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Abstract: Globally, rapid urbanisation is one of the major drivers for land-use changes, many of
which have a marked impact on urban air quality. Urban forestry has been increasingly proposed
as a means of reducing airborne pollutants; however, limited studies have comparatively assessed
land-use types, including urban forestry, for their relationship with air pollution on a city scale. We,
thus, investigated the spatial relationships between three air pollutant concentrations, NO2, SO2, and
PM10, and different land uses and land covers across a major city, by constructing a yearly average
model combining these variables. Additionally, relationships between different vegetation types and
air pollutant concentrations were investigated to determine whether different types of vegetation are
associated with different air pollutants. Parklands, water bodies, and more specifically, broadleaf
evergreen forest and mangrove vegetation were associated with lower pollutant concentrations.
These findings support urban forestry’s capabilities to mitigate air pollution across a city-wide scale.
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1. Introduction

As global urban population growth increases, there is a concomitant need to quantify
the impacts of urbanisation—with one of the most pressing issues being air pollution.
Urban air pollution has a direct impact on human health [1]; outdoor air pollution is
responsible for approximately 4.2 million premature deaths globally each year [2], and
global welfare costs associated with premature deaths from outdoor air pollution have been
estimated to be USD 3.5 trillion and rising [3]. Consequently, as evidence of the negative
impacts of air pollution on human health and the global economy continues to increase,
improving urban air quality has become one of the most pressing tasks facing today [4].

Although reducing air pollutant emissions at the source is the most effective way to
improve air quality [5,6], urban forestry and other forms of urban greening have been
proposed as a means to reduce atmospheric pollution levels [7,8]. The mechanisms asso-
ciated with urban forestry-mediated air pollution reduction are well-documented at the
individual tree level, with gaseous air pollutants such NO2 and SO2 absorbed through the
stomata into the leaf interior [9–11] and particulate pollution captured and removed from
the atmosphere by dry deposition on plant surfaces [12–14].

The potential for air pollution removal by vegetation notwithstanding, there are few
studies that assess the associations between urban forestry and air pollution on a city scale,
accounting for factors such as variations in the types of vegetation and existing urban
green areas [15]. This gap in knowledge could be a consequence of the complexity of
physiochemical vegetation–atmosphere interactions, which are particularly challenging
within urban areas [16,17]. Geographical Information Systems (GIS) have significant
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potential for evaluating these relationships, with GIS increasingly employed to model and
assess the extent and impact of air pollution in urban areas [8].

Addressing these knowledge gaps would support urban planners and green stake-
holders by offering a greater understanding for more effective and adaptive nature-based
solutions to space-constrained urban areas. It would also broaden their insight into the
interacting impacts of anthropogenic sources and sinks, allowing for more informed infras-
tructure and planning decisions.

Here, we present the development of high-resolution city-scale exploratory models
to analyse the spatial distribution of concentrations of NO2, SO2, and PM10 and compare
spatially related parameters of potentially contributing sources and mitigating sinks. The
objectives of this paper were to: (1) determine the spatio-periodicity for the urban air
pollutant concentrations; (2) incorporate industrial and traffic emissions as contributing
factors, and specify what accounts for both urban spatial effects and the simultaneous
effects of these factors; (3) assess how these effects vary across the study area with respect to
the prevailing land-use zoning and urban forestry types present; (4) investigate the land-use
types and their associations with air pollution; and (5) investigate the urban forestry types
with lower urban air pollutant concentrations.

2. Materials and Methods
2.1. Study Area

This study focused on the Greater Sydney region as Sydney is the most populated
city in Australia, with more than 5 M people [18]. Consequently, Sydney has a higher
dwelling and population density, and a greater degree of urbanization compared to other
Australian cities [19–23]. Sydney is situated along the mid-coast of New South Wales on
a lowland plain between the Pacific Ocean to the east and elevated sandstone tablelands
to the north, south, and west, creating the Sydney Basin [24]. Greater Sydney covers
approximately 12,400 km2 and the profile of this basin has previously been associated with
the transportation and accumulation of air pollutants produced within the area [25–27],
thus making air quality a key concern for this international city. Additionally, Sydney is a
complex mosaic of numerous anthropogenic activities, such as commercial, industrial, and
agricultural, contributing to the accumulation of ambient air pollution, interspersed with
natural areas, such as parklands and water bodies [22,23,28–31].

2.2. Data Preparation
2.2.1. Ambient Air Pollutant Concentrations

Ambient daily air pollutant concentrations for NO2, SO2, and PM10 were incorporated
in this study. The data was sourced from the NSW Government’s Department of Planning
and Environment (DPE) monitoring network, which has air quality monitoring stations
at 20 sites covering the entire Sydney basin region (Figure 1) [32–34]. Each monitoring
station records air quality data hourly, in accordance with the National Environment and
Protection Measures which is a national set of legally binding standards for air quality
monitoring across Australia.

2.2.2. Industrial Pollutant Concentrations

Point source industrial pollutant concentrations for NO2, SO2, and PM10 were incor-
porated in this study. In Australia, there is a national scale database for reporting and
monitoring industrial pollutant concentrations, named National Pollutant Inventory (NPI),
which reports 93 substances [35]. It is managed by the Australian Government and monitors
industrial facilities who have previously exceeded Australia’s legally binding air pollution
thresholds [35]. Despite the wide range of NPI pollutant data and their public availability,
the NPI data has been underutilised in research areas, particularly for analysing ambient air
pollution. Thus, NPI pollutant data from 168 NPI monitored sites within and surrounding
Sydney were used for each air pollutant and incorporated in this study (Figure 1). The NPI
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uses NOx as a surrogate for NO2 emissions, as NOx is conventionally expressed as a NO2
mass equivalent, and NO2 is the most predominant form of atmospheric NOx [36].
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2.2.3. Land-Use Cover

Land use data consisted of planning and zoning data provided by the Australian
Bureau of Statistics, which categorised land-use types into 11 different definitions during
the 2006 Australian Census. Despite this data originating from the 2006 Australia Census,
the data retained a high degree of accuracy and temporal relevance to the 2008 study period,
as it was updated in August 2007 (Table 1, Figure 2) [38].

Table 1. Land-use data types provided by the Australian Bureau of Statistics during the Australian
Census [38].

Land Use Parameters for Land Cover

Agricultural Agricultural activities, e.g., farming.
Commercial Areas of business, no usual residences or dwellings, e.g., shopping malls.

Educational Institutions, e.g., schools or universities, that may contain a residential population in nonprivate
dwellings such as student accommodation.

Hospital and medical Facilities such as hospitals and medical centres.
Industrial Areas of industry, no usual residences or dwellings, e.g., factories.

Commonwealth land Land that did not fit into other categories such as Defence sites and Commonwealth owned and
operated lands.

Parkland Any public space, sporting arena, or outdoor facility, e.g., racecourses, golf courses, stadia, nature
reserves, and other protected or conservation areas.

Residential Residential development.
Shipping Related to shipping activities, e.g., ports.
Transport Road, rail, and air transportation infrastructure.

Water bodies Artificial and natural water bodies that were not entirely enclosed by another land use, for example, a
water body inside a university was not included in this count.
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Figure 2. Land-use data types provided by the Australian Bureau of Statistics during the Australian
Census [38].

2.2.4. Urban Forestry Cover

Urban forestry cover data was obtained from the Global Mapping Project (GMP),
which was developed through the incorporation of MODIS and Landsat data, Virtual Earth,
existing regional and local maps, and existing land-cover products [39]. The spatially
relevant data set included nine vegetation types and two urban land covers, water, and
artificial surfaces (Figure 3, Table 2).

Table 2. Vegetation types identified in Greater Sydney by the GMP—Forestry Cover data set for
2008 [39].

Land Cover Parameters for Land Cover

Broadleaf evergreen forest Open to closed, 40–100% cover
Needleleaf evergreen forest Open to closed, 40–100% cover

Tree open Open woodland, 10–40% cover
Shrub Open to closed shrubland and thickets, 40–100% cover

Herbaceous Open to closed herbaceous vegetation as a single layer of vegetation, 40–100% cover
Herbaceous with sparse

tree/shrubland Open to closed herbaceous vegetation with trees and shrubs, 40–100% cover

Sparse vegetation Sparse (<40% cover) herbaceous or woody vegetation
Mangrove Open to closed woody vegetation in a saline water environment, 40–100% cover
Cropland Cultivated areas of herbaceous crops
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2.2.5. Daily Traffic Count

The daily traffic count data was used to correct for traffic density and subsequent
traffic derived air pollution, with the data from 211 Roads and Maritime Services (RMS)
traffic collection sites across Sydney annually averaged for daily traffic count and then
spatially interpolated (Figure 1). The traffic data included count data for all vehicle types
and directions of travel [37].

2.3. Overlay and Analysis

All data was transformed to the Geocentric Datum of Australia 1994 [40] and annually
averaged within the same study period, 2008, thus randomising potentially confound-
ing factors such as wildfires, hazard reduction burns, and seasonal and meteorological
effects, such as wind, that have been identified in previously published air pollutant
studies [8,25,41–44]. The sensitivity for this type of investigation is strongly dependent on
the spatial resolution of the analyses in order to show clear spatial distributions and trends,
identifying associations between air quality, vegetation, and other influential variables
such as traffic, population density, or other anthropogenic activities [45–47]. Thus, a high
pixel resolution of 30 m2 was used for this investigation.

The analytical method applied in this study was based on methods previously es-
tablished by the European Study of Cohorts for Air Pollution Effects [42,43] with the
incorporation of additional urban metrics and air pollutants. All data was transformed to
the same spatial resolution and spatially joined. ArcGIS version 10.3.1 (ESRI Inc., Redlands,
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CA, USA) was used for all spatial processing, interpolation, transformations, joining, and
map creation while statistical processing, analyses, and visualisations were performed in
SPSS version 24 (Chicago, IBM SPSS, Inc., Chicago, IL, USA) and Microsoft Excel 2016
(Microsoft Corp., Redmond, WA, USA).

A general linear model and single factor analyses of covariance (ANCOVAs) were gener-
ated and compared for each of the three air pollutants amongst land-use and urban forestry
types. NPI industrial concentrations and RMS traffic data were incorporated as covariables
to correct for air pollutant source. Pairwise comparisons were made using Bonferroni’s post
hoc tests [48] and estimated marginal means (EMMs) were derived from the ANCOVAs to
control for the predicted high Type I error rate for the univariate statistical analyses [48–50].
Finally, all univariate contrasts were confirmed through the determination of whether the 95%
confidence interval for an EMM overlapped with the EMM of another group.

The first exploratory model utilised the 11 different land-use types (Section 2.2.3) to
identify spatial associations between land use and air pollutant concentrations. The second
model utilised urban forestry data to identify associations between different vegetation
types (Section 2.2.4) and air pollutant concentrations to facilitate a greater understanding
about the potential for different vegetation types influencing pollutant concentrations.

3. Results
3.1. The Effects of Urban Land Use on Air Pollutant Concentrations

All three air pollutant concentrations were positively and significantly associated with
the covariables, traffic density and NPI pollutants (Table 3; p < 0.05), with SO2 having the
strongest association with the covariables, and PM10 having the weakest linear spatial
relationship with traffic, and NO2 weakly associated with the NPI industrial pollutants
(Table 3).

Table 3. Statistical associations between traffic density, NPI industrial pollutants, and air pollutants,
with the partial eta-squared value (ηp

2) indicating the proportion of the total spatial variation in the
concentrations of the pollutants explained by each covariable.

Air Pollutant
Partial Eta Square (ηp

2) p Value
Traffic Density NPI Pollutants Traffic Density NPI Pollutants

PM10 0.374 0.123 0.000 0.000
NO2 0.375 0.057 0.000 0.000
SO2 0.529 0.182 0.000 0.000

ANCOVAs with Bonferroni’s post hoc tests were used to test for differences in air
pollutant concentrations amongst the different land-use types (Figures 4–6) after controlling
for the effects of source, in the form of traffic and NPI industrial pollution. The residual
variation in the data (estimated marginal means; EMMs) was used as a dependent data
variable and analysed univariately to test the potential effect of land-cover type on ambient
air pollutant concentrations (Figures 4–6).

The general trend in the exploratory model indicated a significant association between
vegetation and lower air pollutant concentrations, with parklands being associated with
lower concentrations for all air pollutants except SO2 (Figures 4 and 5). PM10 and NO2
shared similar concentration patterns, as their lowest concentrations occurred in areas
categorised as water bodies and parklands (Figures 4 and 5), while shipping land use was
associated with the lowest SO2 levels (Figure 6).

Areas categorised as commercial, transport, and industrial land use demonstrated
high concentrations for all pollutants. PM10 had the highest concentrations in transport-
related areas and NO2 in shipping-related areas (Figures 4 and 5). SO2 displayed a different
pattern, with the highest concentrations being associated with agricultural land (Figure 6).
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Figure 5. Ambient NO2 concentrations for areas with a land-use type designation. Data are displayed
as estimated marginal means (±SEM).

3.2. The Effects of Different Urban Forestry Types on Air Pollutant Concentrations

The associations between the air pollutants and covariables, traffic density and NPI
pollutants, are shown in Table 4. All associations were statistically significant (p < 0.05), with
each air pollutant following a similar trend to the previous exploratory model. Associations
between air pollutant concentrations and proximity to source were indicated by the partial
eta-squared values, with SO2 having the strongest association with both covariables and
PM10 having the weakest linear spatial relationship with traffic, and NO2 weakly associated
with the NPI industrial pollutants (Table 4).
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Figure 6. Ambient SO2 concentrations for areas with a land-use type designation. Data are displayed
as estimated marginal means (±SEM).

Table 4. The covariables of traffic density and NPI industrial pollutants, their p values, and their
partial eta-squared (ηp

2) associations with each air pollutant for the vegetation model with the ηp
2

indicating the proportion of the total variation attributed to each covariable for each pollutant.

Air Pollutant
Partial Eta Square (ηp

2) p-Value
Traffic Density NPI Pollutants Traffic Density NPI Pollutants

PM10 0.341 0.103 0.000 0.000
NO2 0.360 0.045 0.000 0.000
SO2 0.521 0.169 0.000 0.000

ANCOVAs with Bonferroni’s post hoc tests were used to test for differences in air
pollutant concentrations amongst areas with different vegetation types, and the subsequent
EMMs were analysed univariately to test the potential associations between vegetation
type on ambient air pollutant concentrations (Figures 7–9).
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Figure 8. Ambient NO2 concentrations for areas with vegetation type designation. Data are displayed
as estimated marginal means (±SEM).

Environments 2022, 9, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 8. Ambient NO2 concentrations for areas with vegetation type designation. Data are dis-
played as estimated marginal means (±SEM). 

Figure 9. Ambient SO2 concentrations for areas with vegetation type designation. Data are displayed 
as estimated marginal means (±SEM). 

4. Discussion 
4.1. General Overview 

The current research has investigated the relationship between source-corrected air 
pollutant concentrations and urban areas, with particularly high levels detected in areas 
with anthropocentric-based land uses coupled with a lack of vegetation. The correction 
for anthropogenic sources ensured the spatial relationships between land-use or vegeta-
tion type and air pollutants were explicitly tested. Consequently, the associations between 

0.5

0.55

0.6

0.65

0.7

0.75

Co
nc

en
tr

at
io

n 
of

 N
O₂

  [
pp

hm
]

Land Cover Type

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Co
nc

en
tr

at
io

n 
of

 S
O₂

 [p
ph

m
]

Land Cover Type

Figure 9. Ambient SO2 concentrations for areas with vegetation type designation. Data are displayed
as estimated marginal means (±SEM).

SO2 and PM10 air pollutants demonstrated lower concentration EMMs for areas
covered by broadleaf evergreen forest and mangroves, except for NO2 which only demon-
strated low concentrations for broadleaf evergreen forests (Figures 7–9). The higher concen-
trations for SO2 and PM10 were found in either shrubland or croplands, except for NO2
which exhibited its highest concentrations in mangrove areas (Figure 8) and SO2 with areas
with sparse vegetation (Figure 9).



Environments 2023, 10, 32 10 of 17

4. Discussion
4.1. General Overview

The current research has investigated the relationship between source-corrected air
pollutant concentrations and urban areas, with particularly high levels detected in areas
with anthropocentric-based land uses coupled with a lack of vegetation. The correction for
anthropogenic sources ensured the spatial relationships between land-use or vegetation
type and air pollutants were explicitly tested. Consequently, the associations between
land uses such as transport, commercial, and industrial-related activities, and high level of
ambient air pollution were confirmed. Contrastingly, the significant association detected
between parklands and low pollutant concentration demonstrated the impact of vegetation
and its ability to influence air pollutant concentrations in an urban environment.

Although urban forestry has generally been associated with improved air quality [8,51–53],
few studies have investigated the potential of different vegetation types on an entire city
scale with air pollution mitigation. The current research found different types of vegetation
influenced air pollutants differently with broadleaf evergreen forests generally tending to be
associated with lower air pollutant concentrations. While this study did not manipulatively
appraise the causality of the relationship between urban forestry and air pollution, the as-
sociated findings align with existing findings, providing further support that such a causal
pattern may exist.

4.2. The Inclusion of NPI Industrial Concentrations and Traffic Data

Traffic density and industrial pollution were added as covariables to correct for pollu-
tant source and ensure the main effects of land-use and vegetation type were investigated
in this study. The influence of these were elucidated as all pollutants were positively and
significantly associated with the covariables across both exploratory models, with SO2
having the strongest association with both and PM10 having the weakest with traffic and
NO2 with the NPI industrial pollutants. Interestingly, the weak association between PM
and traffic density was in contrast to the other published literature as increased incom-
plete combustion tends to occur in traffic dense areas or during periods of heavy traffic
congestion [54–56]. This difference in findings may be driven by traffic conditions being
strongly related to the diurnal peak hour patterns, in which case the use of annual averages
in these exploratory models may have had insufficient temporal resolution to detect these
associations [57,58].

The significant pollutant associations with the NPI industrial concentrations were
novel in their own right, as NPI industrial data had not been frequently incorporated
into exploratory models such as those presented here, and they confirmed the impact
of industrial pollution point sources on ambient air quality. The significantly strong
association with SO2 is possibly driven by the types of industries represented in this dataset,
which includes a wide range of industrial processing and manufacturing facilities [35].
Consequently, these findings also highlighted the potential for incorporation of these kind
of datasets into future research.

4.3. The Associations between Different Urban Land Uses and Air Pollutant Concentrations

Areas categorised as commercial, transport, and industrial land use demonstrated
high concentrations for all pollutants, while parklands were associated with lower concen-
trations of PM10 and NO2 and shipping was associated with the lowest SO2 concentrations.
Parklands were associated with lower PM10 concentrations in the current study, an effect
that has previously been observed in other air pollution models, with urban forestry nega-
tively contributing to PM in models from Finland, Denmark, United Kingdom, Germany,
Austria, Hungary, Switzerland, Italy, and Spain [59]. Ambient PM can be deposited on
plants, this occurs when suspended particulate matter is deposited onto the surface of a
plant through impaction, interception, settling, or diffusion [60]. A plant’s morphological
characteristics could increase its particulate capture, with hairy or rough bark or leaves,
complex structures, larger surface areas, and waxy epicuticular layers associated with
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increased PM deposition [61,62]. Similarly, the low NO2 concentrations across parklands
was also due to the mitigating effects of vegetation. A previous study from Sydney found
that air pollution was negatively correlated with tree canopy cover and found a statistically
significant spatial relationship between urban forestry and air pollution [8]. Jayasooriya
et al. [63] modelled air pollution removal through urban forestry in an industrial precinct
in Victoria, Australia, and found that urban forestry had the potential to remove NO2, SO2,
and PM10. The value of urban forestry in Sydney was also outlined by Lin et al. [22], who
found it had the potential to provide a wide range of ecosystem benefits, including air pol-
lutant removal. Brack [64] assessed the ecosystem services of trees in Canberra, Australia,
and found that the contribution of urban trees to the reduction of energy consumption,
amelioration of air pollution, and the improvement to local hydrology had an estimated
annual value of USD 20–67 million [64].

These trends are not exclusive to Australia, with cities globally experiencing similar
outcomes when urban forestry is increased, despite the differences in climate, location, and
anthropogenic influences [21,51,62,65]. A study from Taipei, Taiwan, found that both natu-
ral and seminatural urban green spaces had negative relationships with NOx and NO2 [66].
This relationship was confirmed by Klingberg et al. [52], who found vegetated sites across
Gothenburg, Sweden, had lower NO2 concentrations than nonvegetated sites, while Cohen
et al. [67] found urban parks across Israel were associated with lower concentrations of
NOx and PM10 when compared with urban street canyons.

A spatially dependent mechanism for lower NO2 concentrations due to dilution
effects from the presence of parklands and urban forests is possible [44,51,52,68]. Dilution
occurs through an increase in the distance between the source of pollution and the point of
sampling. Urban parklands and forestry are beneficial for anthropogenic pollutant dilution
as they increase the distance from pollutant source without increasing anthropogenic
pollutant concentrations [44,51,52]. Vegetated areas also provide a cleaner air source
during photosynthetically active periods due to oxygen emission, thus further reducing
the concentration of pollutants through atmospheric mixing [51,52].

The association between water bodies and lower PM10 may have been due to multiple
factors. The majority of the water bodies are proximal to parklands (Figure 2), which may
have led to a spatial confound in the detected pattern. Additionally, simulations of cities
with no urban water bodies have demonstrated increased wind speeds, which could allow
particulate matter to remain suspended in the air column [69], while urban areas with
natural or artificial water bodies may experience decreased wind speeds [69], facilitating
particle deposition [51,70,71].

Anthropogenic SO2 emissions are largely related to the combustion of sulphur-rich
coal and other fossil fuels, which are used in a wide range of sectors, including residential
heating and cooking, industrial processing and manufacturing, electricity generation,
and shipping [41,72–74]. However, in the current study, the highest SO2 concentrations
were associated with agriculture, followed by industrial and commercial land uses. The
association between low SO2 concentrations and shipping, seen in this current study, could
have been driven by the growing use of low-emission fuels necessitated by global demand
for the reduction in shipping-related pollutants [75–77]. Furthermore, efficient dispersion
of SO2 along Sydney’s coast, where the majority of shipping facilities are located, would
have also influenced its concentration [78–80]. Additionally, shipping facilities are not a
main source of pollution, but the vessels themselves [75,79]. The relatively low output of
shipping exhaust and the effect of the proximal water bodies and wind effects are likely
reasons for the observed low pollutant levels in these areas.

High NO2 concentrations in the current model were associated with transportation,
commercial, and shipping land uses. This relationship is driven by petrol and diesel en-
gines, which account for over 80% of NOx emissions, with NO2 being the most prevalent
form of atmospheric NOx [36,81]. Additionally, the combustion of fossil fuels and indus-
trial processes associated with diverse commercial activities and production are strongly
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correlated with NO2 [21,52,82]. The current findings support previous studies conducted
across Australia [19,21,29,31,83], Western Turkey [84], Thailand [85], and Canada [86].

The high concentrations of SO2 in agricultural areas was unexpected, although the
current observations align with an emerging understanding of the relationship between
SO2 and agricultural activities [87–90]. SO2 can have impacts on human and animal health
along with the surrounding environment [88–90]. Human and animal health impacts are
especially prevalent in livestock houses that collect animal waste in manure pits underneath
slatted floors above which the animals reside [88]. While the exact mechanisms and
behaviour of this relationship requires further research, SO2 is believed to be released
from primarily organic wastes, animal manure, wastewater, and the disruption of acid
sulphate soils during agricultural activities [87–90]. Additionally, the release of SO2 is the
main precursor to acid rain which can contribute to the acidification of soils, lakes, and
streams [88–90].

4.4. The Association between Different Urban Forestry Types and Air Pollutant Concentrations

Air pollutants SO2 and PM10 demonstrated lower concentrations in areas covered by
broadleaf evergreen forest and mangroves while NO2 only demonstrated low concentra-
tions for broadleaf evergreen forests. The higher concentrations for SO2 and PM10 were
found in croplands while NO2 exhibited high concentrations in mangrove areas. In the
current study, PM10 concentrations were high in areas of shrub and croplands. These
vegetation types were clustered at the western side of the study area, which is considered
semiarid and drought-prone, which may have driven this association [91]. Sydney experi-
enced a prolonged and widespread drought from 2000 to 2009 [27,91], which would have
contributed to increased levels of atmospheric PM10 from wind-blown dust [27].

Broadleaf evergreen forests and needleleaf evergreen forests were associated with
lower ambient PM10 concentrations, which aligns with the findings from previous re-
search [14,60,68,92–94]. The leaf and plant characteristics present across both broadleaf and
needleleaf evergreen species such as hairy plant surfaces, waxy epicuticular layers, complex
plant structures, larger surfaces areas, and increased and prolonged vegetation/canopy
density throughout the year are all known to enhance PM accumulation [14,53,60,68,93,95].

Mangroves also had a noticeable association with low air pollutant concentrations for
PM10 in the current study. Such effects have not been detected previously. Mangroves are
coastal forests found in sheltered estuaries and along river banks and lagoons [96,97]. There
are several potential explanations for the observed air pollution remediation effect. Similar
to the broadleaf and needleleaf evergreen forests, mangrove canopy cover is usually dense,
with more than 70% cover, the leaves are waxy, and the plants possess complex and woody
structures, thus potentially assisting with deposition of particulates [53,82,93,94,96,97].
Additionally, the majority of Sydney’s mangroves are surrounded by broadleaf evergreen
forests (Figure 3). These proximal vegetation types may have led to general area effects
where air pollutants were removed by a range of independent mechanisms.

The association between low concentrations of NO2 and broadleaf evergreen forests
in this study supports the findings of Leung et al. [53] and Currie and Bass [98], who found
that leaf longevity and continuous photosynthetic performance throughout the seasons
enables greater gaseous pollutant sequestration in this vegetation type. Gaseous pollutant
uptake is dependent on stomatal conductance and photosynthetic capacity. Stomatal
conductance is in turn dependent on leaf properties such as leaf area and orientation, while
photosynthetic capacity is dependent on the leaf type and formation [99,100]. Both of these
favourable traits are prevalent in broadleaf evergreen forests [99–101].

The association between croplands and high SO2 concentrations aligned with the
previously discussed association between SO2 and agriculture and with previous re-
search [87–90,102], while lower SO2 concentrations were detected in areas with mangroves
and broadleaf evergreen forests. The mechanisms behind these effects are likely similar to
those proposed for NO2 previously. Interestingly, the favourable traits for gaseous pollu-
tant mitigation in broadleaf evergreen forests are also present in mangroves, which could
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explain the association with low SO2 concentrations in the current study. Most mangrove
trees are evergreen with sclerophyllous leaves that have an average leaf life span of 16
months, similar to other terrestrial evergreen species [103,104]. Additionally, the proximity
to broadleaf evergreen forest may have combined to lead to general area effects.

Conversely, mangroves had a noticeable association with high concentrations of NO2
in the current study. Mangroves in their natural state act as a sink for nitrogen [105,106].
However, modification of their biochemical processes due to anthropogenic nutrification
and denitrification, along with increased nitrogen loading, may alter these processes result-
ing in mangroves acting as sources of atmospheric nitrogen [105–107]. Furthermore, all of
the mangrove sites within the current study could have been influenced by anthropogenic
effects due to proximity to urban areas, potentially influencing the detected association
with NO2.

5. Conclusions

The present research provides an insight into the associations between vegetation
and air pollution in order to quantify and evaluate the spatial variation of air pollutant
concentrations associated with different forms of urban forestry. The incorporation of
anthropogenic pollutant sources ensured that the hypothesis that urban forestry was as-
sociated with air pollution removal was explicitly tested. Associations between different
vegetation types and air pollutant concentrations were established, with broadleaf ever-
green forests consistently associated with lower pollutant concentrations. Areas classified
as parklands and water bodies displayed consistently lower air pollution concentrations,
confirming the negative association between urban forestry and ambient air pollution
concentrations on a city-wide scale. The statistically significant association between urban
forestry and low air pollutant concentrations promotes the value of urban forestry, while the
vegetation insights may provide a foundation for future research into targeted vegetation
applications to provide the greatest air quality benefits.
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Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [CrossRef]
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