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Abstract: The discharge of untreated oily wastewater into the environment has serious impacts on
human health, living nature, and ecosystems and leads to significant economic losses. Many engi-
neering techniques have been proposed and applied to treat oily wastewater, but limited studies have
investigated low-cost and effective techniques using by-products and waste/scrap materials from the
construction industry. Materials to treat oily wastewater are needed not only to mitigate environmen-
tal pollution but also to promote the reuse and recycling of industrial by-products, especially in devel-
oping countries. This study, therefore, examined the sorption capacity of dispersed oil in wastewater
(dispersed soybean oil in water; initial oil concentrations, Ci = 10–1000 mg/L; oil droplet size in water
<2 µm) onto the hydrophobized/oleophilized autoclaved porous aerated concrete (AAC) grains made
from waste scrap in Vietnam by using batch sorption tests in the laboratory. The AAC grains (sizes
0.106–0.25, 0.25–0.85, and 0.85–2.00 mm) were hydrophobized/oleophilized using oleic and stearic
acids (coating concentrations of 1.0, 5.0, and 10 g/kg), and two sands (0.18–2.00 and 0.30–2.00 mm)
were used as control samples. The results showed that the hydrophobized/oleophilized AAC grains
had high sorption capacity for dispersed oil (i.e., high oil removal efficiency) compared to the control
sands. Especially, the removal of AAC grains coated with stearic acid was >80% in high oil concen-
tration solutions (Ci = 100 and 1000 mg/L), indicating that the hydrophobized/oleophilized AAC
grains have high potential as useful adsorbents to trap dispersed oil in oily wastewater. Moreover,
adsorption isotherms were drawn to examine the sorption characteristics of dispersed oil onto AAC
grains. For all tested samples, the sorption of dispersed oil increased linearly with increasing equilib-
rium concentration. The commonly used Langmuir model, on the other hand, did not capture the
measured isotherms.

Keywords: dispersed oil; oily wastewater; autoclaved aerated concrete (AAC); sorption; Vietnam

1. Introduction

The improper discharge and treatment of oily wastewater cause water pollution. In
particular, developing countries with rapid urbanization, industrialization, and population
growth face severe water pollution from oily wastewater, seriously affecting human health
and natural ecosystems [1–3]. For example, Vietnam (one of the growing, developing
countries) reports that improper treatment of oily wastewater and oil spills from human
activities and industry have caused severe water pollution throughout the country, with
the total amount of oil and grease exceeding environmental standards [4–6]; see also
Tables A1–A3 in the Appendix A. Therefore, urgent action is required to conserve the water
environment and sustainable development [1–3].

The treatment of oily wastewater is required worldwide, and the allowable concen-
tration of fats and oils must be regulated before the treated wastewater is released into
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the environment. The Water Pollution Prevention Act (1970) of Japan, for example, limits
the maximum permissible levels of treated water discharge to 5 mg/L for mineral oil and
30 mg/L for animal and vegetable oils. In Vietnam, on the other hand, the permissible
levels of surface water, groundwater, seawater, and others range between 0.05–1.0 mg/L,
and the permissible levels of animal and vegetable oils and grease in domestic wastewater
and specific wastewater from industrial and service sectors range between 5–30 mg/L
depending on the destination of the discharge (see national standards shown in Table A1
of the Appendix A; note that the oil and wastewater standards in Vietnam are similar to
those in Japan [7–18]).

Now, many technologies have been developed and applied to treat oily wastewater [19–22].
Among them, oil/water separation technologies that use hydrophobic and lipophilic mem-
branes, meshes, and grains as filtration and adsorption materials have been intensively de-
veloped due to their high treatment performance and cost-effectiveness, e.g., [23]. Since the
oil/water separation technology does not require centralized wastewater collection systems
or large numbers of water treatment tanks and ponds, it can be incorporated into small-scale
decentralized wastewater treatment systems with fixed-bed filtration tanks and floating filtra-
tion devices for domestic wastewater in rural areas (small number of households) generated
from food processing factories and craft production villages in developing countries including
Vietnam [24]. The oil/water separation technique, however, mainly targets treating oil and
grease in wastewater existing in the forms such as free and floating oil [25–28]. Limited studies
have been conducted to treat the dispersed oil in wastewater (the typical size of oil droplet
ranges in the scale of µm to nm), and the adsorption capacity and mechanism of dispersed oil
in water onto adsorbent grains have not been fully examined [29–36].

In Vietnam, moreover, construction and demolition waste (CDW) has not been fully
reused and recycled and is mostly dumped without any treatment [37–39]. Among CDW,
autoclaved aerated concrete (AAC) has a unique pore structure consisting of inner pores
(µm to nm scale) and inter-pores (mm to µm scale) [40–45]. It has been reported that
crushed AAC grains act as good sorbents for the simultaneous removal of Cd2+ and
Pb2+ in wastewater [46,47]. In addition, the AAC grains, as well as stearic acid coated
(i.e., hydrophobized/oleophilized) AAC grains, showed high performance of oil and
removal chemical oxygen demand (COD) in the filtration flow system in the laboratory [48].
These suggest that the AAC grains may act as effective adsorbents to treat dispersed oil
in wastewater.

This study, therefore, aimed to assess the sorption capacity of dispersed oil onto AAC
grains as well as hydrophobized/oleophilized AAC grains coated with oleic and stearic
acids using batch sorption tests in the laboratory. For comparing the sorption capacity of
AAC grains, commercially-available filtration sands were also used as control samples.
Moreover, the applicability of typical adsorption isotherm models (Langmuir, Freundlich,
and linear) was examined against the measured data from batch sorption tests.

2. Materials and Methods
2.1. AAC Grains and Sands

AAC scrap was obtained from Viglacera Joint Stock Company, Bac Ninh Province,
Vietnam (21◦11′50.8′′ N, 106◦00′42.8′′ E) [49]. These were crushed into 10 mm or fewer
grains, and the grains were gently washed with a low-foaming neutral detergent and
thoroughly rinsed with distilled water. The AAC grains were then air-dried and sieved into
three particle size fractions: 0.106–0.250 mm, 0.250–0.850 mm, and 0.850–2.00 mm [50]. For
comparison with test data for AAC grains, two commercially available grains of control
sands of particle size fractions: 0.18–2.00 mm and 0.30–2.00 mm (Nippon Genryo Material
Co., Ltd., Kanagawa, Japan) meeting Japanese filtration standards [51] were also used in
this study.
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2.2. Hydrophobic Agents and Coating

Two hydrophobic agents (HA), stearic acid and oleic acid (SA and OA), were chosen to
hydrophobized/oleophilized coat the grains tested in this study [48,52–56]. OA (Chemical
formula: CH3(CH2)7CH/CH(CH2)7COOH molar mass: 282.46 g/mol, density: 0.895 g/cm3)
(Kanto Chemical, Tokyo, Japan) and SA (Chemical formula: CH3(CH2)16COOH, molar mass:
284.47 g/mol, density: 0.940 g/cm3) (Fuji Film Wako Pure Chemicals, Tokyo, Japan) were
used. Both OA and SA are materials that are harmless to humans and the environment and
are inexpensive in Vietnam.

The hydrophobized/oleophilized coating was performed according to [56]. The target
HA concentrations were OA, SA = 0, 1, 5, 10 g/kg for AAC and OA, SA = 0, 2, 5 g/kg for
sands, following the results of [56].

2.3. Dispersed Oil

This study used soybean oil (Wako 1st Grade; Fujifilm Wako Pure Chemicals Corpora-
tion, Tokyo, Japan), a domestic oil commonly consumed in Vietnam, and liquid at room
temperature [57]. Figure 1a shows an image of dispersed oil (soybean oil) after treatment
with ultrasonic oil in water at each initial concentration (Ci = 0, 10, 50, 100, 1000 mg/L).
In this study, dispersed oil was targeted, so soybean oil was dispersed with an ultrasonic
device (UP400st, Hielscher, Germany).

Figure 1. (a) Dispersed oil (soybean oil) after ultrasonic mixing. (b) Before and after batch sorption
test of dispersed oil (Ci = 1000 mg/L).

Figure 2 shows the particle size distributions of dispersed oil in water measured by
a laser diffraction nanoparticle size distribution analyzer (SALD–7100, Shimadzu, Kyoto,
Japan). For both Ci = 1000 mg/L and Ci = 100 mg/L, dispersed oil had stable particle sizes
for 24 h. In addition, the most frequent particle size was about 0.1–1.0 µm.
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Figure 2. Particle size distributions of the dispersed oil in water.

2.4. Batch Sorption Test

Batch sorption tests were carried out following protocols of the OECD (2000) [58]. The
horizontal shaking speed was modified from 100 rpm/min to 20 rpm/min in this study
to avoid the peeling of the coated hydrophobic agents (the same as ASTM F726–99 [59]).
The liquid–solid ratio (L/S) was set to 10, and the horizontal shaking times were set to 1, 3,
6, 12, 24, and 48 h at 20 ◦C. Before and after the batch test of tested samples are shown in
Figure 1b.

2.5. Analysis

The oil concentration of the separated oil in water was measured by an oil content
analyzer (OCMA–505–H, Horiba, Kyoto, Japan). Figure 3 compares the oil concentration
of the n–hexane extract and the oil concentration measured by the oil content analyzer.
A good linear relationship could be seen, so the actual value of the oil concentration was
taken as the value obtained by multiplying the output value of the oil concentration meter
by the linear regression equation in this study (y = 0.42x; R2 = 0.99).

Using this relationship, the equilibrium concentration Ce can be set for the measured
oil concentration C from Equation (1) in the case of OA, SA = 0 g/kg:

Ce = C/0.42 (1)

In the case of OA, SA = 1, 2, 5, 10 g/kg:

Ce = (C − C0)/0.42 (2)

where C0 is the oil concentration of Ci = 0 mg/L when OA and SA are 1, 2, 5, and 10 g/kg.
Using the measured Ci and Ce, the removal percentage of dispersed oil in water (R, %) was
calculated by Equation (3):

R = 100 × (Ci − Ce)/Ci (3)
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The oil sorption amount at equilibrium (mg/g) was obtained in Equation (4):

qe = (Ci − Ce)V/1000 × ms (4)

where V is the sorbate volume (=100 mL of dispersed oil in water), and ms is the sorbent
amount (=10 g of AAC grains or sand).

Figure 3. Relationship between oil concentration measured by oil concentration analyzer and normal
hexane measurement.

3. Results and Discussions
3.1. Effects of Shaking Time on Removal of Dispersed Oil in Water

Figure 4 shows the effect of shaking time on the removal of dispersed oil, R (%),
for tested AAC grains with different sizes at Ci = 1000 mg/L. Although some variations
in measured R values for all tested samples (non–coated, OA–, and SA–coated) were
observed, the R values mostly increased with increased shaking time and became stable at
24 h of shaking. This suggests that the sorption process of dispersed oil onto AAC grains
(especially 0.250–0.850 and 0.850–2.00 mm in Figure 4b,c) depends on the contact time
to some extent and that 24 h of shaking time would be suitable to examine the sorption
capacity of tested AAC grains.
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Figure 4. Measured removal percentage of dispersed oil in water (R, %) values for AAC grains with
different shaking times at Ci = 1000 mg/L: (a) 0.106–0.25 mm, (b) 0.25–0.85 mm, (c) 0.85–2.00 mm.
Error bars indicate standard deviations of measured data.
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3.2. Effect of Initial Dispersed Oil Concentration on Removal Percent of Dispersed Oil

Measured R values for all tested AAC grains with different coating percent (OA/SA = 0
(non–coated), 1, 5, and 10%) at Ci = 10, 50, 100, and 1000 mg/kg are shown in Figure 5.
Overall, the grain size of AAC did not affect the measured R values for tested uncoated,
OA–coated, and SA–coated samples in this study. For low Ci solutions such as 10 and
50 mg/L, AAC grains coated with OA = 1 g/kg (Figure 5b) and SA = 1 g/kg (Figure 5e)
removed dispersed oil well, and measured R values became >80% irrespective of grain size.
For high Ci solutions such as 100 and 1000 mg/L, on the other hand, high SA–coated AAC
grains (10 g/kg in Figure 5g) gave high R values of >80%. It is interesting that non–coated
AAC grains also removed the high-concentration dispersed oil solution (Ci = 1000 mg/L)
well, and the R values became > 80% (Figure 5a).

Based on the measured R values in this study, the coating of hydrophobic/oleophilic
agents yields both positive and negative effects on AAC grains (adsorbents) from the
viewpoint of removal of dispersed oil in water. As shown by Matsuno and Kawamoto, the
coating of AAC grains with hydrophobic/oleophilic agents reduces the specific surface area
of AAC grains and affects the hydrophobicity/oleophilicity of AAC grain surface in wa-
ter [56]. Moreover, the affinity between dispersed oil and the hydrophobized/oleophilized
AAC grain surface depended on the initial dispersed oil concentration, resulting in suitable
coating conditions that gave high R values. This strongly suggests that suitable coating
should be examined against the concentration of the target oily wastewater.

Figure 6, for reference, shows the measured R values of control sands with different
sizes at Ci = 10, 50, 100, and 1000 mg/L. The measured R values were lower than those
from AAC grains (Figure 5) in the whole range of Ci. Especially, the coating of hydropho-
bic/oleophilic agents for sands did not contribute to the removal of dispersed oil at the low
concentration of Ci = 10 mg/L (i.e., R values became <5%).

3.3. Application of Adsorption Isotherm Models to Characterize the Dispersed Oil Sorption onto
AAC Grains

In order to understand the sorption properties of dispersed oil in water onto AAC
grains, adsorption isotherm models, the Langmuir model [60], the Freundlich model [61],
and a simple linear model commonly used to characterize the adsorption process and
mechanism of dissolved ions and metals onto adsorbents were applied. The Langmuir
model described the relationship between Ce and qe:

Ce/qe = 1/(bqmax) + Ce/qmax (5)

where qmax (mg/g) is the maximum adsorption capacity, and b (L/mg) is the Langmuir
constant related to binding strength. The Freundlich model is described as follows:

qe = KFCe
1/n (6)

where KF (mg/g) is the Freundlich constant and 1/n is the adsorption intensity factor or
surface heterogeneity. A simple linear adsorption model is described:

qe = KdCe (7)

where Kd is the linear adsorption coefficient (L/mg).
The fitted parameters for adsorption isotherms models are summarized in Table 1,

and the measured relationship between Ce and qe for non–coated AAC grains, non–coated
Sands, AAC grains coated at OA/SA = 5 g/kg, and Sands coated at OA/SA = 5 g/kg are
exemplified in Figure 7.
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Figure 5. Measured removal percentage of dispersed oil in water (R, %) for AAC grains with different sizes and different coating conditions at Ci = 10, 50, 100, and
1000 mg/kg. Error bars indicate standard deviations of measured data.



Environments 2023, 10, 92 9 of 21

Figure 6. Measured removal percentage of dispersed oil in water (R, %) for sands with different sizes and different coating conditions at Ci = 10, 50, 100, and
1000 mg/kg. Error bars indicate standard deviations of measured data.
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Figure 7. Relationship between qe and Ce for AAC grains and Sands.



Environments 2023, 10, 92 11 of 21

Table 1. Measured and reported parameters for adsorption isotherm models.

Langmuir Freundlich Linear

Sample Particle Size
(mm)

Coating
(g/kg)

qmax
(mg/g)

b
(L/mg) R2 1/n KF

(mg/g) R2 Kd
(L/mg) R2 Target Oil Ref.

AAC 0.106–0.25 0 8.6 7.3 × 10−3 0.97 1.7 3.0 × 10−3 0.99 6.1 × 10−2 0.99 Soybean oil * This Study

0.25–0.85 9.4 1.7 × 10−2 0.86 3.0 6.3 × 10−5 0.99 1.4 × 10−1 0.94

0.85–2.00 8.9 8.9 × 10−3 0.99 1.5 8.6 × 10−3 0.99 7.8 × 10−2 0.99

0.106–0.25 OA = 1 9.0 1.0 × 10−2 0.98 0.92 1.2 × 10−1 0.99 9.1 × 10−2 0.99

0.25–0.85 6.6 2.9 × 10−3 0.96 0.70 8.9 × 10−2 0.98 1.9 × 10−2 0.99

0.85–2.00 8.5 6.7 × 10−3 0.85 1.0 4.0 × 10−2 0.99 5.6 × 10−2 0.99

0.106–0.25 OA = 5 8.9 8.7 × 10−3 0.81 1.3 2.6 × 10−2 0.99 7.7 × 10−2 0.99

0.25–0.85 7.6 4.1 × 10−3 0.93 1.1 2.1 × 10−2 0.99 3.1 × 10−2 0.99

0.85–2.00 7.3 3.7 × 10−3 0.94 1.4 3.6 × 10−3 0.99 2.7 × 10−2 0.99

0.106–0.25 OA = 10 9.1 8.5 × 10−3 0.82 3.0 8.3 × 10−6 0.99 1.0 × 10−1 0.99

0.25–0.85 6.9 3.0 × 10−3 0.96 2.1 4.2 × 10−5 0.99 2.3 × 10−2 0.99

0.85–2.00 6.7 2.8 × 10−3 0.96 1.6 7.8 × 10−4 0.99 2.0 × 10−2 0.99

0.106–0.25 SA = 1 7.8 4.5 × 10−3 0.92 0.89 6.9 × 10−2 0.99 3.5 × 10−2 0.99

0.25–0.85 7.7 4.4 × 10−3 0.93 0.73 1.4 × 10−1 0.99 3.4 × 10−2 0.99

0.85–2.00 6.3 6.2 × 10−2 0.39 0.60 1.8 × 10−1 0.99 1.7 × 10−2 0.99

0.106–0.25 SA = 5 8.6 6.9 × 10−3 0.86 1.6 4.5 × 10−3 0.99 6.0 × 10−2 0.99

0.25–0.85 7.1 1.2 × 10−2 0.75 1.0 2.3 × 10−2 0.99 2.5 × 10−2 0.99

0.85–2.00 7.8 4.6 × 10−3 0.74 1.2 2.0 × 10−2 0.99 3.6 × 10−2 0.99

0.106–0.25 SA = 10 8.4 6.3 × 10−3 0.87 1.2 2.8 × 10−2 0.99 5.3 × 10−2 0.99

0.25–0.85 8.3 1.3 × 10−2 0.73 0.95 7.6 × 10−2 0.99 4.8 × 10−2 0.99

0.85–2.00 9.0 1.0 × 10−2 0.78 1.3 2.3 × 10−2 0.99 9.0 × 10−2 0.99

Sands 0.18–2.00 0 3.3 1.5 × 10−3 0.99 1.5 2.0 × 10−2 0.99 4.9 × 10−3 0.99 Soybean oil * This Study

0.30–2.00 5.2 2.1 × 10−3 0.97 1.7 5.6 × 10−3 0.99 1.1 × 10−2 0.99

0.18–2.00 OA = 2 4.1 1.7 × 10−3 0.96 1.8 1.8 × 10−5 0.99 6.8 × 10−3 0.98

0.30–2.00 OA = 5 4.7 1.8 × 10−3 0.98 2.0 3.3 × 10−5 0.99 8.7 × 10−3 0.99

0.18–2.00 OA = 2 5.4 2.1 × 10−3 0.96 2.8 3.7 × 10−7 0.99 1.1 × 10−2 0.99

0.30–2.00 OA = 5 3.9 1.6 × 10−3 0.98 2.2 5.9 × 10−6 0.99 6.3 × 10−3 0.99
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Table 1. Cont.

Langmuir Freundlich Linear

Sample Particle Size
(mm)

Coating
(g/kg)

qmax
(mg/g)

b
(L/mg) R2 1/n KF

(mg/g) R2 Kd
(L/mg) R2 Target Oil Ref.

0.18–2.00 OA = 2 5.3 2.1 × 10−3 0.96 2.1 1.2 × 10−5 0.99 1.1 × 10−2 0.99

0.30–2.00 OA = 5 5.4 2.2 × 10−3 0.96 1.4 6.7 × 10−4 0.99 1.1 × 10−2 0.99

0.18–2.00 SA = 2 3.6 1.5 × 10−3 0.98 1.4 4.0 × 10−4 0.99 5.6 × 10−3 0.99

0.30–2.00 SA = 5 4.0 1.7 × 10−3 0.99 1.3 1.4 × 10−3 0.98 6.7 × 10−3 0.99

Graphite
powders <0.03 Activated

carbons 25 3.9 × 10−3 0.9 0.82 0.16 0.77 – – Diesel oil * Huang et al.
(2018) [62]

Activated
carbons 0.5–2.0 0 16–86 7.0 × 10−3

−1.0 × 10−2 0.94–0.99 0.18–0.5 0.4–5.0 0.93–0.99 – – Vegetable oil Gong et al.
(2007) [34]

Wakame – Biochar
/Ni 8.65–116.5 0.113–0.481 0.964–0.999 0.03–0.1 3.45–7.21 0.806–0.965 – – Diesel oil Jing et al.

(2022) [63]

* Dispersed or Emulsified oil.
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It can be seen that the Langmuir model did not capture the measured relationship
between Ce, qe, and qmax values were given (shown in Figure 7), indicating that the sorption
of dispersed oil onto AAC grains did not follow the basic adsorption concept of dissolved
ions (i.e., a saturation of adsorption site) and surface chemical reactions (e.g., formation
of surface complexation). Both the Freundlich and linear models, on the other hand,
captured the Ce and qe relationships well. However, the Freundlich model did not capture
the measured relationships of SA–coated AAC grains with 5 g/kg in this study (e.g.,
Figure 7e). Thus, the simple linear model performed the best among the models (R2 values
became mostly 0.99), and the fitted Kd values became a good indicator to characterize the
sorption ability of dispersed oil in water onto both non-coated and coated AAC grains
with hydrophobic/oleophilic agents. In addition, it is interesting that non–coated AAC
grains 0.25–0.85 mm gave the highest value of 0.136 among fitted Kd values (Table 1).
This may support choosing a suitable grain size for treating oily wastewater because we
did not observe a clear difference in measured R values among three grain size samples
(Figure 5). For reference, the measured relationship between qe to Ce for sands is shown in
Figure 7b,d,f. It can be seen that only the linear model captured the relationships well.

Some previous studies examined the applicability of oil sorption onto adsorbents based
on adsorption isotherm models (Langmuir and Freundlich) and reported the adsorption
parameters [34,62,63] that are given in Table 1. Those studies showed good applicability
of Langmuir and Freundlich models and determined the parameters such as qmax and KF.
In this study, on the other hand, those models that assume monolayer and/or multilayer
adsorption of dissolved ions onto the surface of the adsorbent were not applicable to mea-
sured data. This strongly implies the adsorption mechanisms of dispersed oil onto porous
AAC grains were more complicated, probably due to the accessibility of dispersed oil
(<2 µm) to micro-scale pores of AAC grains and the affinity of dispersed oil to cementitious
AAC grain surface. Moreover, the inapplicability of adsorption isotherm models (Langmuir
and Freundlich models in this study might be attributed to the emulsification of dispersed
oil in water, and the oil emulsion made the adsorption mechanisms more complicated.

4. Conclusions

The study examined the applicability of hydrophobized/oleophilized AAC grains to
treat dispersed oil in water. Based on the tested results from batch experiments, low-coated
AAC grains with OA and SA (1 g/kg) removed from dispersed oil well (approximately
R > 80%) for low oil concentration solutions, and high SA-coated AAC grains (10 g/kg)
gave high removal efficiency (approximately R > 80%) for high oil concentration solutions.
Typical adsorption isotherm models for dissolved ions, such as Langmuir, Freundlich, and a
linear model, were adapted to measured data. It was observed that the sorbed dispersed oil
increased linearly with increasing equilibrium concentration for all tested samples, while
the Langmuir and Freundlich models did not capture the measured isotherms. This implies
that the sorption mechanism of dispersed oil onto porous AAC grains was supposed to be
complicated due to the accessibility and affinity of dispersed oil (<2 µm) to micropores of
cementitious AAC grain surface.
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Abbreviations
The following abbreviations are used in this manuscript:
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Ce Equilibrium concentration of dispersed oil in water
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HA Hydrophobic agents
OA Oleic acid
qe Oil sorption amount at equilibrium (mg/g)
R Removal percentage (%) of dispersed oil in water
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Appendix A

Table A1 summarizes National standards of emission limits for oil and grease, and
Table A2 shows some reported values of oil and grease concentrations in water and wastew-
ater in Vietnam. Among surface waters, the Ha Thanh River has a very high measured
value of 250 mg/L. The source of pollution in this area is not shown. For coastal wa-
ter, the maximum was 1.3 mg/L, and all values were below 1.0 mg/L. Some domestic
wastewater showed high values of up to 140 mg/L. Regarding industrial wastewater, the
landfill leachate showed a very high value of 3.79 × 104 mg/L, causing environmental
problems [64–72].

Table A3 shows reported values of oil pollution loads and oil spills in Vietnam. Oil
leaks from crude oil exploitation. A total of 9.2 × 104 tons is estimated to flow into the
coastal and marine environment. This is the high environmental impact of the oil spill,
with oil pollution loads approaching 7.72 × 105 tons/year, which significantly impacts the
environment and the economy. Total financial losses caused by a significant oil spill in 2001
were estimated at 250 billion VND (17 million USD), while costs for cleaning up polluted
waters and beaches reached 60 billion VND (4 million USD). The oil pollution load of the
river has a value of 3.45× 104 kg/day in the southern Ho Chi Minh City area. The northern
Cau River basin and Cau Bay basin had values of 66 tons/day and 6.34 kg/day. This is less
than that in the southern part of the country. The source of these contaminants appears to
be domestic wastewater [4,64,65,73–75].

Table A4 shows various information on wastewater in Vietnam, such as BOD and
COD [24,64,72,73,76–78]. Since no concentration and river flow data were available for
BOD and COD, it is difficult to say for sure, but it can be said that they are causing
significant pollution loads. Concentrations of BOD and COD after sewage treatment were
also measured at the sewage treatment plant in Hanoi in this study, with BOD = 4.0 mg/L
and COD = 8.0 mg/L. When n-hexane extract (mineral oils) and the concentration of n-
hexane extract (animal and vegetable oils) were also measured, no oil concentration was
detected. Further, according to Do Nam Thang, the percentage of the waste is higher in
domestic wastewater than in industrial wastewater [77], and it can be said that there are
issues with their treatment.
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Table A1. National technical regulations of oil and grease concentrations in Vietnam.

Act Name Parameter Environmental Standards (mg/L) Analysis Method

Environmental standards: Surface water, groundwater, seawater, and others

QCVN 08–MT:2015/BTNMT [7] Total oil and grease
Domestic use Irrigation

TCVN 7875: 2008 5 [8]
SMEWW 5520B: 2012 [9]A1 1 A2 1 B1 1 B2 1

0.3 0.5 1.0 1.0

QCVN 10–MT:2015/BTNMT [10] Total mineral oil and grease
Area of aquaculture and

conservation Beach and water sport area Other areas TCVN 7875: 2008 5 [8]
SMEWW 5520B: 2012 [9]
SMEWW 5520C: 2012 [11]0.5 0.5 0.5

QCVN 38:2011/BTNMT [12] Total mineral oil and grease 0.05

Emission limits: Domestic and industrial wastewater

QCVN 14:2008/BTNMT [13] Animal and vegetable oil and grease A 2 B 2
EPA Method 1664: 2010 [14]10 20

QCVN 40:2011/BTNMT [15] Total mineral oil and grease A 2 B 2 TCVN 7875: 2008 5 [8]
EPA Method 1664: 2010 [14]5 10

Emission limits: Specific wastewater from industries and service sectors

QCVN 14:2008/BTNMT [13] Animal and vegetable oil and grease A 3 B 3
EPA Method 1664: 2010 5 [14]10 20

QCVN 29:2010/BTNMT [16] Mineral oil
(Total hydrocarbon)

A 4 B 4

TCVN 7875: 2008 5 [8]Warehouse Car wash Stations
5 15 18 30

QCVN 52:2013/BTNMT [17] Total mineral oil A 3 B 3 TCVN 7875: 2008 5 [8]
SMEWW 5520C: 2012 [11]5 10

QCVN 11–MT:2015/BTNMT [18] Total animal and vegetable oil A 3 B 3 TCVN 7875: 2008 5 [8]
10 20 SMEWW 5520C: 2012 [11]

1 A1: Good for domestic uses and other purposes (A2, B1, and B2); A2: Good for domestic uses with prior suitable treatment, protection of aquatic habitats, and other purposes (B1 and
B2); B1: Good for irrigation and agricultural uses; B2: Others (water transport and low priority of water treatment). 2 A: Effluents reach water sources used for domestic purposes;
B: Effluents reach water sources used for other purposes. 3 A: Effluents reach water sources used for drinking purposes; B: Effluents reach water sources used for other purposes.
4 A: Effluents reach water sources used for aquaculture and aquatic conservation; B: Effluents reach water sources used for other purposes. 5 Analysis methods with equivalent or higher
accuracy than those of the listed standards can be accepted. N/D: Not detected.
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Table A2. Reported values of oil and grease content in water and wastewater in Vietnam.

Location Province/
Prefecture or City Year Oil and Grease (mg/L) Remarks Reference

Surface water

Cau River Thai Nguyen/Thai Nguyen 2004, 2005 0.02–0.16 6 monitoring points
MONRE, WB and DANIDA
(2006) [64]

Dong Nai River Hoa An/Cao Bang 2000–2006 0.025–0.029

Saigon River Binh Phuoc/Binh Duong, etc. 2000–2006 0.025–0.12

Saigon–Nha Be River Thu Dau Mot/Binh Duong, etc. N/D 0.0–0.3 5 monitoring points IGES (2007) [65]

Ha Thanh River Quy Nhon/Binh Dinh 2016 27–250 Ha Thanh Bridge, Canal, Channel Binh Dinh PPC (2016) [66]

Ditch Quy Nhon/Binh Dinh 2019 15 An upstream ditch of Bau Sen Lake Nguyen et al. (2020) [67]

Coastal water

Red and Mekong River 1996–2001 >0.05–2.4 MONRE (2003) [4]

Coastal zone (1) Rach Gia/Kien Giang: 1997–2015 0.12–0.79 Rach Gia monitoring station Le and Pham (2017) [68]

Coastal zone (2) Nha Trang/Khanh Hoa 2013–2017 0.35–0.55 Nha Trang monitoring station Pham (2018) [69]

Coastal zone (3) Khanh Hoa/Trung binh, etc. 2010–2018 0.007–0.65 4 monitoring stations Pham (2019) [70]

Coastal zones Hue/Thua Thien Hue, etc. 2011–2015 0.012–1.3 Total of 16 monitoring stations MONRE (2015) [71]

Domestic wastewater

In and Out of WWTP Quy Nhon/Binh Dinh 2016 0.8–160 Nearby Dam, Nhon Binh, Bau Luc Binh Dinh PPC (2016) [66]

In and Out of WTF Hai Ba Trung/Hanoi 2016 2.0–14.6 WTF for condominium in Hanoi JICA (2019) [72]

Industrial wastewater

Landfill leachate Tuy Phuoc/Binh Dinh 2016 3.79 × 104 Long My waste landfill
Binh Dinh PPC (2016) [66]Wastewater from

construction site Quy Nhon/Binh Dinh 2016 200 Cleaning and washing of equipment and
materials at a bridge construction site
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Table A3. Reported values of oil pollution loads and oil spills in Vietnam.

Location Year Type and Sources Oil Pollution Loads/Oil Spills Descriptions and Other Remarks Reference

East sea 1995–2002 Oil spills Approx. 7.72 × 105 tons/year

Oil leaks from crude oil exploitation. A
total of 9.2 × 104 tons is estimated to

flow into the coastal and marine
environment.

Total financial losses caused by a major
oil spill in 2001 were estimated at 250
billion VND (17 million USD), while
costs for cleaning up polluted waters
and beaches reached 60 billion VND

(4 million USD).

ADB (2006) [73]; MONRE, WB
and DANIDA (2003) [4]

Dong Nai River basin 2004
Domestic wastewater:
HCMC
5 provinces

3.45 × 104 kg/day
90–4.1 × 103 kg/day

MONRE, WB and DANIDA
(2006)
[64]

Cau River basin 2005 Domestic wastewater from
6 provinces 66 tons/day

Cau Bay River basin 2013 48 enterprises at Long Bien
District, Hanoi 6.34 kg/day JICA (2013) [74]

HCMC 2000 Industrial wastewater

Major industrial contributors are oil
refining, chemical, and food processing
industries (20–30% of the total industrial
wastewater discharges into river systems

in Vietnam from HCMC)

ADB (2000) [75]
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Table A4. Information on other pollution loads in Vietnam.

Location Year Type and Sources Oil Pollution Loads/Oil Spills Descriptions and Other Remarks Reference

Craft village 2002 Tra Co cassava processing village
Bao Loc silk village

(BOD5 kg/day, COD kg/day)
218–379, 145–544

Pollution loads of SS, TN, TP, CN
andNH4+

MONRE, WB and DANIDA (2006)
[64]

Whole country 2003 (Volume of wastewater)
Total

(m3/year)
896 × 106

ADB, GEF, UNEP (2006) [73]; WWF
(2018) [76]

Whole country: Industrial zones 2005 (Load of pollutants)
HCMC, Dong Nai, Binh Duong, BR–VT

(BOD5 kg/day, COD kg/day)
2.24 × 102–1.28 × 104, 1.06 × 103–4.68 × 104

Pollution loads of TSS, TN, TP, and
wastewater volume

MONRE, WB and DANIDA (2006)
[64]

Hanoi 2005

(Wastewater discharge from industrial
sectors)
Chemical factories, Textile and dyeing,
Foodstuff companies, Mechanical factories

(m3/day)
3.73 × 103–2.65 × 104

MONRE, WB and DANIDA (2006)
[64]

Food processing villages 2005
(Wastewater discharge)
Phu Do rice noodle, Vu Hai rice noodle,
Ninh Hong rice noodle, Tan Do wine, etc.

(BOD5 tons/year, COD tons/year)
10–53, 15–1.3 × 104 MONRE (2008) [24]

Red River Delta 2006
(Wastewater discharge)
Food processing, husbandry, slaughtering
Weaving, dyeing, leather processing, etc.

(COD tons/year)
~1.5 × 104

~1.5 × 103
MONRE (2008) [24]

Nhue–Day River 2006
(Proportion of wastewater discharge)
Domestic, Industrial, Farming and
husbandry, etc.

4–56% MONRE, WB and DANIDA (2006)
[64]

Hanoi, Hai Phong
HCMC 2009

(Wastewater discharge)
Domestic wastewater, Industrial
wastewater, etc.

(BOD5 tons/day)
0.3–214 Nguyen et al. (2020) [67]

Hanoi, Hai Phong
Da Nang, HCMC 2010

Share of pollution load on the sum of
domestic and industrial wastewater.
Domestic wastewater and
Industrial wastewater

15–85% 1 Do and Nguyen (2014) [77]

Hanoi, Hai Phong
Da Nang, HCMC

2010
2019

Wastewater discharge into canals from
agricultural activities Domestic wastewater
discharge rate and amount

(BOD5 tons/day, COD tons/day)
17–193, 26–305

Pollution loads of SS, TSS are also
given. VEA (2012) [78]

Whole country 2019
Domestic wastewater discharge rate and
amount. Upper: Urban area
Lower: Rural area

150 L/capita/day
(4.66 × 106 m3/day)

80 L/capital/day
(4.85 × 106 m3/day)

Blackwater 93–94%, Graywater
6–7%

(Hanoi, Hai Phong)
JICA (2019) [72]

1 90% of domestic wastewater not treated. The capacities of wastewater treatment plants in big cities only meet about 30% of the demand.
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