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Abstract: The advent of the COVID-19 era has ushered in significant changes to both the environ-
ment and daily life. During the COVID-19 lockdown, a unique opportunity emerged to improve
environmental quality and mitigate certain impacts on the planet. The distribution and health risks
of microplastics (MPs) in the street dust of Dhaka city, Bangladesh during and after COVID-19 lock-
downs were examined in this study. The study covered sites selected based on land usage, including
an industrial area (IA), commercial area (CA), public facilities area (PFA), and residential area (RA).
The particles in the dust samples were analyzed using a fluorescent microscope and attenuated total re-
flectance Fourier-transform infrared spectroscopy. The results show that the maximum number of MP
particles/g of street dust sample was recorded from industrial areas (17.33 MP particles/g) and the
minimum was recorded from residential areas (13.99 MP particles/g) without lockdown. The trends
in the MPs were as follows: without lockdown > partial lockdown > complete lockdown. Risk analysis
showed that the MPs in dust pose low non-carcinogenic risk to inhabitants of the study area and across
lockdown periods. Principal component analysis showed that during the partial lockdown period,
comparable sources were detected for the cellulose/low-density polyethylene (LDPE)/high-density
polyethylene (HDPE), polychloroprene (PCP)/polyethylene terephthalate (PET)/polypropylene
(PP)/polyacrylamide (PAA)/nylon, and polyethylene (PE)/polydimethylsiloxane (PDMS)/polyvinyl
alcohol (PVA)/fiber groups of MPs, but various sources were discovered during the complete and
without lockdown periods. The results further showed that all MP types would pose no non-
carcinogenic or carcinogenic risks in dust from all land-use areas. However, the highest risks were
obtained from inhaling dust. The study shows that human activities have a significant impact on the
generation and distribution of MPs in the environment. The changes in MP type distribution during
lockdown suggest that reducing human activities, such as traffic and industrial activity, can lead to a
decrease in the quantity of MPs generated and released into the environment.

Keywords: street dust; MPs; urban-land-use category; lockdown; source identification; carcinogenic;
Dhaka

1. Introduction

Bangladesh is the most polluted country, and the second most polluted city is Dhaka,
as reported in the 2019 Global Air Quality Report [1]. Furthermore, the city has the poorest
air quality according to the air quality index (AQI); the Department of the Environment
(DoE) recently issued a public warning on air pollution [1]. According to the DoE notice,
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automobiles, the burning of biomass, traditional brick kilns located inside and surrounding
the city, street dust, soil dust, and particulate matter are the main contributors to air
pollution in Dhaka. The negative effects of air pollution in Bangladesh are severe and
provide a substantial risk to the ecology, human health, and economic development [2].
It is an effect of civilizational advancement and the price of advancement [3]. Brick kilns,
dust from streets and building sites, defective automobiles (notably diesel-powered ones),
and harmful emissions from industry are the main causes of air pollution in the nation [4].

In recent years, street dust has become a significant source of air pollution, which has
caused grave worries for the atmosphere. It has dangerous elements, such heavy metals,
polycyclic aromatic hydrocarbons (PAHs), microplastics, and others, that come from a
variety of sources, such as traffic, home and commercial emissions, and plant debris. The
likelihood that airborne dust particles would harm human health directly correlates with
their size, with smaller particles posing the highest dangers [5]. These particles can be as
small as 1 µm and thus enter the circulation through the lower respiratory tract, endanger-
ing internal organs and resulting in cardiovascular problems. Additionally, microplastics in
street dust have a higher adsorption rate due to their larger specific area, which is typically
associated with smaller particle size. This means that high concentrations of microplastics
are found in smaller particles, such as those adhering to children’s hands or retained by
the skin [6]. Street dust containing plastics particles (≥700 nm) can enter the respiratory
system, circulate in the bloodstream [7], and attach to proteins or become ionized in differ-
ent organs and cells, causing a range of diseases [8]. Microplastics further act as carriers of
chemicals and pollutants and can be found in air, soil, and water, posing a threat to both the
environment and human health [9]. The increasing population, associated motorization,
and industrial emissions in Bangladesh have led to high concentrations of these pollutants,
making them a serious environmental health hazard that affects the population.

The SARS-CoV-2 virus generated the COVID-19 pandemic, which has led to world-
wide disease transmission. Originating in Wuhan City, China in December 2019, the
outbreak quickly spread globally, leading many countries to adopt non-therapeutic mea-
sures, such as travel bans, remote work, and social distancing, to prevent further trans-
mission [10]. In Bangladesh, the first COVID-19 case was reported on 7 March 2020, and
a nationwide lockdown was implemented from 26 March to 30 May 2020. Subsequent
partial and complete lockdowns were enforced from 5 to 11 April 2021, and 14 to 28 April
2021, respectively. It is expected that such measures would lead to improved air quality
due to reduced emissions of anthropogenic particles [11]. During the partial lockdown,
public transport was limited to 50% capacity, inter-district vehicular movement was re-
stricted, educational and government institutions operated at 50% capacity, and gatherings
were prohibited. Complete lockdown measures included the closure of all transport ser-
vices, government and private offices, factories, and industries, and a ban on unnecessary
movement and gatherings.

In a number of environments, it is acknowledged that human activity is the primary
source of environmental pollution [12]. Natural resources have been depleted globally
due to the excessive rate of urbanization and industrialization, leaving little time to plan
for their repair [13]. A crucial part of the COVID-19 shutdown has been identified as
natural repair as per various studies [14,15]. Since the COVID-19 shutdown, which almost
eliminated industrial activity and vehicle travel in several nations, there has been a sig-
nificant reduction in air and water pollution globally [16]. Studies on the consequences
of COVID-19 lockdowns have been conducted all over the world [11,17–19], but none of
them have attempted to examine the prevalence of microplastics in street dust in Dhaka,
Bangladesh, during partial and complete lockdown, as well as post-lockdown. In light of
the foregoing discussion, the current study was carried out with the following objectives
of assessing the distribution of microplastics in street dust during partial and complete
lockdown, as well as after lockdown, in Dhaka city and to determine possible sources and
human health risk of microplastics in street dust during partial and complete lockdown, as
well as after lockdown, in Dhaka city.
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2. Materials and Methods
2.1. Sampling Site

The study focused on collecting dust samples from various streets within the bustling
Dhaka metropolitan area, the capital and largest city of the country. With an extensive
urban sprawl covering over 1500 km2, Dhaka is home to a massive population of approx-
imately 20 million people. The population of the city is increasing at a rate of 7% per
year, which has caused an increase in the quantity of automobiles, industries, and severe
air pollution [20,21]. Two-stroke auto-rickshaws, aged trucks, and mini-buses are major
contributors to air pollution, and heavy and light industries, such as textile, glass, ceramic,
battery, pharmaceutical, metallurgical, and leather processing, also contribute to the prob-
lem [22,23]. The ecosystem of Dhaka city is severely harmed because of human activity,
which greatly contributes to the development of large amounts of garbage, effluents, and
air pollutants. [22]. According to the Dhaka Urban Transport Network Development report,
Dhaka city is predominantly comprised of various land-usage categories. Residential
areas constitute the largest portion, accounting for 44.35% of the city’s land. Commercial
areas cover 4.29%, while industrial areas occupy 2.01% of the city. Public facilities areas
encompass 7.97%, followed by urban green areas at 1.20%. Roads and railways make up
10.46% of the city, and restricted areas represent 8.42% of the overall land usage in Dhaka.
(source: https://openjicareport.jica.go.jp/pdf/11996782_03.pdf, accessed on 5 May 2023).
Figure 1 illustrates the specific sampling locations within the region.
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Figure 1. A map of Bangladesh showing the research site’s location (the red-marked region on
the map is the metropolitan area of Dhaka City), along with four sites for sampling various land-
use categories [9]. Blue = commercial area; red = industrial area; green = public facility area; and
yellow = residential area.

2.2. Sample Collection and Processing

Based on their importance, which included elements like population density, trans-
portation volume, and surrounds, sample locations were chosen. A pre-cleaned metal
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dustpan and wooden brushes were utilized under partial, complete, and post-lockdown
circumstances to gather street dust samples. In this study, a meticulous approach was
used to collect soil samples. A wooden brush was skillfully employed to sweep the soil
surface into a dustpan, ensuring a clean and uncontaminated collection process. Sub-
sequently, the collected sample was transferred to a sterile Ziploc bag for transporta-
tion to Japan, where the study was conducted. Prior studies confirmed the reliability
of using Ziploc bags for sample preservation without any risk of contamination [24,25].
Sampling for partial, complete, and after lockdowns circumstances took place between
5 and 11 April 2021, 14 to 28 April 2021, and 21 to 22 December 2021, respectively,
when the average temperature was 33 ◦C for April and 26 ◦C for December, with no
precipitation or rainfall (https://weather-and-climate.com/Dhaka-April-averages; https:
//weather-and-climate.com/Dhaka-december-averages, assessed 17 July 2023). The study
covered sites selected based on land usage, including an industrial area (IA), commercial
area (CA), public facilities area (PFA), and residential area (RA). A 1 m2 area that includes
impermeable surfaces, including roadways, pavements, and gutters, had around 500 g of
street dust randomly swept off it [26]. A composite representative sample was created by
thoroughly combining four sub-dust samples [27]. A total of 144 street dust samples were
taken from 12 different locations around the metropolitan area of Dhaka during partial,
complete, and after lockdown periods. Extraneous trash, including cigarette buds, stones,
scrap plastic, and deconstructed construction detritus, was collected and removed from the
sample location before sampling. A vibrating sieve shaker (AS 200-digit Retsch AS200) was
used to sort the samples into various particle sizes, after they had been placed in sealed
glass bottles with the proper labelling.

2.3. Sample Pretreatment Procedure for Microplastics Analysis in Street Dust

The dust samples that were sieved using a vibratory sieve shaker were then dried for
24 h in a drying oven at 70 ◦C. After drying, 1 g aliquots of the samples with a particle
size between 150 and 250 µm were taken, and each sample was replicated three times. To
oxidize the organic matter present in the samples, hydrogen peroxide (H2O2, 35%) was
used. After oxidation, the samples were sieved through a mesh filter with a pore size of
100 µm. The sieved samples were then mixed with a NaCl solution (density: 1.2 g/cm3)
and allowed to stand for 2 h to undergo density separation. The supernatant obtained
after the separation was decanted into a cleaned beaker, and this process was repeated
thrice. The samples that were separated based on their density were then filtered using
a track-etched polycarbonate filter (47 mm Diameter, 5 µm Pore Size) and left to dry in
a desiccator for 24 h [28]. A fluorescence microscope (MX6300, Meiji Techno Co., Tokyo,
Japan) was used to visually inspect the residues on the filter sheets. Pixera IN studio
software Ver.3.5.2 was used to further analyze the fluorescence microscope’s picture for
form and size (Figure 2).

All detected and counted particles were divided into other particles and microplastics,
and those that were thought to be polymers were examined using an ATR-FTIR (attenuated
total reflectance with Fourier-transform infrared spectroscopy) system (JASCO FTIR-6100)
for functional groups to categorize the MPs as polymers [29]. To avoid airborne contamina-
tion, particle extraction and all testing were conducted in a laminar flow chamber. For the
duration of the investigation, a lab coat made entirely of cotton was worn. All materials
used to treat the samples were cleaned in filtered ultrapure water (Direct Q-3UV, Merck-
KGaA, Darmstadt, Germany) before use. Throughout the trial, 70% ethanol was used to
clean all laboratory workbenches and surfaces. Samples that were not being processed (ex-
traction and characterization) were covered with aluminum foil. As contamination controls,
water used for particle extraction (procedural blank) and water left open in the lab during
extraction (air blank) were both used. These controls and the samples were examined.

https://weather-and-climate.com/Dhaka-April-averages
https://weather-and-climate.com/Dhaka-december-averages
https://weather-and-climate.com/Dhaka-december-averages
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2.4. Health Risk Assessment
2.4.1. Non-Carcinogenic Risk Estimation

According to the preceding description, the MP polymeric risk indices for street
dust samples were determined [12,29,30]. The equations for computing the polymer risks
indices (pRi) for the samples and the index (pRarea) for the study area are provided by
Formulae (1) and (2).

According to Lithner et al. [31], the hazard values provided based on the toxicity levels
of the detected MP polymers in the samples were used to calculate the chemical toxicity
coefficient or risk scores (Sj). The hazard scores for the polymers found in the street dust
samples were Polypropylene (PP) = 1, polyethylene (PE) = 11, polyethylene terephthalate
(PET) = 4, polystyrene (PS) = 30, high-density polyethylene (HDPE) = 11, nylon = 47,
polyamide (PA) = 50, polyoxymethylene (POM) = 871, polyvinyl alcohol (PVA) = 1, poly
acrylamide (PAA) = 230, and low-density polyethylene (LDPE) = 211; polychloroprene
(PCP), polydimethylsiloxane (PDMS), fiber, and cellulose were not accessible and were
taken out of the computations. The number of each unique MP polymer identified in sample
1 is represented by pRi, whilst the nth root of the polymer risks indices products is repre-
sented by pRarea. Pi and Pt represent the individual and total plastic polymers, respectively.

pRi = ∑ (Pi/Pt × Sj) (1)

pRarea = (pR1 × pR2 × pR3 ×. . .. . .. . .. . .. × pRn)1/n (2)

2.4.2. Carcinogenic Risk Estimation

The LADD is the lifetime average daily dosage (items/g/day) as specified below [32–34]:

LADDingestion = C × EF
AT

×
(

IngRchild × EDchild

BWchild
+

IngRadult × EDadult

BWadult

)
× 10−6 (3)

LADDinhalation = C × EF
AT × PEF

×
(

InhRchild × EDchild
BWchild

+
InhRadult × EDadult

BWadult

)
(4)
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By combining the carcinogenic risk (CR) associated with ingestion (CRingestion) and
inhalation (CRinhalation), the cumulative carcinogenic risk (CCR) associated with exposure to
harmful components in street dust was calculated. In this study, the potential carcinogenic
risks of PE, PET, PP, PA, PAA, HDPE, and LDPE polymers were investigated. Based on
established slope factors, it is thought that ingestion and inhalation absorption are the main
exposure routes to these hazardous components.

CRingestion = LADDingestion × CSFingestion (5)

CRinhalation = LADDinhalation × CSFinhalation (6)

CCR = ∑ CR = CRingestion + CRinhalation (7)

where CSFingestion and CSFinhalation are the cancer slope factors (items/g/day) associated
with hazardous polymers ingested and inhaled, respectively. The CSFs were PE = PET=
HDPE = LDPE= 1.02, PA = 4.5, and PP = 0.24 [35] (Table 1).

Table 1. The factors used to determine the MPs’ daily average intake and health risk assessment for
street dust.

Factor Definition Unit Value of
Children

Value of
Adult Reference

C Number of MP polymer items/g C C This study
ED Exposure duration y 6 30 [36]
EF Exposure frequency d/y 180 180 [36]
BW Average body weight g 16,200 61,800 [37]

ATnon-cancer Average time d ED × 365 ED × 365 [36]
ATcancer Average time d LT × 365 LT × 365 [36]

LT Average lifetime y 76 76 [37]
IngR Ingestion rate g/d 0.2 0.1 [38]
InhR Inhalation rate m3/d 7.6 20 [39]
PEF Particle emission factor m3/g 1.36 × 106 1.36 × 106 [38]

2.5. Statistical Analysis

Microsoft Excel 2016 was used to conduct descriptive statistics. Software packages
Origin Lab Pro 8 and SPSS version 23 were used to analyze the data. The frequency test and
q-q graphs were used to examine the data for the normality and uniformity of variations.
Given that the data met the requirements for ANOVA, parametric tests were selected. To
identify significant variations (p < 0.05) within the data, one-way ANOVA was conducted.
To explore potential pollution sources, principal component analysis (PCA) was employed,
utilizing varimax rotation and retaining major components with eigenvalues greater than
one, following the Kaiser criteria.

3. Results and Discussion
3.1. Distribution of Particles and MPs in Samples

The distribution of particles in street dust samples and the quantity of microplastics
are presented in Figure 3, while some photographs of the different MP shapes identified
are presented in Figure 4. In all samples during the different lockdown conditions, the
dust contained a smaller proportion of MPs, i.e., 47.3%, 42.8%, and 42.1% during without,
partial, and complete lockdown periods, respectively (Figure 3a–c), compared to other
particles such as glass. In general, the highest number of other particles/g of street dust was
found in public facilities areas (19.33 particles/g), followed by industrial, commercial, and
residential areas. However, the maximum number of MP particles/g of street dust sample
was recorded from industrial areas (17.33 MP particles/g) and the minimum number was
recorded from residential area (13.99 MP particles/g) during the without lockdown period
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(Figure 3d). In Chennai metropolitan city, India, lower concentrations (2.2 MP particles/g)
were reported by Arunkumar et al. [40]. However, higher concentrations were reported in
the street dust of Bushehr city, Iran [41]; Da Nang, Vietnam; and Kusatsu, Japan [42].
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The trend in MPs in one gram of dust was as follows: without lockdown > partial
lockdown > complete lockdown (Figure 3d). With complete lockdown measures in place,
there was a significant reduction in human activity and vehicular traffic on the streets.
This reduction in traffic means that there was less wear and tear on the tires of vehicles,
which is a significant source of microplastics in the environment [28]. As a result, there may
be a decrease in the amount of microplastics that are released into the air and ultimately
deposited onto street surfaces. Furthermore, the reduction in human activity, such as
outdoor recreation, also contributed to the reduced quantity of MPs in the dust during
complete lockdown.

The shapes of the MPs in the dust samples are presented in Figure 4. Regarding the
fragment, the visuals depict a surface that is quite uneven or with sharp edges and crevices,
which suggests that it has been separated from a larger piece of plastic material. Concerning
the line, the picture displayed a form that resembled a strand or a lengthy and narrow
impression or stroke, which is greater in length than in width. On the other hand, the film
appeared like a slim sheet [29]. Multiple studies have reported the presence of these shapes
in street dust in many world cities [28,41,42].
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3.2. FTIR Analysis for Type Identification of MPs in Street Dust 
The FTIR technique is a versatile method of vibrational spectroscopy that can be em-

ployed to examine a wide range of polymers. An infrared spectrum serves as a distinctive 
characteristic of a substance, with absorption peaks corresponding to the frequencies of 
atomic vibrations within the material. As each polymer consists of a distinct blend of at-
oms, no two compounds have identical infrared spectra [44]. Using the FTIR technique, 
plastic samples with unique visual appearances were examined, and the resulting spectra 
are displayed in Figure 5. The spectra were matched and interpreted using Openspecy 
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3.2. FTIR Analysis for Type Identification of MPs in Street Dust

The FTIR technique is a versatile method of vibrational spectroscopy that can be em-
ployed to examine a wide range of polymers. An infrared spectrum serves as a distinctive
characteristic of a substance, with absorption peaks corresponding to the frequencies of
atomic vibrations within the material. As each polymer consists of a distinct blend of
atoms, no two compounds have identical infrared spectra [43]. Using the FTIR technique,
plastic samples with unique visual appearances were examined, and the resulting spectra
are displayed in Figure 5. The spectra were matched and interpreted using Openspecy
software with standard spectrums (for the peak assignment, see Table S1). The similarities
in the main peaks and a minimum match of 90% with standard spectrums were taken as a
confirmation of the plastic type. The FTIR spectra of MPs from the street dust indicate that
the MPs were degraded [44] and included as high-density polyethylene (HDPE), nylon 6,
polyacrylamide (PAA), polydimethylsiloxane (PDMS), polypropylene (PP), fiber, cellu-
lose, polyethylene terephthalate (PET), polyvinyl alcohol (PVA), low-density polyethylene
(LDPE), polyethylene (PE), and polychloroprene (PCP), during without and partial lock-
down conditions (Figure 5a,b). Meanwhile, during complete lockdown, the MPs identified
included 10 types, namely cellulose, fiber, PP, PDMS, PCP, PVA, PE, HDPE, LDPE, and
polyoxymethylene (POM) (Figure 5c). The reduction in the number of MP types during
complete lockdown is attributed to the complete turnoff of human activities within the
study area.
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In Figure 6, the quantity of MP types in the street dust from different land-use cate-
gories during the different lockdown conditions is presented. PET was only identified in
public facilities areas (1.33 particles/g) during the without lockdown condition, while it
was only present in dust from industrial area (2.33 particles/g) during partial lockdown and
was not detected during complete lockdown. Furthermore, during the different lockdown
conditions, POM (1 MP/g) and PAA (1 MP/g) were only detected during the complete
lockdown at public facilities areas and residential areas, respectively. POM MPs have
been found in various environmental samples, such as water, sediment, and fish, collected
from the remote Dafeng River in China, according to a study by Liu et al. [45]. These MPs
could have originated from sources on land or in the ocean, as stated by Sfriso et al. [46].
The unique properties of this polymer, including excellent mechanical strength, durability,
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stability, chemical resistance, and insulation, make it a popular material in various indus-
tries, such as electronics, automotive, and consumer goods. It is also utilized in medical
applications, such as surgical implants, drug-delivery systems, and medical devices, as
described in studies by Król-Morkisz et al. [47] and Tang et al. [48].
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Figure 6. Quantity (mean) of MP types in the street dust from different land-use categories during
the different lockdown conditions.

The distribution of the different polymers is presented in Figure S1. During the
without lockdown condition, PP was the most abundant in industrial areas (19%) and
commercial areas (25%), while fiber (32%) and cellulose (21%) were the most abundant
MPs in public facilities and residential areas (Figure S1). This result for industrial areas
agrees with [49], who found that polypropylene (PP) was the dominant polymer detected
in road dust in an industrial area in Myanmar. During partial lockdown, PP was still the
most abundant in the industrial area (20%), while PDMS (17%) was the most abundant in
commercial areas. Furthermore, cellulose and fiber were still the most abundant in public
facilities and residential areas. However, during complete lockdown, there were some
changes in MP type distributions, cellulose (17%), PP (20%), PP/fiber (20%), and PCP (20%)
showed the most abundance in industrial, commercial, public facilities, and residential
areas, respectively. Geobags made of polyester, which are widely used in Bangladesh,
should release microfibers into the air and street dust and could explain the why there
are more fibers in the area. However, changes in MP type distributions during lockdown
may be due to changes in human behavior, such as reduced traffic and industrial activity,
which can affect the types and quantities of MPs that are generated and released into the
environment [44]. The fact that different MP types are more prevalent in different areas
suggests that different sources of MPs may be responsible for pollution in different areas of
the city. The results in this study are similar to that in research conducted in Bushehr city,
Iran, where fibers were abundant, constituting 75% of the MPs in street dust samples [50].
Other types of MPs were coming to the street dust from the discharge of plastic items [29].

3.3. Source Appraisal by Principal Component Analysis (PCA) for MPs in Street Dust

To determine the source(s) of microplastics (MPs) found in the dust samples, principal
component analysis (PCA) was carried out. PCA is a technique that reduces the dimensions
of a data set by using a small number of independent variables, referred to as “principal
components”, which explain most of the variance in the data [29]. Using an orthogonal
transformation approach, the first principal component, which captures the most variation
in the original data, is obtained. By limiting subsequent components to be orthogonal to
all preceding components, often through eigenvalue decomposition as part of a matrix
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operation, subsequent components are found. Eigenvectors with the highest eigenvalue
(>1) make up the bulk of the data set.

PCA biplot analysis conducted during different lockdown conditions revealed inter-
esting insights into the sources of microplastics (MPs) in dust samples (Figure 7). The
extraction of two principal components (PCs) allowed for the visualization of the disper-
sion of MPs in space and provided a clearer understanding of the different groupings of
MPs [51]. During the period without lockdown, the results showed that multiple sources
were responsible for the presence of MPs in the dust samples (Figure 7a). This finding is not
surprising as MPs can originate from various sources, including plastic waste, synthetic tex-
tiles, and personal care products. However, the presence of closely grouped MP types, such
as PAA/PET/nylon, fiber/cellulose, PE/PVA, and PCP/PP/HDPE, suggests that these
specific groups of MPs may have similar sources. For instance, the PAA/PET/nylon group
of MPs could be attributed to the degradation of plastic packaging materials or discarded
synthetic textiles made from these materials [44]. The fiber/cellulose group of MPs could
be attributed to the wear and tear of natural textile fibers, such as cotton and wool [44],
while the PE/PVA group may be related to the degradation of plastic bags and packaging
materials. The PCP/PP/HDPE group could be related to the degradation of various plastic
products, including bottles, containers, and other single-use plastic items [44].
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The results of the partial lockdown period in PCA biplot analysis (Figure 7b) showed
that the cellulose/LDPE/HDPE, PCP/PET/PP/PAA/nylon, and PE/PDMS/PVA/fiber
groups of microplastics (MPs) were closely grouped, indicating that they may have similar
sources. The cellulose/LDPE/HDPE group of MPs may have originated from the degra-
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dation of plastic packaging materials, such as bags and bottles, or from other sources of
cellulose fibers, such as paper and cardboard. The PCP/PET/PP/PAA/nylon group of
MPs could be attributed to the degradation of plastic products, such as bottles, containers,
protective equipment, and other single-use plastic items, as well as discarded synthetic
textiles made from these materials. The PE/PDMS/PVA/fiber group may have arisen
from a variety of sources, including synthetic textiles, personal care products, and plastic
packaging materials.

However, during complete lockdown, the PCA biplot showed multiple sources of
MPs (Figure 7c). The similar grouping of these MP types suggests that they may share
similar sources of origin, which could include plastic waste and other products made of
synthetic materials. These sources may include plastic packaging materials, single-use
plastic items, and discarded synthetic textiles. Additionally, the presence of cellulose fibers
in the groupings may suggest that natural materials may also be contributing to the release
of MPs into the environment. In general, the identification of similar sources of MPs in these
groupings highlights the importance of implementing measures to mitigate the release of
MPs from these sources. This could include reducing the use of single-use plastic items,
promoting the use of natural and biodegradable materials, improving waste-management
practices, and implementing stricter regulations on the use and disposal of plastic products
in Bangladesh.

3.4. Health Risk Assessment of MPs in Street Dust

Based on their composition, MPs may offer non-carcinogenic health risks, which were
computed, and the findings are shown in Table 2. The pRi are divided into low (less than
150), medium (150–300), considerable (300–600), high (600–1200), and very high (more
than 1200) categories [52]. Following the classification, the MPs in dust pose low non-
carcinogenic risk to inhabitants of the study area and across lockdown periods, and there
were no significant differences for some MP types. However, among all MP types, the
highest risks were recorded for POM (87.10), followed by PAA (14.69 to 40.94). Exposure
to POM and PAA can pose non-carcinogenic health risks, such as skin and eye irritation,
respiratory irritation, gastrointestinal effects, neurological effects, allergic reactions, and
reproductive and developmental effects [53]. The degree and duration of exposure, as well
as the concentration and form of PAMs, can influence the level of risk.

Table 2. Non-carcinogenic risks of MPs in different land use of street dust during without (WL),
partial (PL), and complete lockdown (CL) periods.

MPs Industrial Area Commercial Area Public Facilities Area Residential Area

WL PL CL WL PL CL WL PL CL WL PL CL

Polymer risk indices (pRi)

PE 1.91 - 1.92 1.35 1.88 0.63 - 1.78 1.46 1.83 1.89 0.92
PP 0.19 0.20 0.08 0.25 - 0.20 0.06 0.0 0.20 0.14 0.14 0.08

PVA 0.06 0.09 0.15 0.06 0.15 0.09 - 0.08 0.10 0.09 0.17 -
HDPE 0.63 - 1.65 1.35 1.35 - 0.70 1.78 - 0.79 - 1.83
LDPE - - - - 1.61 0.94 - 0.89 1.10 1.05 - 0.92

PS - - - 1.84 - - - - - - - -
PET - 0.62 - - - - 0.34 - - - - -
PAA - 40.94 - - - - 14.69 - - - - 19.17

Nylon 6 - 4.17 - - - - 3.00 - - - -
PA - 5.57 - - - - - - - - - -

PDMS - - - - - 0.14 - - - 0.086 -
POM - - - - - - - - 87.10 - - -

Total polymer risk indices (pRt)

pRt 0.34 1.48 0.44 0.55 1.48 0.27 0.92 0.45 1.23 0.52 0.25 1.19
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A person’s lifetime probability of getting cancer is determined by their carcinogenic
risks (CRs). To calculate the lifelong risk of the affected groups because of exposure to
MPs from dust, the ingestion and inhalation cancer slope factor was used. Table 3 lists
the carcinogenic dangers to MPs from inhaling and ingesting grit. The outcomes were
compared to the permissible cancer risk limit set by the US Environmental Protection
Agency, which is 1 × 10−6 to 1 × 10−4 [54].

Table 3. Carcinogenic risk (CR) and cumulative carcinogenic risk (CCR) of children and adults due
to ingestion and inhalation of MPs in different land use of street dust during without, partial, and
complete lockdown periods.

MPs Industrial Area Commercial Area Public Facilities Area Residential Area

WL PL CL WL PL CL WL PL CL WL PL CL

Cancer risk (CR) via ingestion pathway

PE 8.11 ×
10−13 - 1.89 ×

10−12
1.62 ×
10−12

1.89 ×
10−12

5.43 ×
10−13

1.62 ×
10−12

1.08 ×
10−12

1.89 ×
10−12

1.62 ×
10−12

8.11 ×
10−13

PP 6.35 ×
10−13

5.72 ×
10−13

1.91 ×
10−13

7.63 ×
10−13 - 4.45 ×

10−13
1.91 ×
10−13

1.91 ×
10−13

3.82 ×
10−13

3.82 ×
10−13

2.54 ×
10−13

4.45 ×
10−13

PET - 1.89 ×
10−12 - - - - 1.08 ×

10−12 - - - - -

PA - 5.97 ×
10−12 - - - - - - - - - -

PAA - 9.55 ×
10−12 - - - - 7.16 ×

10−12 - - - - 3.58 ×
10−12

HDPE 1.62 ×
10−12 - 1.62 ×

10−12
1.62 ×
10−12

1.89 ×
10−12 - 8.11 ×

10−13
1.35 ×
10−12 - 1.08 ×

10−12 - 1.35 ×
10−12

LDPE - - - - 1.62 ×
10−12

1.62 ×
10−12

8.11 ×
10−13

8.11 ×
10−13

8.11 ×
10−13 - 8.11 ×

10−13

Cancer risk (CR) via inhalation pathway

PE 6.08 ×
10−11 - 1.42 ×

10−10
1.22 ×
10−10

1.42 ×
10−10

4.07 ×
10−11 - 1.22 ×

10−10
8.09 ×
10−11

1.42 ×
10−10

1.22 ×
10−10

6.08 ×
10−11

PP 4.76 ×
10−11

4.29 ×
10−11

1.43 ×
10−11

5.72 ×
10−11 - 3.33 ×

10−11
1.43 ×
10−11

1.43 ×
10−11

2.86 ×
10−11

2.86 ×
10−11

1.90 ×
10−11

3.33 ×
10−11

PET - 1.42 ×
10−10 - - - - 8.09 ×

10−11 - - - - -

PA - 4.48 ×
10−10 - - - - - - - - - -

PAA - 7.16 ×
10−10 - - - - 5.36 ×

10−10 - - - - 2.68 ×
10−10

HDPE 1.22 ×
10−10 - 1.22 ×

10−10
1.22 ×
10−10

1.42 ×
10−10 - 6.08 ×

10−11
1.02 ×
10−10 - 8.09 ×

10−11 - 1.02 ×
10−10

LDPE - - - - 1.22 ×
10−10

1.22 ×
10−10 - 6.08 ×

10−11
6.08 ×
10−11

6.08 ×
10−11 - 6.08 ×

10−11

Cumulative cancer risk (CCR) via ingestion and inhalation pathway

PE 6.16 ×
10−11 - 1.44 ×

10−10
1.23 ×
10−10

1.44 ×
10−10

4.13 ×
10−11

1.23 ×
10−10

8.19 ×
10−11

1.44 ×
10−10

1.23 ×
10−10

6.16 ×
10−11

PP 4.83 ×
10−11

4.35 ×
10−11

1.45 ×
10−11

5.80 ×
10−11 - 3.38 ×

10−11
1.45 ×
10−11

1.45 ×
10−11

2.90 ×
10−11

2.90 ×
10−11

1.93 ×
10−11

3.38 ×
10−11

PET - 1.44 ×
10−10 - - - - 8.19 ×

10−11 - - - - -

PA - 4.54 ×
10−10 - - - - - - - - - -

PAA - 7.26 ×
10−10 - - - - 5.44 ×

10−10 - - - - 2.72 ×
10−10

HDPE 1.23 ×
10−10 - 1.23 ×

10−10
1.23 ×
10−10

1.44 ×
10−10 - 6.16 ×

10−11
1.03 ×
10−10 - 8.19 ×

10−11 - 1.03 ×
10−10

LDPE - - - - 1.23 ×
10−10

1.23 ×
10−10 - 6.16 ×

10−11
6.16 ×
10−11

6.16 ×
10−11 - 6.16 ×

10−11

By comparing with USEPA limits, the MPs in the dust do not pose carcinogenic risks to
inhabitants. However, during lockdown periods, PP in dust from all land-use areas showed
the highest carcinogenic risks via ingestion. PE showed the highest carcinogenic risks
via ingestion of dust only during complete lockdown at commercial and residential areas.
HDPE during the without lockdown period at industrial areas and residential areas showed
the highest carcinogenic risk via the ingestion pathway. Furthermore, LDPE showed the
highest carcinogenic risks via ingestion in all computed samples, except for commercial
areas during partial lockdown and residential areas during the without lockdown period.
The results generally suggest that certain types of polymers, specifically PP, PE, HDPE,
and LDPE, may pose carcinogenic risks to human health via ingestion of dust over a
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prolonged period of time. The level of risk varies based on the type of polymer and the
specific circumstances, such as the level of lockdown and the land-use area. Polypropylene
(PP), polyethylene (PE), high-density polyethylene (HDPE), and low-density polyethylene
(LDPE) are all considered to be relatively safe and non-carcinogenic when used in their
intended applications. However, specific carcinogenic risks of these polymers are yet to
be established.

The inhalation exposure pathway showed values for MPs outside the recommended
range, but they will not pose carcinogenic risks due to their low CR values (Table 3). The
cumulative cancer risks followed similar trends as the ingestion pathway. Furthermore,
looking critically at the results, the cancer risks decreased from the without lockdown to
complete lockdown period, which could be due to reduced human activities. Generally,
it is important to note that these results are based on computed samples and may not
necessarily reflect real-world exposure levels. However, the findings do suggest that there
may be a need for further research and potentially regulatory action to address the potential
health risks associated with these polymers.

4. Conclusions

The current study investigated the abundance of microplastics (MPs) in street dust
samples from different areas in Dhaka city, Bangladesh to determine their potential origins
and health risks. The findings revealed higher concentrations of MPs in industrial regions,
followed by commercial, public, and residential areas. Human activities significantly
influence the generation and distribution of MPs, as evidenced by changes during lockdown
periods. Identifying similar sources of MPs highlights the need for measures to mitigate
their release, such as reducing single-use plastics, promoting biodegradable materials, and
improving waste management. The risk assessment showed low non-carcinogenic risks
for inhabitants, while certain polymers (PP, PE, HDPE, and LDPE) may pose carcinogenic
risks when ingested via dust. Further research and potential regulatory action are needed
to address these health risks. Although reduced human activities during lockdowns can
decrease cancer risks, the study’s reliance on computed samples may not fully reflect
real-world exposure levels. Finally, understanding and addressing potential health risks
from polymer exposure remains crucial.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/environments10070130/s1, Table S1: FTIR spectra peak assignment for the
MP type identification; Figure S1: Distribution of MP types in dust from different land-use categories.
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