% higher shoot biomass than the planktonic inoculation (Figure 5b).
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In addition, the seed inoculation with B. subtilis subsp. spizizenii produced a positive
effect on the shoot biomass of S. lycopersicum. In the Platense variety, the shoot biomass
increments were as high as 58% and 66% when implementing the planktonic inoculum
and the biofilm, respectively (Figure 5b). However, no significant differences between
inoculation methods were found.

The shoot biomass of the Río Grande variety showed increases with respect to the
control that were as high as 48% when applying the planktonic inoculum and as high as
103% when applying the biofilm. Again, the shoot biomass was significantly different
(p < 0.05) between the inoculation methods, so that it was 38% higher using the biofilm
than using the planktonic inoculum.

In summary, the growth of S. lycopersicum seedlings inoculated with B. subtilis subsp.
spizizenii assessed by day 50 depended on the plant variety and the inoculation method.
The Río Grande variety performed better than the Platense variety regarding root and shoot
biomass, while the biofilm was superior to the planktonic inoculum.

3.4. Effects on Production and Quality of Río Grande Variety at Harvest Time

Based on the results obtained with seedlings of different ages, the Río Grande variety
was selected to continue the experiments for assessing the effect of seed inoculation with
the planktonic form and the biofilm on several parameters of plant production and quality
at harvest time.

3.4.1. Effects on Plant Biomass and Plant Height

Significant (p < 0.05) root biomass increments of 75% and 125% were achieved when
comparing the planktonic and biofilm inoculation, respectively, with the control. Both
inoculations using either a planktonic form or a biofilm showed significant (p < 0.05)
increments of 40% and 80% in shoot biomass compared to the control, respectively. Also,
significant (p < 0.05) differences between the inoculation treatments were observed, showing
that the biofilm was the most effective method, as both the root and the shoot biomasses of
this treatment were 29% higher than those of the planktonic treatment (Figure 6).
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Figure 6. Effect of seed inoculation treatment on root and shoot biomass and on plant height at
harvest time of Río Grande variety from S. lycopersicum. Differences between lowercase letters indicate
differences at the 0.05 probability level.

With regard to plant height, the inoculated treatments (planktonic and biofilm) also
showed significant (p < 0.05) differences when compared to the control treatment; however,
no significant differences were found between the inoculation methods.

Figures S2–S4, presented in the Supplementary Materials, illustrate the differences at
harvest time between selected plants from the different treatments. Figures S2 and S3 show
the planktonic inoculum alongside the control plants and the biofilm alongside the control
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plants, respectively, while Figure S4 compares the planktonic inoculum and biofilm plants.
The size differences between the inoculated and control treatments are very apparent.

3.4.2. Quantification of Chlorophyll and Leaf Area

Chlorophyll, as measured in various forms, is the main photosynthetic pigment in
higher plants, and its leaf content mainly depends on leaf N concentration, which governs
the maximum photosynthetic activity. Plants of the Río Grande variety, whose seeds had
been inoculated with the bacterium both in its planktonic form and as a biofilm, did not
show significant differences at harvest time in terms of their chlorophyll a, chlorophyll b
and total chlorophyll levels with respect to plants whose seeds had not been inoculated
(Figure 7).
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Figure 7. Effect of seed inoculation treatment on chlorophyll a, chlorophyll b and total chlorophyll
contents (a) and leaf area (b) at harvest time of Río Grande variety from S. lycopersicum. Differences
between lowercase letters indicate differences at the 0.05 probability level.

Leaf area was estimated from measurements in selected leaves from different tomato
branches sampled with the same scheme in the three treatments and was measured in
cm2/leaf. Indeed, the mean LA determined in this work cannot be compared with the
commonly used leaf area index, LAI, a dimensionless magnitude. We assumed that the LA
may also be related to photosynthetic primary production. The mean LA values were 7.4,
10.6 and 11.8 cm2/leaf. Therefore, the tomato plants growing from inoculated seeds showed
significantly higher (p < 0.05) mean LA values than those growing from non-inoculated
seeds. Even if the biofilm treatment showed the highest LA value, no significant differences
with respect to the planktonic form of the treatment were found (Figure 7b).

Also, it was remarkable that the tomato plants inoculated with the biofilm had a
greater number of leaves and branches compared to those treated with the planktonic
inoculum, which was qualitatively estimated from Figure S4; this is important, as plant
architecture can affect plant biomass partitioning and fruit yield.

3.4.3. Fruit Productivity and Quality

A clear-cut parameter for appraising tomato productivity is the produced number of
fruits. The number of fruits harvested showed significant (p < 0.05) differences between the
inoculated plants and control treatments; differences with respect to the control were as
high as 33% for the planktonic treatment and 180% for the biofilm treatment. Moreover, the
application of the biofilm prevailed over the planktonic inoculum, as the former treatment
resulted in a 35% larger fruit number compared to the latter (Figure 8a).
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Figure 8. Effect of seed inoculation treatment on number of fruits (a), mean fruit weight (b) and total
soluble solids (c) at harvest time of Río Grande variety from S. lycopersicum. Differences between
lowercase letters indicate differences at the 0.05 probability level.

With regard to fruit weight, the planktonic and biofilm treatments showed 29% and
43% increases, respectively, compared to control, but the differences between the two seed
inoculation methods were not significant.

In addition, the carbohydrate content of the fruit is one of the most important tomato
quality attributes, both for fresh and processed consumption. In addition, the levels of
soluble sugars contribute strongly to the soluble solids content and flavor of tomato fruit;
therefore, the determination of the concentration of total soluble solids (Brix) is considered
a quality parameter.

The results showed significant (p < 0.05) differences between the inoculated plants and
the control that were as high as 37% for the planktonic treatment and 44% for the biofilm
treatment, with no significant differences observed between the treatments (Figure 8c).
Moreover, the total soluble solids of the fruits developed with the application of the biofilm
almost reached the optimum reference value (4 Brix) for fresh tomato consumption.

3.5. Bacterian Endophytism

The population of B. subtilis subsp. spizizenii in the roots of S. lycopersicum var. Río
Grande was counted at harvest time, i.e., after 4 months of seed inoculation. A total of
2 × 104 CFU/g of fresh root weight was unveiled in the roots of the plants growing from
the seeds inoculated with the biofilm, while no bacteria were recovered from the roots of
the control treatment. This may indicate that the biofilm inoculation allowed the bacteria
to colonize roots and to implement its positive effects on plant growth, pointing at B. sub-
tilis stimulation by environmental signals after seed germination. However, conclusive
endophytism proof would be needed from re-isolation of the bacterium in the root and a
molecular comparison with the inoculum used.

4. Discussion

Inoculants based on PGPR are becoming increasingly important as potential alter-
natives to chemical fertilization, since they are considered as ecologically acceptable and
economically attractive. These inoculants interact positively with plants and may perform
vital functions by various mechanisms, such as carbon transformations, nutrient recycling,
regulation of biological populations and maintenance of soil structure [48–50]. Among
these bacteria, B. subtilis subsp. spizizenii has been shown to increase phosphate solubiliza-
tion, to synthesize growth regulators and to act as a bio-controller of common soil-borne
phytopathogens such as the Fusarium and Phytium fungi as well [20].

Most bio-inoculants grow as bacterial vegetative forms, i.e., as free-living planktonic
bacteria; however, some of them, including B. subtilis subsp. spizizenii, have been shown
to be able to grow both in the planktonic form or as a biofilm [27,51]. Species that grow
predominantly as biofilms, such as B. subtilis, are thought to possess advantages in terms
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of reproducing and surviving in the environment [52]. Within the biofilm, different cell
subpopulations coexist that show different functions, e.g., matrix-producing cells, vege-
tative cells, cannibal cells or spore-forming cells. Biofilm vegetative cells are protected
and, once detached, are able to colonize new niches, similar to how the planktonic cells
act. Moreover, spores are resistant and survive in more adverse conditions compared to
vegetative cells. Thus, again, spore formation gives B. subtilis competitive advantages over
other soil bacteria [26,53].

Several works have analyzed populations of vegetative cells and spores in biofilm
and planktonic forms [20,54–56]; the results were consistent with the present study, which
showed that spores were in a higher proportion in the biofilm compared to the planktonic
inoculum. Moreover, it has been observed that biofilms of B. subtilis can develop external
projections or fruiting bodies, which can enhance spore dispersion [54,55]; in the sequence,
the spores could colonize new regions after turning into vegetative cells [53]. Therefore,
a higher spore load of a biofilm ensures its greater persistence and resilience against
fluctuations in the environment compared with a planktonic inoculum.

Biofilm stability is important to protect it against degradation. Greater biofilm stability
provides an important advantage as it increases the shelf life of the inoculant. Moreover,
biofilm degradation has been shown to depend on the matrix structure [57] and also on
processes involving the action of different enzymes [58]. Our results showed that the
carbon source had an effect on the biofilms, so that the cultures of B. subtilis subsp. spizizenii
growing on a glycerol medium had increased stability compared to those growing on a
glucose medium. Similar results have been observed in previous works conducted under
laboratory conditions, even leading to dispersion when mild starvation occurred [53].

Another important aspect is that the positive effects of a bio-inoculant also depend
on the interaction between the bacterial strain and the target crop. This is because each
plant variety produces molecules that stand up for colonization and the multiplication
of specific microorganism strains [59,60]. For example, seed inoculation of four strains
of Bacillus showed different response in tomato and pepper [36], while seed inoculation
of the tomato variety Florardade with three strains of Pseudomonas fluorescens resulted in
beneficial, null or negative effects [37]. Moreover, inoculation with Enterobacter aerogenes
increased the germination power of sunflower seeds by 30% with respect to a control, but
it had no effect on papaya [61]. Therefore, a given PGPR may produce an advantageous
effect on one type of plant but not on another one, and the effects may even be different
between varieties of the same species.

The International Seed Testing Association [62] describes the seed germination process
as the initiation of a metabolically active state, which is physiologically revealed by cell
division and differentiation. Liquid inoculation with the planktonic form requires an
adequate contact time between the seed and bio-inoculant to guarantee a positive plant
development response [38,42]. Imbibition times may vary from 20 min to several hours
according to the seed and type of bacteria studied [63–66]. Several surveys have tested
contact times of tomato inoculated with Bacillus sp., [67], and the results show that 30 min is
the most suitable imbibition time; therefore, this finding was used in the present work. To
increase the low chance of survival of planktonic cells in liquid formulations, encapsulation
in various carriers (alginates, chitosans, etc.) has been proposed, which protects them
from environmental stress situations; in addition, the use of adhesive materials has been
recommended to facilitate contact of planktonic inoculants with seeds [68]. However,
after biofilm inoculation, adherence between bacteria and seeds is often observed, which
can allow greater interaction. This adherence could be due to the action of the biofilm’s
exopolysaccharides together with various products that originate from the bacteria, such as
hormones, and from the seed wall, such as mucilage [61].

Based on the previous framework, the effects of inoculation on the different growth
stages of tomato are next addressed. In our work, the germination rate was significantly
higher for the two types of inoculation than for the control; moreover, the inoculum effects
on germination were independent of the variety of S. lycopersicum. This is consistent with
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a previous study, which also tested the effects of Bacillus on tomato germination [36]. In
addition, the biofilm inoculation resulted in a retarding of germination after 5 days but not
after 10 days. This initial delay could be explained by the biofilm initially acting as a barrier
between the seed and the environmental signals that start germination, namely humidity,
temperature and gaseous phase composition [69]. Once this barrier is overcome, the biofilm
exopolysaccharide matrix allowed closer contact with the bacteria. With respect to radicle
and hypocotyl development, for the Platense variety, the biofilm had a positive effect on
the radicle but not on the hypocotyl length; moreover, the hypocotyl length showed no
significant differences between the inoculated and non-inoculated treatments. However,
for the Río Grande variety, there were positive effects of the biofilm inoculation on the
radicle and hypocotyl lengths. The different responses to the inoculum treatment between
varieties could be linked to the non-identical effects of auxin, indole acetic acid (IAA)
and cytokinin zeatin riboside acting as growth regulators [20]. More developed tomato
seedlings are expected to be more unaltered by potential transplanting stress [70], which
results in advantages in terms of increasing growth and production.

At the end of the vegetative growth stage, again, the effects on shoot and root biomass
showed a dependence on plant variety [36]. The plant-growth-promoting effect of the two
inoculant methods tested was superior for the Río Grande than for the Platense variety.
Also, the biofilm inoculation performed better than planktonic inoculation at this growth
stage. Again, these results could be associated with increases in growth regulator (auxin,
IAA, etc.) production, phosphate solubilization and factors related in general to increased
nutrient uptake following the inoculum application [20].

At harvest time, the inoculation positively affected several growth variables (height,
dry shoot and dry root biomass, leaf area) and fruit production of the Río Grande tomato
plants. Regarding the inoculation methods, the application of B. subtilis subsp. spizizenii
as a biofilm provided the best results for the vegetative and productive variables, so that
shoot and root biomass and fruit production showed significant increases with respect to
the planktonic inoculum. The quantity and characteristics of fruits are the most important
aspects in tomato production and quality [71]. Our work showed that the inoculation with
biofilm was not only beneficial for plant growth but also for plant productivity and fruit
quality. Other variables such as plant height, fruit weight and soluble solids were also
greater in the biofilm than in the planktonic treatment, although the differences were not
significant. Eventually, the leaf chlorophyll content was similar between the control and
inoculated treatments; this was an expected result, as chlorophyll is strongly related to
plant nitrogen content [72], and B. subtilis subsp. spizizenii has not been demonstrated to
act as a nitrogen-fixing bacterium.

Retrieving the B. subtilis subsp. spizizenii at harvest time from inside the roots of
the S. lycopersicum variety Río Grande after seed inoculation with the biofilm indicated
that the bacterium behaved as an endophytic one. Therefore, starting from the biofilm,
the bacterium was first able to colonize the seed, and then it migrated and infected the
seedling roots in a significant number, granting access, proliferation and persistence in the
plant along the whole growth cycle. These results underpin the advantages of B. subtilis
biofilm as a bio-inoculant, as they reveal the ability of the inoculated bacterium to infect
and remain viable in the crop until harvest time. It is noteworthy that not all PGRPs
have been found to persist after initial infection and colonization, because the conditions
within plants can be suppressive to bacterial growth [73]. Thus, endophytic bacteria show
particular promise as bio-inoculants, since they may act in a specialized niche within plants,
functioning as biocontrol agents [20,74,75]. However, conclusive proof of endophytism
based on the molecular comparison of bacteria re-isolated from the root at harvest time
with the inoculum was beyond the scope of this work. Again, the main innovation that has
arisen from our work lies in the way in which the biofilm was inoculated on the tomato
seeds, which differed from that used until now. For example, earlier biofilms from Bacillus
sp., Pseudomonas sp. or a mixture of both strains have been inoculated on tomato [76],
and a biofilm from Streptomyces supplied with perlite has also been applied to Triticum
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aestivum [77]; in either case, the bacteria was not able to fulfill their positive effects from the
very beginning of seed germination.

In summary, the present work highlights the advantages of biofilm incorporation as
a seed inoculant for increasing tomato crop productivity and quality. Moreover, biofilm
application on seeds can be explored as an effective substitute for inorganic fertilizers and
pesticides due to its proven effects in promoting nutrient availability and plant growth
and in protecting plants from biotic and abiotic stresses. Therefore, seed inoculation using
biofilm also involves environmental sustainability with regards to agriculture and soil
conservation, as this practice can preserve soil chemical and physical integrity and provide
maintenance of crop yields in the future.

5. Conclusions

To compare the effects of tomato seed inoculation with either conventional planktonic
or with biofilm cultures of B. subtilis subsp. spizizenii on vegetative and productive variables
of tomato, two independent experiments were carried out under laboratory and greenhouse
conditions; the former experiment involved two tomato varieties, and the latter involved
one variety. The experimental design consisted of a non-inoculated treatment and two
different inoculation treatments.

Under laboratory conditions, two different tomato varieties, namely Platense and Río
Grande, were studied after germination and at the end of the vegetative growth period.
Different responses to the inoculum treatment between the varieties were obtained, showing
that the Río Grande variety performed better than the Platense variety. Specifically, the
biofilm seed inoculation of the Río Grande variety resulted in a significantly greater radicle
and hypocotyl length and a higher root and aerial biomass compared to the planktonic
seed inoculation.

Under greenhouse conditions, the seed inoculation of the Río Grande variety showed
that at harvest time, the biofilm significantly increased the root and shoot biomass and fruit
number compared to the planktonic treatment. The plant height, fruit weight and soluble
solids were also greater in the biofilm treatment than in the planktonic treatment, although
the differences were not significant.

Overall, the proposed inoculation method, based on a biofilm of B. subtilis subsp.
Spizizenii, allowed the bacteria to perform their positive effects at different growth stages,
from seed germination to harvest time, and it was superior to the traditional planktonic
inoculation method.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/environments11030054/s1, Figure S1: Biofilm from B. subtilis subsp.
spizizenii at the air–liquid interface. (Cultivation in minimum salt medium (MSM) plus 55 mM glutamic
acid and 1% glycerol under static conditions at 30 ◦C for 96 h); Figure S2: S. lycopersicum plants, Río
Grande variety, at harvest time (4 months). (a) Planktonic inoculum treatment, (b) non-inoculated
treatment; Figure S3: S. lycopersicum plants, Río Grande variety, at harvest time (4 months). (a) Biofilm
treatment, (b) non-inoculated treatment; Figure S4. S. lycopersicum plants, Río Grande variety, at harvest
time (4 months). (a) Planktonic inoculum treatment, (b) Biofilm treatment.
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