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Abstract: Occurrence of micropollutants in water and their potential impact on the environment
and human health are arising concerns. The micropollutants are not removed efficiently by current
wastewater treatment and a small amount of them get released into receiving waters accompanying
the discharging of the treated wastewater effluents. Therefore, it is useful to investigate an advanced
or alternative technology to remove traces of micropollutants in Lake Constance water during drink-
ing water treatment. Among various oxidation processes, ferrate(VI) has received extensive attentions
due to its superior dual properties of oxidation and coagulation. The work in this communication
is the first trial using ferrate(VI) in comparison with FeCl3/ozonation to treat lake water and to
remove micropollutants in the region. The results of pilot-scale trials showed that 10% of metformin,
benzotriazole and acesulfam can be removed by ferrate(VI) at a dose of 0.1 mg L−1 from raw water,
but FeCl3 with or without pre-ozonation cannot achieve the same performance. The degradability of
three additional micropollutants by ferrate(VI) oxidation followed the sequences of bisphenol-S (BS)
> azithromycin (AZM) > imidacloprid (IMP) was evaluated, and 100% concentration reduction of BS
was achieved. The work suggests that ferrate(VI) is a potential alternative to the existing treatment
processes for drinking water treatment.

Keywords: coagulation; drinking water treatment; ferrate(VI); occurrence of micropollutants;
oxidation; ozonation

1. Introduction

Lake Constance is the third largest lake in Europe and located at the northwest edge
of the Alps. Lake Constance has a surface of 535 km2, a maximum depth of 253 m and
occupies 4.84 × 1010 m3. Its catchment area is 11,500 km2, locating it in Germany, Austria
and Switzerland. The mean annual inflow is about 1.2 × 1010 m3, of which more than
80% are from glacial origin and comes from the Alps by Alpine Rhine, Bregenzerach and
Dornbirnerach [1]. In total, 17 drinking water treatment plants from the three countries
withdraw about 1.70 × 108 m3 of surface water annually from Lake Constance to supply
more than 5 million people with drinking water [1,2].

Although over 95% of the wastewater in the catchment area of Lake Constance is
treated before entering the lake [1], micropollutants are not removed efficiently by wastew-
ater purification and are discharged into receiving waters of Lake Constance. Therefore,
it is useful to investigate the occurrence and removal efficiency of micropollutants in the
water of Lake Constance by an oxidative drinking water treatment process.

Figure 1 shows the Lake Constance Water Supply treatment processes. The raw water
is drawn from a depth of 60 m of the Lake Constance. Micro-strainers with a mesh size of
15 µm remove phytoplankton, zooplankton and suspended matter. Thereafter, microalgae,
bacteria and viruses are inactivated by ozonation with an initial ozone dose of 1.0 to
1.2 mg L−1. The mean ozone contact time is about 1.5 to 2.5 h depending on the overall
water flow through the treatment plant. The last step of the treatment is a ferric-enhanced
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rapid sand filtration with a FeCl3 dosage of 100 µg L−1 to remove all particles with a size
≥ 1 µm. After the treatment process, chlorine is added to the drinking water so that the
mean free chlorine concentration is 0.20 to 0.25 mg L−1.
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Figure 1. Schematic diagram of processes at the Lake Constance Water Supply Treatment Plant.

Considerable emerging micropollutants’ (EMPs) residuals have been found in the
water courses, which can cause adverse effects on the environment and living species
health. Endocrine disrupting chemicals (EDCs) are one type of EMPs, which can cause
disordered hormones and lead to depress the reproduction and growth of some species
(e.g., fishes and birds) [3]. Antibiotics were also categorized as a main EMP; the misuse
of antibiotics leads to its residuals being present in water, which can inhibit non-target
organisms in the environment. Additionally, antibiotic-resistant bacteria make it difficult to
cure infections of humans and livestock and also cause adverse public health issues [4].

Although high water quality of drinking water is achievable using the current treat-
ment processes at Lake Constance Water Supply Treatment Plant (Figure 1), we are seeking
more efficient and alternative oxidation processes in order to tackle the issue of micropollu-
tants and to meet potential legislations that will regulate the concentrations of the given
micropollutants in the near future [5,6].

Among various oxidation processes, ferrate(VI) has received extensive attentions due
to its superior dual properties of oxidation and coagulation [7]. Ferrate(VI) has redox
potentials varying from +2.2 V at pH 1 to +0.7 V at pH 14, respectively [8], and can
perform oxidation, coagulation, adsorption, sedimentation, disinfection, decolorization
and deodorization, which are unmatched by other water treatment reagents. After dosing
ferrate(VI) into the water to be treated, more active species, such as Fe(V) and Fe(VI), are
suggested to be generated [9], and even free radicals, such as ·O2 and ·OH-, could also
be produced during the ferrate self-decomposition [10]; this can contribute to superior
oxidation performance in some cases. However, due to its unstable property, ferrate(VI)
cannot be stored for more than a couple of months, which means that it has limited practical
application. Further, an in situ synthesis and application of ferrate(VI) has been considered
in a pilot-scale wastewater treatment trial [11], which demonstrated that a potential use of
ferrate(VI) for wastewater treatment could be possible.

Therefore, this research aims to demonstrate that ferrate(VI) could be a potential
alternative to the existing treatment processes for drinking water treatment by studying
the performance of ferrate(VI) in comparison with that of ferric chloride and degrading the
selected three micropollutants by ferrate(VI) and ozonation.
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2. Materials and Methods
2.1. Materials

Water samples of this study were raw lake water and treated drinking water. Character-
istic properties of lake water can be seen in Table 1. Gabapentin, metformin,
10, 11-dihydroxycarbamazepin, 4-AAA, AMPA, 1, 4-dioxan, benzotriazole, 4-methyl-
benzotriazole, 5-methyl-benzotriazole, acesulfam, cyclamat, sucralose, imidacloprid,
bisphenol-S and azithromycin in analytical grade were purchased from Sigma-Aldrich
(Glasgow, Scotland, UK). Dehydrated Biofix-Lumi luminescent bacteria (Vibro fisheri) and
bacteria reactivated reagent were purchased from Envitech Ltd (Cardiff, Wales, UK), which
were stored in the freezer at temperature of −15°C, and the bacteria reagent was stored in
the fridge at temperature of 4 ◦C.

Table 1. Occurrence of selected micropollutants in raw water and drinking water, Lake Constance
Water Supply Treatment Plant in 2017–2019.

Raw Water Drinking Water

Concentration Ranges in ng L−1

Pharmaceuticals
Gabapentin 34–48 <10
Metformin 130–170 21–64

10, 11-Dihydroxycarbamazepin <10–18 <10
4-AAA 21–32 <10
4-FAA 14–26 <10

Pesticides
AMPA 17–25 <10

Industry Chemicals
1, 4-Dioxan 16–22 <10–11

Benzotriazole 83–130 <10–20
4-Methyl-benzotriazole 16–50 <10–12
5-Methyl-benzotriazole 14–31 <10

Artificial Sweeteners
Acesulfam 160–270 <10–40
Cyclamat 10–17 <10
Sucralose 43–70 <10

2.2. Pilot Plant Setup

The pilot plant followed the main plant’s processes: water flows through a mi-
cro sieve filter (15 µm), and then flows into the customized ozone mixer followed by
seven contact tanks. Then, K2FeO4 (ferrate(VI)) and FeCl3 were dosed into two flowing
waters separately by peristaltic pumps with the required volume dosage (equivalent to
0.1 mg L−1 as Fe). Water/coagulant mixtures were directed into two separated chambers
where suitable flocculation occurred before the flow entered two parallel filter columns
(Figure 2) with similar flow conditions. The flow rate for each stream was 1.5 m3 h−1, and
the daily test period was 5 h. The two parallel filtration columns have the same configura-
tions (Everzit N and quartz sand) and can be run with either raw water or ozonated water.
When using raw water, no ozonation was operated, and then the performance of ferrate(VI)
can be compared with that of FeCl3. Both filtrates were collected for the analysis of water
qualities. A detailed pilot-plant setup can be seen in [12].
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Figure 2. Pilot plant facilities.

2.3. Additional Jar Tests

Additional jar tests were performed to compare the removal efficiency of three extra
micropollutants, namely, imidacloprid (IMP), bisphenol-S (BS) and azithromycin (AZM).
They represent pesticides (IMP), endocrine disrupting chemicals (BS) and pharmaceuticals
(AZM), respectively. The three compounds are typical EMPs, which have been received
interest by the Lake Constance Water Supply Treatment Plant since the increasing use of
those three compounds in the area poses potential risks on the quality of Lake Constance
water in the future. They were treated by either ferrate(VI) or ozonation. The equivalent
dose (0.036 mM) of either ferrate(VI) or ozone was chosen, which was based on the pre-
determined tests of ferrate(VI) to achieve the best removal efficiency, and dosed into the
pre-prepared test solutions (1000 µg L−1 and pH 7 of each micropollutant, and pH 7
represents neutral acidic level and fits to the drinking water standards). The jar test was
performed using Stuart™ SW6 flocculator (Cole-Parmer UK, Cambridgeshire, UK). The
fast and slow mixing strength and duration were 250 rpm for 2 min and 40 rpm for 20 min,
respectively. The subsequent sedimentation duration was 30 min. The treated samples
were filtered through 0.45 µm cellulose filter. The filtered samples were analyzed for the
concentrations of micropollutants studied and dissolved organic carbon (DOC).

2.4. Analysis

Micropollutants were analyzed by liquid chromatography with high-resolution mass
spectrometry (LC-HRMS, Q-Exactive, Thermo-Fisher Scientific GmbH, Dreieich, Germany)
after filtration and direct injection (DI) or after solid-phase extraction according to DIN
38407-47:2017-07 [13] and DIN ISO 16308:2017-09 [14], respectively. One of pollutants,
1, 4-dioxan, was analyzed according to EPA 522 [15] by solid-phase extraction (400 mL
sample) and gas chromatography–mass spectrometry but with tandem mass spectrometry
(GC-MS/MS, TSQ 8000evo, Thermo-Fisher Scientific GmbH, Dreieich, Germany). The limit
of detection of all micropollutants for LC-HRMS and GC-MS/MS methods was between
10 and 20 ng L−1.

2.5. Toxicity Assessment

After treatment with ferrate(VI) and ozonation, the resultant toxicity of the chosen mi-
cropollutants, imidacloprid (IMP), bisphenol-S (BS) and azithromycin (AZM), was assessed



Environments 2023, 10, 25 5 of 10

by the laboratory’s test using Vibro fisheri, which are nonpathogenic, marine, luminance
bacteria, as well as by International Standard ISO 11348-3:2007 (E) [16] and the Ecological
Structure–Activity Relationships (ECOSAR) modelling tool (ECOSAR V2.0), which is a
useful reference for the experimental results of toxicity [17].

3. Results and Discussion
3.1. Quality of Lake Constance Water

Raw water of Lake Constance consists of various microcontaminants (see Table 1), in-
cluding residuals of pharmaceuticals like gabapentin, metformin, 4-acetylaminoantipyrine
(4-AAA) and 4-formylaminoantipyrine (4-FAA); pesticides; and industry chemical residu-
als, such as benzotriazole and artificial sweeteners like cyclamat, which were detectable in
the concentrations between 10 and 270 ng L−1. In treated drinking water, many investi-
gated micropollutants were below the limit of detection (i.e., <10 ng L−1), but metformin,
1, 4-dioxan, benzotriazole, 4-methyl-benzotriazole and acesulfam were detected with con-
centrations between <10 and 64 ng L−1 (Table 1). The overall water quality of drinking
water in Lake Constance is shown in Table 2.

Table 2. Quality characteristics of Lake Constance drinking water.

Parameter (mg L−1)

Ammonium <0.01
Chloride 7
Fluoride 0.1
Nitrate 3.8

Sulphate 33
Calcium 49

Magnesium 8.5
Sodium 5.6

Hardness (as CaCO3) 161
DOC 1.2
pH 8.2

3.2. Comparative Treatment Performance

The results of pilot-scale trials showed that 10% of metformin, benzotriazole and
acesulfam can be removed by ferrate(VI) at a dose of 0.1 mg L−1 from both raw water and
ozonated water, but FeCl3 with or without pre-ozonation cannot achieve the same perfor-
mance (Table 3). The lower ferrate(VI) dose used in the pilot plant trials followed the Fe
dose of the main plant, aiming at equally comparing the performance of removing microp-
ollutants. Neither ferrate(VI) nor ozonation with FeCl3 reduced DOC concentration due
to low original DOC in the lake water and low Fe dose (0.1 mg L−1), which simulated the
main treatment plant conditions. Additionally, due to low EMPs concentrations (Table 1),
no oxidation compounds after ferrate treatment or ozonation could be detected [12].

Table 3. Comparative performance of ferrate(VI) and FeCl3 (+ozonation).

Raw Water Ozonated Water
Unit Ferrate(VI) FeCl3 Ferrate(VI) FeCl3

Fe dosage mg L−1 0.1 0.1 0.1 0.1
Turbidity removal % ~80 ~80 ~90 ~90

Residual Fe µg L−1 ~16 ~9 ~15 ~12
Particle removal % ~93 ~94 ~98 ~98

Bromate formation µg L−1 0 0 ~2.5 ~2.5
Benzotriazole removal % 10 0 10 0

Acesulfam removal % 10 0 10 0
Metformin removal % 10 0 10 0
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3.3. Additional Jar Test Results

Due to extremely low concentrations of micropollutants in Lake Constance water
and in the treated drinking water, additional jar tests were conducted in order to assess
the treatment efficiency of either ferrate(VI) or ozonation. Figure 3 shows the results of
concentration reduction of imidacloprid (IMP), bisphenol-S (BS) and azithromycin (AZM),
where each solution with a concentration of 1000 µg L−1 and pH 7 was treated by ferrate(VI)
or ozone, at the same dose of 0.036 mM. For IMP, the removal efficiency of ozonation and
ferrate(VI) oxidation was greatly different; it was >95% removal by ozonation, whereas it was
14% removal by ferrate(VI). For BS, almost 100% concentration reductions were achieved by
both ozonation and ferrate(VI). For AZM, there was 99.8% removal by ozonation and 82% by
ferrate(VI). Overall, the degradability of three micropollutants by ozonation and ferrate(VI)
oxidation followed the sequences of BS > AZM > IMP, which could be attributed to the
characteristics of functional groups existing in three pollutants. Ferrate(VI) is a selective
oxidant, which is more effective in reacting the compounds with electron-rich moieties
(ERMs) than electron withdrawal groups (EWGs). BS consists of two phenyl groups where
aromatic rings and hydroxylates are ERMs [18,19]. In contrast, IMP consists of EWGs such
as halogen pyridine and imidazole. Thus, the ferrate(VI) is more effective in degrading BS
than IMP. For AZM, the two heterocyclic groups in its molecule are more electron-enriched;
ferrate(VI) can thus effectively treat more AZM than IMP. Comparing the performance of
ozonation with that of ferrate(VI), the higher reactivity of ozone could be attributed to its
relative greater redox potential than that of ferrate(VI) under the reaction’s conditions.

Figure 3. Mean concentration reduction of IMP, BS and AZM with ferrate(VI) and ozonation, respec-
tively. The dosage of ferrate(VI) and ozone was 0.036 mM. Test solution concentration = 1000 µg L−1

and pH = 7.

Figure 4 shows that approximately 10–20% of DOC removal in the degradation of IMP,
BS and AZM by ozonation and ferrate(VI) treatment, which was relatively lower than the
reduction of the compounds’ concentration. Moreover, there was no significant difference
between DOC reductions by ferrate(VI) treatment and ozonation. DOC reduction indicates
the mineralization of organic compounds, i.e., original organic compounds are converted
to form more bio-assimilable molecules such as methane and carbon dioxide [20]. Limited
mineralization by ferrate(VI) suggests that ferrate(VI)’s reactivity is mainly based on the
functional groups and chemical bonds in the compounds to be treated. On the other hand,
limited DOC reduction by ozonation in this study is attributed to the reactions of ozone
molecules with the pollutants, which go through the selective reactions as well.
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Figure 4. Mean DOC reduction of IMP, BS and AZM with ferrate(VI) and ozonation, respectively.
The dosage of ferrate(VI) and ozone was 0.036 mM. Test solution. concentration = 1000 µg L−1 and
pH = 7.

3.4. Toxicity Assessment Results

The positive control sample was a 5.29 g L−1 K2Cr2O7 solution, made by 2% NaCl.
The results of 20–80% inhibition validated the toxicity test. The negative control sample
was made of 2% NaCl solution, which was applied to correct the effect of attenuation of
luminescence. It can be observed from Figure 5 that those untreated solutions containing
IMP, BS and AZM at a concentration of 1000 µg L−1 had inhibiting effects on the growth
of luminescent bacteria (or had toxicity). In all cases, the blank samples (treated drinking
water) had slightly positive values, suggesting these samples had a minor inhibiting effect
on the growth of luminescent bacteria, though such effects can be neglected in reference to
the positive control sample. For BS samples (Figure 5b), the toxicity of the ferrate(VI)-treated
samples significantly decreased, but the toxicity by ozonation was reduced less. In contrast,
both IMP (Figure 5a) and AZM (Figure 5c) exhibited elevated toxicity after ferrate(VI)
treatment and ozonation. The increase in the toxicity is attributed to the formation of
oxidation products; they possessed higher toxicity than that of the original pollutants.
The results are consistent to those of other studies (e.g., [21]). Moreover, variations of the
toxicity of three target compounds reflect the nature of the properties and characteristics of
raw compounds and their oxidation products.

Additionally, the toxicity of both untreated compounds and the oxidation products
after ferrate(VI) treatment was assessed using the ecological structure–activity relationships
modelling (ECOSAR Program V2.0) and the underlying methodology [22]. Based on the
data shown in Table 4, the final oxidation products of IMP and AZM exhibit higher acute
and chronic toxicity in three aquatic species than those of raw IMP and AZM. However, for
BS, the toxicity of oxidation product reduced significantly in comparison with that of raw
BS. In summary, the toxicity assessment by ECOSAR shows consistent results with that
obtained from the laboratory bio-luminescence tests.

Table 4. Aquatic toxicities resulting from IMP, BS and AZM and the relevant final oxidation product,
calculated by ECOSAR program.

Chemicals. ECOSAR Class
Definition

Chronic Toxicity
(mg L−1)

Fish
(96 h,
LC50)

Dalphnid
(48 h,
LC50)

Green Algae
(96 h,
EC50)

Fish
(Chv)

Daphnid
(Chv)

Green Algae
(Chv)

IMP Neonicotinoids 471 121 73.4 214 6.75 3.86
Final oxidation

product Halopyridines 21.6 21.3 11.4 4.63 0.204 3.94
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Table 4. Cont.

Chemicals. ECOSAR Class
Definition

Chronic Toxicity
(mg L−1)

Fish
(96 h,
LC50)

Dalphnid
(48 h,
LC50)

Green Algae
(96 h,
EC50)

Fish
(Chv)

Daphnid
(Chv)

Green Algae
(Chv)

BS Phenols, poly 21.8 196 6.90 12.6 75.0 0.877
Final oxidation

product Neutral organics 41,900 18,600 49,800 30,600 911 753

AZM Easter 18.8 34.3 12.0 1.09 16.4 4.59
Final oxidation

product Easter 1.03 1.61 0.450 0.044 0.514 0.273

Figure 5. Toxicity of the blank (treated drinking water) and the target three compounds.
(1000 µg L−1), with and without being treated by 0.036 mM ferrate(VI) and ozone at pH 7, re-
spectively. (a) IMP samples, (b) BS samples and (c) AZM samples.
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3.5. Overall Remarks on Future Work Consideration

Conventional wastewater treatment plants receive a large spectrum of micropollutants
from domestic, industrial and hospital wastewater, which might not be completely elimi-
nated during treatment processes. These contaminants need to be considered once drinking
water is produced from downstream surface and lake waters. An integrated water protec-
tion management should include a better source water protection with effective wastewater
treatment and have an advanced drinking water treatment process to be considered in the
place. As shown in this study, the results of ferrate(VI) are encouraging, and the technology
is a potential new drinking water treatment process, but further trials are needed to validate
the cost effectiveness of using ferrate(VI) in full-scale drinking water treatment.

4. Conclusions

In the raw water of Lake Constance, 13 micropollutants were detectable. The concen-
trations of gabapentin, metformin acid, 4-AAA, 4-FAA and other monitored pollutants
ranged between 10 and 270 ng L−1. In finished drinking water, many investigated microp-
ollutants were below the limit of detection (i.e., <10 ng L−1), but metformin, 1, 4-dioxan,
benzotriazole, 4-methyl-benzotriazole and acesulfam were detected with concentrations
between <10 and 64 ng L−1.

Moreover, ferrate(VI) technology has been tested in a pilot-scale trial that demonstrated
that ferrate(VI), at a dose of 0.1 mg L−1 as Fe, can remove 10% metformin, benzotriazole
and acesulfam from raw water, but FeCl3 with or without pre-ozonation cannot. Additional
jar tests demonstrated that the degradability of three chosen micropollutants by ozona-
tion and ferrate(VI) oxidation followed the sequences of bisphenol-S (BS) > azithromycin
(AZM) > imidacloprid (IMP), which could attribute to the characteristics of functional
groups existing in three pollutants. Additionally, limited mineralization or DOC reduc-
tion by ferrate(VI) and ozonation were observed in this study, suggesting that both the
ferrate(VI) and ozone selectively reacted with IMP, BS and AZM, and their reactivity is
mainly based on the characteristics of functional groups of the pollutant compounds.

Finally, the toxicity assessment by both bio-luminescence tests and the ECOSAR
program showed consistent results that the toxicity of BS samples after treatment by
ferrate(VI) and ozonation decreased significantly; in contrast, both IMP and AZM samples
exhibited elevated toxicity after ferrate(VI) treatment and ozonation.
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