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Abstract: Coronary artery disease (CAD) remains a leading cause of mortality and morbidity world-
wide, and it is associated with considerable economic burden. In an ageing, multimorbid population,
it has become increasingly important to develop reliable, consistent, low-risk, non-invasive means
of diagnosing CAD. The evolution of multiple cardiac modalities in this field has addressed this
dilemma to a large extent, not only in providing information regarding anatomical disease, as is the
case with coronary computed tomography angiography (CCTA), but also in contributing critical
details about functional assessment, for instance, using stress cardiac magnetic resonance (S-CMR).
The field of artificial intelligence (AI) is developing at an astounding pace, especially in healthcare.
In healthcare, key milestones have been achieved using AI and machine learning (ML) in various
clinical settings, from smartwatches detecting arrhythmias to retinal image analysis and skin cancer
prediction. In recent times, we have seen an emerging interest in developing AI-based technology
in the field of cardiovascular imaging, as it is felt that ML methods have potential to overcome
some limitations of current risk models by applying computer algorithms to large databases with
multidimensional variables, thus enabling the inclusion of complex relationships to predict outcomes.
In this paper, we review the current literature on the various applications of AI in the assessment of
CAD, with a focus on multimodality imaging, followed by a discussion on future perspectives and
critical challenges that this field is likely to encounter as it continues to evolve in cardiology.

Keywords: artificial intelligence; coronary artery disease; cardiac imaging

1. Introduction

Artificial Intelligence (AI) is a general term that encompasses any computerised
programme that simulates characteristics of the human intellect, such as problem-solving
and learning. The field of AI is developing rapidly, especially in healthcare. For example, a
current Google search for “AI in health and social care” reaps 351 million hits [1]. Current
examples of the literature include the Royal College of Physicians (RCP) official statement
on AI in 2018, urging the industry to address real-world challenges, doctors to scrutinise
the technology, and regulators to improve guidance and evaluation methods to assess
AI [2]. Eric Topol (a pioneer of individualised medicine), in his book Deep Medicine: How
Artificial Intelligence Can Make Healthcare Human Again, explains how pattern recognition
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and machine learning can be used by doctors to manage health better and improve patient
safety through home monitoring [3]. Topol also outlines how the connection between
patients and doctors can be improved by enabling automated tasks, and thereby freeing
medical professionals to focus on providing care to patients.

The modern history of AI begins in the 1950s. Alan Turing (1956) published a landmark
paper in which he proposed that it would be possible to create a machine that thinks [4].
The term AI was first used by John McCarthy in 1956 at a Dartmouth conference with the
theme, ‘every aspect of learning or any other feature of intelligence can be so precisely
described that a machine can be made to simulate it’ [5]. The field of AI comprises machine
learning (ML), which is concerned with the automated discovery of statistical patterns in
data without using explicit instructions. Two important criteria for ML to function are that
data is detailed enough to answer the question being asked; and also that the ML technique
is appropriate for the type, amount, and complexity of the information available [6]. There
are various ways in which an algorithm can model a problem based on its interaction with
the experience or the environment it is merged into. The two main learning styles used in
machine learning are (Figure 1):
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a. Supervised learning. Input data has a known ‘ground truth’ and is labelled, e.g.,
cardiac images with expert hand-drawn contours, and the model is prepared through a
training process in which it is required to make predictions and is corrected when those
predictions are flawed. This training process goes on until the model reaches an optimal
level of accuracy on the training data [7]. A practical application of supervised learning
is weather forecasting for accurate weather prediction. In cardiology, supervised learning
techniques such as regression models have been used traditionally in risk prediction,
such as predicting the 30-day mortality risk for patients with ST-elevation myocardial
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infarction [8]. In cardiac imaging, automated segmentation of endocardial borders in
unseen datasets is a common design goal of ML in cardiac MRI (CMR) [9].

b. Unsupervised learning. Input data is not labelled and does not have a known result.
The model is prepared by deducing structures present within the input data. This may
be through a mathematical process to systematically reduce redundancy, or by organising
data by similarity [7]. Cluster analysis is an unsupervised ML technique which provides
a process of crafting homogeneous groups of data from hidden patterns in data without
prior knowledge [6]. Examples of real-world applications of unsupervised learning include
genetics, where clustering DNA patterns are used to analyse evolutionary biology [10].
In cardiac imaging, clustering has been used in the echocardiographic assessment of left
ventricular function [6]. Deep learning (DL) is a subtype of unsupervised ML that uses
artificial neural networks (ANNs) with multiple layers to learn directly from data. As
can be inferred from the name, ANNs mimic the human brain, replicating the way that
neurons communicate with one another. ANNs consist of node (artificial neurons) layers
that comprise an input layer, one or multiple hidden layers, and an output layer [11].
Each node is connected to another and has a weight and threshold. Once the output of
any individual node exceeds the pre-determined threshold, that node is set into motion,
transferring information to the next layer of the network [11]. In DL, expert hand-drawn
contours are not required upfront. A convolutional neural network is an example of a DL
network often used for image analysis tasks.

Significant milestones have been achieved using AI in various clinical fields, such as
ophthalmology (retinal imaging), pathology (image analysis), and dermatology (differentia-
tion of benign vs malignant skin lesions). In cardiology, AI technologies are being applied in
precision medicine, clinical prediction, cardiac imaging analysis, and robotic medicine [12].
For instance, smartwatches are now being used in certain settings for arrhythmia detection,
although this particular field still requires evidence and improvement.

Coronary artery disease (CAD) represents the most common form of cardiovascular
disease and remains the biggest killer worldwide. For example, in the UK alone, more
than 100,000 hospital admissions are attributed to myocardial infarction each year [13]. In
the nature of its complexity, multiple variables, and the large number of patients it affects
annually, the field of coronary disease represents an ongoing minefield for AI development
and is likely to be a key area where the impact of AI will be felt. Previous studies such as
Maragna et al. [14] and Gautam et al. [15] have discussed the applications of AI in CAD,
including an overview of multimodality cardiac imaging, with a discussion surrounding
the strengths and pitfalls of this new technology. In this paper, we aim to review the
current literature on applications of AI in diagnosing CAD, with an emphasis on non-
invasive cardiac imaging modalities, and present a discussion on the use of AI and MRI in
prognostication. We then go on to discuss the clinical context of AI as a digital diagnostic
tool; followed by a commentary on the cost-benefit implications of AI implementation in
healthcare; future perspectives; and the potential impact of AI in cardiovascular imaging,
including its limitations.

2. Echocardiography

Echocardiography remains one of the most readily available and widely used di-
agnostic tools in cardiology, and although the use of AI in echocardiography is still a
work in progress, several applications have been developed. For instance, in their study,
Madani et al. [16] trained a convolutional neural network (CNN) to recognise 15 standard
echocardiographic views, using a training set of 200,000 images. The researchers demon-
strated an accuracy of 91.7% compared to 79.4% for board-certified echocardiographers
classifying a subset of the same test images. A possible explanation for this discrepancy
offered by the authors is that the occasional misclassifications of single images most often
involved views that can look similar to human eyes. These include adjacent views in the
echocardiographic acquisition, where a slight difference in the angle of the sonographer’s
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wrist can change the view, resulting in confusion between an apical three-chamber view
and an apical two-chamber view.

In addition to accuracy, other studies such as Knackstedt et al. [17] have shown that
AI could enable reproducible analysis of left ventricular function, as well as longitudinal
strain in approximately 8 s. Such rapid assessments of high-volume images in echocardio-
graphy could potentially save clinician time and in the process, increase the availability
of echocardiogram appointments for patients, the caveat here being the reproducibility
and accuracy of AI-driven assessments. Furthermore, ML confers added benefits in the
evaluation of diastolic function, with a study by Lancaster et al. [18] demonstrating natural
patterns of clustering of echocardiographic variables that can identify high-risk patients.
Another study by Pandey et al. [19] reported that a deep neural network (DeepNN) model
complemented traditional echocardiography-based risk assessment in patients with heart
failure with preserved ejection fraction (HFpEF), thus potentially identifying patients most
likely to benefit from spironolactone diuretic therapy. Although echocardiography has been
used primarily in the past for valvular and systolic function assessments, new automated
image processing technology [20] has been developed in recent times to extract various
image features from stress echocardiography. Upton et al. [20] used the extracted features
to train an ensemble ML classifier and found that the AI model could reduce variability and
improve clinicians’ accuracy when reading stress echocardiograms, while also being able
to distinguish between patients who may need revascularisation from those best treated
medically, as they are less likely to have severe CAD on angiography [20].

3. Coronary CT

Coronary CT is a well-established modality, and due to the wealth of pre-existing data
and well-validated techniques, it has been at the forefront of technology innovation and AI
model development in cardiac imaging. In the CONFIRM registry, a large 5-year multi-
centre prospective registry analysis [21] involving 10,030 patients undergoing coronary
computed tomographic angiography (CCTA), ML was used to combine clinical and CCTA
data (including segment stenosis score (SSS), segment involvement score (SIS), modified
Duke index (DI), and Framingham risk score (FRS)]. In this study, 44 CCTA parameters
and 25 clinical parameters were used. Predictive classifiers for all-cause mortality were
developed by a classification ‘boosting’ approach, employing an interactive Logit-Boost
algorithm using decision stumps for each feature-selected variable as base classifiers. The
performance and general error estimation of the entire ML process was assessed using strat-
ified 10-fold cross-validation, which is currently the preferred technique in data mining [21].
In this study, ML was found to predict 5-year all-cause mortality (ACM) significantly better
than existing clinical or CCTA metrics alone (areas-under-the-curve for 5-year ACM: ML:
0.79, FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; p < 0.001). An important limitation of this study
was that although prospectively collected, the CONFIRM registry data used to derive the
model was observational and subject to selection bias and validation. Furthermore, the de-
scription of the actual ML process in this paper was rather complicated, and it represented
a real challenge to readers in terms of understanding the actual methods employed.

In another study [22], 6814 asymptomatic patients underwent coronary artery calcium
scoring (CAC) as part of MESA (multi-ethnic study of atherosclerosis). In this study, ML
was used to process all available clinical and CT data, including the CAC score and CAC
volume scores, as well as extracardiac CAC scores. Areas under the curves (AUC) by
receiver operator curves were compared between clinical data alone, CAC Agatston scores
alone, and a combination of all clinical and CT variables by ML. The study reported that ML
of all available clinical and non-contrast CT variables was superior to clinical risk factors
and the CAC score in predicting both coronary heart disease and cardiovascular disease
events [22].
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3.1. Role of Coronary Computed Tomographic Angiography (CCTA) in Prognostication

The prediction of adverse events and stratification of risk in patients using CCTA
remains an area of particular interest, as it has the power to influence the specific man-
agement of these patients, and guides treatment in terms of invasive vs. non-invasive
therapy, as well as appropriate pharmacotherapy. DL algorithms can undertake automated
assessments of prognostic biomarkers from image data, and AI-based imaging parameters
can be combined with clinical information, such as comorbidities and troponin enzyme
assays, to allow risk prediction in different classes of patients [23].

3.2. Fat Attenuation Index

Atherosclerosis is established as an ongoing inflammatory process driving the evolu-
tion of plaque. Recent translational research on the interaction between coronary arteries
and perivascular adipose tissue (PVAT) has identified the latter as an in-vivo marker of coro-
nary inflammation by altering its composition, through the release of adipokines [24,25].
As its name suggests, PVAT is the layer of adipose tissue surrounding coronary arteries; it
comprises adipocytes, stromal cells, and interstitial tissue [24,26]. The CT fat attenuation
index (FAI), a metric first developed by Antonopoulos et al. [27], perceives coronary in-
flammation by assessing dynamic spatial changes in attenuation in PVAT, which indicates
the inflammatory burden of the adjacent vessel wall [24,28]. The advantages conferred by
FAI include the following: it is a sensitive, specific, and dynamic biomarker of coronary
inflammation; it is independent of the severity of both coronary calcification and systemic
inflammation found in the patient; and it is not confounded by the degree of coronary
calcification [24,28,29]. In the landmark CRISP-CT (Cardiovascular Risk Prediction using
Computed Tomography) study, the prognosis benefit of FAI was inhibited amongst pa-
tients taking primary prevention therapy with aspirin and statin following CCTA, which
indicates that the risk highlighted by this marker may be modified [24,29]. Furthermore,
on subgroup analysis, it was shown that FAI retained its predictive value for both cardiac
and all-cause mortality, regardless of the indication for CTCA and whether chest pain was
present or not [30,31] This highlights the predictive value of FAI as a risk predictor in a
broader population, including asymptomatic patients [31].

In a study by Oikonomou et al. [32], the researchers designed an AI-powered technique
to predict risk by analysing the CCTA-derived radiomic profile of coronary PVAT. Cases of
patients experiencing major adverse cardiovascular events (MACE) within 5 years of their
CCTA were selected (n = 101), as well as matched controls (n = 101), and this cohort was
randomly divided into a training and testing subset, in which a random forest algorithm
was used to distinguish MACE from non-MACE cases [32]. The product of the model was
taken as the fat radiomic profile (FRP). This profile was then tested on 1575 participants from
SCOT-HEART [33], where it was reported to considerably improve prediction for cardiac
risk, beyond the current state-of-the-art methods [32]. Unlike FAI, which is a dynamic
marker and can change according to responsiveness to therapy, FRP perceives adverse
persistent coronary PVAT remodelling, and is thus not influenced by acute processes or
medical therapy [32].

3.3. Plaque Feature and Fractional Flow Reserve-CT (CT-FFR)

In addition to highlighting the presence and anatomical severity of obstructive coro-
nary disease, CCTA can identify coronary lesions with high-risk features, such as positive
remodelling and low attenuation [34,35]. In fact, non-calcified plaques with densities ≤30 of
Hounsfield units identified by CCTA have been reported to correlate closely with necrotic
cores demonstrated in atherosclerotic plaques on intravascular ultrasound (IVUS) [36].
Studies such as Al’Aref et al. [37] have used CCTA-derived plaque features within a cohort
of patients who subsequently went on to have an ACS, and designed an AI-based model
for the prediction of culprit lesions from non-culprit lesions on CCTA. In the EMERALD
(Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coro-
nary CT Angiography and Computational Fluid Dynamics) study, Lee et al. [38] sought to



Med. Sci. 2023, 11, 20 6 of 22

investigate the use of non-invasive haemodynamic evaluation to identify high-risk plaques
causing subsequent ACS. In 72 patients with clear ACS and CCTA data, the presence of
adverse plaque features in culprit vs. non-culprit lesions was assessed and haemodynamic
parameters such as fractional flow reserve-CT (FFR-CT), change in FFR-CT (∆ CT-FFR)
across the lesion, and wall shear stress (WSS) were analysed using computational fluid
dynamics [38]. The authors reported that culprit lesions had worse haemodynamic param-
eters, and that detailed assessment with anatomical severity, adverse plaque characteristics,
and axial plaque stress demonstrated discriminatory ability in identifying culprit lesions
for subsequent ACS, compared with traditional anatomy-based models. In another study,
Dey et al. [39] investigated whether lesion-specific ischemia by invasive FFR could be
predicted by an ML-based ischemia risk score derived from plaque measurement from
CCTA, using a boosted ensemble algorithm. The authors found that the new ML-powered
integrated ischemia risk score showed higher prediction of ischemia, when compared to tra-
ditional individual CCTA metrics such as plaque volume or pre-test likelihood of CAD [39].
Finally, there is a growing interest in the use of CCTA and AI to guide clinical response fol-
lowing treatment such as PCI for significant lesions. The FFR-CT Planner [40] is a new tool
that recomputes FFR-CT values after coronary angioplasty, which it achieves by combining
the results of multiple simulations and reduced order modelling to calculate instantaneous
FFR-CT values in a particular coronary lumen. It enables pre-procedural planning with
regards to virtual stenting of coronary lesions and prediction of FFR following PCI [41].
In Sonck et al. [41], this technology was tested on 120 patients, and the authors demon-
strated high accuracy and precision of the FFR-CT Planner in predicting FFR after PCI,
independent of whether lesions were focal or diffuse (measured FFR post-PCI = 0.88 ± 0.06,
FFRCT Planner FFR = 0.86 ± 0.06). The impact of this technology is two-fold: it can assist
in personalised interventions and, at the same time, enhance patient selection, avoiding
unnecessary invasive treatment in patients predicted to have little overall benefit from
PCI [41].

4. Myocardial Perfusion Imaging

Despite the rapid emergence and relative advantages of newer techniques such as
the stress cardiac MRI, nuclear cardiology remains an important non-invasive tool in the
assessment of myocardial perfusion. In a registry study of 1638 patients without known
CAD undergoing stress myocardial perfusion imaging (MPI), DL was trained using raw
and quantitative polar maps and evaluated for prediction of clinically significant stenosis
in a stratified 10-fold cross-validation procedure.

DL was shown to improve the automatic prediction of obstructive CAD, as compared
to the current method, which is a parameter combining defect extent and severity to
quantify hypoperfusion, known as total perfusion deficit, TPD [42,43]. There was a higher
area under the receiver-operating characteristic curve (AUC) for disease prediction by DL
as compared to TPD (per patient: 0.80 vs. 0.78; per vessel: 0.76 vs. 0.73: p < 0.01) [43].
However, an important limitation of this study was that due to the unavailability of
fractional flow reserve (FFR) measurements in this population, visual stenosis on invasive
coronary angiography (ICA) was used as the gold standard, which is known to overestimate
the prevalence of functionally significant disease when compared to FFR studies.

In another large study by Arsanjani et al. [44], 1181 rest-stress Tc-sestamibi dual iso-
tope MPI studies were examined. The authors found that computational integration of
quantitative image measures and clinical data by ML improves the diagnostic performance
of automatic MPI analysis to the level of rivalling expert analysis. A later study by Arsan-
jani [45] sought to investigate if early revascularisation in patients with suspected CAD
could be effectively predicted by integrating clinical data and quantitative features derived
from MPS by an ML approach and found that an ML-based approach was comparable or
better than experienced readers in predicting early revascularisation after MPI, and that
an ML approach was significantly better than standalone measures of perfusion derived
from MPI.
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5. Cardiac MRI

As a rapidly evolving imaging modality, cardiac MRI (CMR) has undoubtedly become
a powerful prognostic and therapy decision tool because it provides a wealth of quantitative
information on cardio-physiological parameters, tissue characterisation, and anatomical
structure. This highly reliable, non-ionising modality is particularly helpful in the analysis
of cardiac function and morphology and has a wide range of applications in cardiology,
including the assessment of cardiomyopathies, infarction, myocarditis, and valvular heart
disease, as well as congenital heart conditions. In the next section, we will look at the use
of CMR in delineating cardiac scar, which has an essential role in the diagnosis as well as
the management of cardiac diseases.

5.1. Supervised and Unsupervised Techniques for Automatic Cardiac Scar Segmentation
5.1.1. Cardiac Scar Tissue Physiology

A normal heartbeat arises from spontaneous electrical activity in the heart’s natural
pacemaker. This pacemaker is located in the right atrium. Electrical activity spreads
through the atria and then the cardiac conduction system into the ventricles. This electrical
activation acts to initiate mechanical contraction. Abnormalities of the excitation sequence
are arrhythmias, which can be deadly. Arrhythmias are defined based on their location, such
as atrial fibrillation, ventricular fibrillation, and supra-ventricular tachycardia. Ventricular
arrhythmia (VA) is an important cause of mortality and sudden cardiac death (75–80% of
cases) [46,47].

Ventricular scar is the main substrate for re-entry arrhythmias and can cause VA.
Ischaemic pattern replacement fibrosis scars are created in myocardial tissue during my-
ocardial infarction, resulting in inadequate blood supply to cardiac muscle. The slow
conduction of electrical activation inside and around scars can thus generate re-entry. Re-
entrant activation usually has exit sites along the border zone of the scar. Hence, the spatial
distribution of myocardial scars for the accurate treatment of VA (especially post-infraction)
is of major importance [48,49]. Valid and accurate mapping of the scars is crucial for
correct guidance and treatment of ventricular tachycardias (VT) in catheter ablation (CA).
Moreover, anatomical meshes based on realistic mapping of a scar provide an important
contribution about the mechanism of cardiac arrhythmias [50]. Figure 2 [51] describes an
approach used to extract 3D anatomical models of scar, as well as healthy myocardium, of
the left ventricle. These anatomical models can be used to assist clinicians in evaluating
and analysing the results following typical radiofrequence ablation procedures. Moreover,
the 3D models can be further used to study biomarkers and mechanisms, which have the
potential to increase the prognosis and success of VT treatment.

5.1.2. Automatic Segmentation

Segmentation of scar tissue found in the left and right ventricle remains a challenging
topic, as the huge variability of internal (e.g., size heterogeneity of scars, spatial distribution,
intensity distribution) and external (e.g., resolution, noise) factors cannot be addressed
by a simple model [52]. Manual segmentation of scar based on a threshold definition is
a typical technique that relies on sketching contours slice by slice using pointing devices
such as a mouse or trackball. Three-dimensional MRI can include as many as 100 slices.
Manual segmentation can therefore be a time-consuming, tedious process which is limited
by inter-observer and intra-observation variability. When only one expert is involved, the
segmentation can be biased and affect the reproducibility of the results [53,54].

Automatic segmentation can overcome the limitations of manual methods. There are
numerous studies in the literature that have evaluated automatic scar segmentation both
in atrial regions [55–58] and ventricular regions [59–62]. Typical automated segmentation
techniques refer mainly to clustering techniques such as support vector machines, c-mean,
deformable methods, and other machine learning techniques. The main drawback of
these methods is that the results are highly dependent on the signal-to-noise ratio of the
image [63]. As a result, these algorithms frequently suffer low accuracy and robustness.
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Other methods are model-based methods like atlas models, which need a large dataset to
capture the geometrical shape distribution of the heart for sufficient generalization [64].
Figure 3 [51,65] illustrates the role of ML in left ventricular segmentation techniques used
in CMR.
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5.1.3. Review of Scar Automatic Segmentation Techniques

Segmentation of cardiac scar and surrounding regions, often known as the grey zone,
can prove challenging, because of unpredictable variations in size, shape, and location.
Detsky et al. [55] evaluated a multi-layer K-means clustering technique for scar segmenta-
tion of the left atrium. Their proposed automatic method was speedier and comparable to
manual techniques in terms of accuracy. In their study, Lu et al. [59] utilized a graph cut
segmentation technique to separate the scar region from the healthy myocardial region of
the left ventricle. The main advantages of this automatic method were increased speed
compared to manual segmentation and automatic detection of the scar region, as well as the
prevention of false detection of scar (which is common in manual methods). The limitation
of this study was the need of manual correction of 66/136 images, due to misalignment de-
formation between the delayed enhancement MRI. Tao et al. [52] evaluated a segmentation
method which combined intensity and spatial information, for segments of unhealthy left
ventricular tissue. Their approach was based on the density model theory. One assumption
was that healthy tissue follows a Rician distribution [66] whilst unhealthy tissue follows a
Gaussian distribution. The authors recommended this method for accurate delineation of
myocardial scar, suggesting this could be a useful tool for quantitative assessment of MS in
late gadolinium enhancement (LGE) MRI. In their paper, Mamalakis et al. [65] described a
novel AI tool which combines atlas techniques and different traditional computer vision
approaches (including k-means, active contours, mixture models, watershed etc.) in an
effort to segment healthy myocardium and the scar regions of the left ventricle. They used
unsupervised techniques, validating their results in an external internal unbiased ground
truth (intra-observation and inter-observer ground truths).

There is an increasing trend to use DL networks for human organs automatic seg-
mentation. The results of supervised methods tend to be better than those obtained using
machine learning and computer vision algorithms. In the Medical Image Computing
and Computer Assisted Interventions (MICCAI) conference in 2017, 90% of segmentation
methods were based on DL [67]. In the last decade, there has been a surge in use of DL
networks in the field of automated scar segmentation [68,69]. One of the main drawbacks
of DL techniques is overfitting to training data. As a result, the model fits the noise of the
training set and loses the generalization of the model, which can be robust to variation
in vendors and cardiac shape-structure. In order to achieve valid generalization in the
wider population, a large, labelled training set will be required in the future that comprises
a broad spectrum of patient characteristics (such as abnormal or healthy cases, sex, age);
however, obtaining this kind of dataset can prove difficult in the real world.

5.2. Cardiac MRI in Prognostication

In the field of cardiac MRI, machine learning techniques have mainly focused on
harnessing this information through segmentation of cardiac chambers in a process that has
matured over the recent years and entered clinical practice [70]. Commercially available
software packages that automatically calculate CMR parameters including ejection fraction
and volumes have shown robust results compared to manual assessments and proven
to be powerful predictors of major adverse cardiac events in post-myocardial infarction
(MI) assessment [71]. Automatic segmentation of myocardial regions of late gadolinium
enhancement has also enabled the identification and quantification of ischaemic scar and
shown to be predictive of clinical outcome [71]. Even without gadolinium enhancement,
algorithms based on texture analysis techniques have shown an ability to detect areas of
infarction. These algorithms were trained to detect scar on unenhanced CMR cine images
in areas corresponding to late enhancement, enabling scar detection in situations that con-
tradict the use of gadolinium contrast agents [72]. In addition, the severity of the ischaemic
injury and scar size can be predicted using myocardial T1-mapping and myocardial strain
analysis techniques [73]. In ischaemic heart disease, elevated T1-mapping values indicate
areas of fibrosis or oedema [74], whilst abnormal strain-analysis usually quantifies my-
ocardial deformation [75]. The development of DL approaches to measuring native and
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post-contrast values T1-mapping values [76,77] and automating strain analysis [78] (and
might therefore play a role in the prognostication of ischaemic heart disease, and studies
confirming this are warranted.

ML applications that extract novel CMR data beyond segmentation are still rare. Re-
cent studies have extracted disease-specific features [79] and assessed ventricular motion
throughout the cardiac cycle [80,81]. Although these approaches have been studied on
pulmonary hypertension, they could be adopted and applied to CAD. In a study presented
in 2019 at Euro-CMR, Dr. Aung et al. assessed the usefulness of DL and AI in the mea-
surement of ventricular volumes, mass, and ejection fraction (six different morphotypes).
The study demonstrated that DL could significantly shorten post-processing time (from
5000 studies in 7 months to 15,000 studies in <1 week). Also, 28 genes (including titin and
BAG3) were identified that can predict left ventricular volumes, mass, and ejection fraction.
Aug et al. also created a model to predict the risk of developing heart failure based on
genetic information, sex, height, body mass index, blood pressure, dyslipidaemia, and
tobacco and alcohol abuse [82] (Table 1).

Table 1. Summary of some studies looking at the application of artificial intelligence and machine
learning in non-invasive imaging for assessment of CAD.

Study Author Year Modality Population Description Main Findings

Arsanjani et al. [20] 2013 MPI 1181

This study aimed to improve
the accuracy of myocardial

perfusion SPECT (MPS).
1181 MPS studies were

examined, including 713 cases
with correlating invasive

coronary angiography data.
Clinical data and quantitative

image features were
integrated with ML

algorithms. TPD and
stress/rest perfusion change

were obtained from
automated perfusion

quantification software and
combined with variables such
as age and sex by LogitBoost.

Computational integration
of quantitative image

measures and clinical data
by ML improves the

diagnostic performance of
automatic MPI analysis to
the level rivalling expert

analysis.

Knackstedt et al. [15] 2015 Echo 255

ML analysis was used for fully
automated left ventricular

measurements including EF,
as well as longitudinal strain.

A reference centre
re-examined all datasets by
visual estimation, as well as

manual tracking.

Automated left ventricular
measurements were
completed in 98% of
studies, with good

reproducibility and an
average analysis time of

8 s.

Avendi et al. [35] 2016 CMR 45

This study utilised DL
algorithms combined with

deformable models in order to
design a fully automated left

ventricular segmentation
model from short-axis CMR
datasets. DL was used for
automatic detection and
inferring left ventricular

shape.

Excellent agreement and
high correlation with

reference contours were
reported.
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Table 1. Cont.

Study Author Year Modality Population Description Main Findings

Dawes et al. [54] 2017 CMR 256

This study investigated
whether patient survival in

pulmonary hypertension (PH)
could be predicted using ML

of 3-D patterns of cardiac
motion on CMR. All patients

with new diagnosis of PH
underwent CMR, right heart

catheterisation, and a
6-minute walk.

The ML survival model
was found to predict

outcome independent of
traditional risk factors in

patients with newly
diagnosed PH.

Motwani et al. [16] 2017 CT 10,030

This was a registry analysis of
10,030 patients with suspected
CAD. 25 clinical and 44 CCTA

parameters were assessed,
and ML involving automated
feature selection and model

building with a boosted
ensemble algorith, was used

to combine a clinical and
CCTA, modified Duke index

and Framingham risk score to
predict all-cause mortality.

ML was found to predict
5-year mortality

significantly better than
existing clinical or CCTA

metrics alone.

Madani et al. [14] 2018 Echo 267

CNN was trained to recognize
15 standard

echocardiographic views,
using a training set of 200,000
images based on still images

and videos from 267
transthoracic

echocardiograms.

DL achieved expert-level
classification, with

researchers demonstrating
an accuracy of 91.7%

compared to 79.4% for
board certified

echocardiographers
classifying a subset of the

same test images.

Nakashini et al. [17] 2018 CT 6814

This study included data from
6814 asymptomatic patients
undergoing coronary artery
calcium scanning who were

followed up for coronary
heart disease and

atherosclerotic cardiovascular
events over a decade. ML

utilised all available clinical
and CT data including the
CAC score, CAC volume

scores, as well as extracardiac
CAC scores.

ML of all available clinical
and non-contrast CT

variables was superior to
clinical risk factors and
CAC score in predicting

both coronary heart
disease and cardiovascular

disease events.
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Table 1. Cont.

Study Author Year Modality Population Description Main Findings

Betancur et al. [19] 2018 MPI 1638

This study compared the
automated prediction of

obstructive disease from MPI
by DL with total perfusion

deficit (TPD). Patients without
known CAD underwent stress

99mTc-Sestamibi or
tetrofosmin myocardial

perfusion imaging (MPI). DL
was trained using raw and

quantitative polar maps and
evaluated for prediction of

clinically significant stenosis
in a stratified 10-fold

cross-validation procedure.

DL was shown to improve
automatic prediction of

obstructive CAD, as
compared to the current
method. AUC from the
ROC curve for disease
prediction by DL was

higher than for TPD (per
patient: 0.80 vs. 0.78; per

vessel: 0.76 vs 0.73,
p < 0.01).

Zabihollahy et al. [36] 2018 CMR 34

DL was used to design a
semi-automated method for

fully automated segmentation
of a left ventricular scar from

3-D late gadolinium CMR
images from patients with
ischaemic cardiomyopathy,

without any operator
interaction.

The new method was
found to outperform

alternative techniques.

Zheng et al. [41] 2018 CMR
3078 from UK

Biobank(training),
756 (testing)

DL was used to carry out
cardiac segmentation with

spatial propagation on CMR
image stacks. The method

was trained on a large
database of 3078 cases and

then tested on 756 cases

This technique achieved
comparable and even

improved results in terms
of distance measures
when compared with

state-of-the-art methods.

Baessler et al. [46] 2018 CMR 120

This was a proof-of-concept
study assessing whether

texture analysis allowed for
the diagnosis of subacute and
chronic MI on CMR images.

120 patients undergoing CMR
showing large transmural
infarcts or small chronic

ischaemic scars were entered
retrospectively. Regions of
interest for texture analysis
involving the left ventricle

were contoured by 2 blinded
readers on cine images by
using a software package.
Texture feature selection

based on reproducibility, ML
and correlation were carried

out for selecting features,
allowing the diagnosis of MI

on non-enhanced CMR
images by using LGE as

standard of reference.

The authors concluded
that texture analysis

enabled the diagnosis of
subacute and chronic MI

with high accuracy.
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Table 1. Cont.

Study Author Year Modality Population Description Main Findings

Fahmy et al. [50] 2019 CMR
210 (training and

testing),
455 (validation)

In this study, the authors
describe an automated
technique (deep fully

convolutional neural network,
FCN) which was used for

myocardial segmentation in
T1 weighted CMR images.

FCN enabled fast
segmentation (<0.3 s per
image) with a high Dice

similarity coefficient, thus
allowing fast automatic
analysis of myocardial

native T1 mapping images
on CMR.

Schuster et al. [45] 2020 CMR 1017

CMR data from 2 MI
multicentre trials (n = 1017

patients) were included and
analysis of parameters such as

EF were manually and
automatically assessed using
conventional and AI-based

software. Obtained
measurements entered
regression analysis for
prediction of MACE.

Volumetric analysis
carried out by AI software
was feasible, with results

being reported to be
equally predictive of

MACE compared with
traditional methods.

Ferdian et al. [52] 2020 CMR

4508 from Biobank
(3244 for training,
812 for validation,

452 for testing)

This was a retrospective
cross-sectional study whereby

neural networks (including
CNN) were used to perceive

and track the myocardial
landmarks through each slice,

and strain measurements
were made from the
landmarks’ motion.

The automated technique
allowed unbiased strain

assessment, with a typical
processing time of 260
frames (13 slices) per

second, compared with
6–8 min per slice for

manual methods.

Swift et al. [53] 2021 CMR 220

This study investigated the
use of a tensor-based ML

approach to highlight features
of PAH using CMR. Untreated

patients with PAH or no
evidence of pulmonary
hypertension (PH) who

underwent CMR and right
heart catheterisation studies

within 48 h were selected
from the ASPIRE registry. A
tensor-based ML model was
developed, and the accuracy

of this tool was measured
against standard CMR

assessments.

The authors reported high
diagnostic accuracy as

assessed by AUC at
receiver operating

characteristic analysis
(ROC), p < 0.001:0.92 for
PAH, which is slightly
higher than standard

CMR assessments.

AUC = area under curve; AI = artificial intelligence; CAC = coronary artery calcium; CAD = coronary artery disease;
CCTA = coronary computed tomography angiography; CMR = cardiac magnetic resonance; CNN = convolutional
neural network); DL = deep learning; EF = ejection fraction; LGE = Late gadolinium enhancement; MACE = major
adverse cardiac events; MI = myocardial infarction; ML = machine learning; MPS = myocardial perfusion imaging;
PAH = pulmonary arterial hypertension; PH = pulmonary hypertension.

6. Clinical Context of AI Application as a Digital Diagnostic Tool

With an ageing, multimorbid population and increasing prevalence of CAD, early
exclusion of coronary disease will become increasingly important. In the assessment of
CAD, the relevant questions that AI can help answer are the following:

a. Which patients should be tested? b. What tests should be requested? c. What is the
timeframe for requesting the test?
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The key challenge in answering these questions is balancing unnecessary, superflu-
ous testing with optimal diagnostic accuracy of the AI model, which involves finding
an equilibrium between the sensitivity and specificity of the model [83]. In a study by
Overmars et al. [84], researchers trained ML algorithms to progressively exclude CAD on
CCTA and CMR/SPECT in patients with chest pain, using a Dutch database, with the aim
to maximize the negative predictive value of the model, in order to minimize the false
negative risk with adequate specificity. The authors demonstrated the additional value of
variables such as haematological markers as well as electrocardiograms in excluding CAD,
concluding that ML algorithms have the potential to guide and tailor clinical management
for individual patients [84].

In the broader imaging context, AI is likely to have key implications in screening
pathways for conditions such as retinal disease, where AI has already shown promise in
classifying 2D photographs of some common diseases, and making referral recommenda-
tions on a range of sight-threatening retinal diseases [85]. Some of the biggest companies
of the world, for instance Apple, have entered the market with devices for heart monitor-
ing such as Apple watches, which encourage individuals to perform remote monitoring
even when they are not ‘patients’ [86]. This is undeniably changing the way in which
the public interacts with their health habits and medical professionals. AI could facilitate
‘one-stop-shop’ consultations for patients with known or unknown CAD, with large data
enabling focused and rapid diagnosis and thorough patient discussion, together with
specific risk stratification.

The amalgamation of AI and CAD requires technical skills, cutting-edge technologies,
and considerable financial and resource investment [12]. It is likely that cardiologists will
be trained in data expertise in order to understand the clinical needs and challenges. In
the near future, it is highly probable that AI projects will be conducted by large technology
corporations such as Apple and Microsoft. The recent Apple Watch series 4 has a transducer
that enables ECG measurement, and it is only a matter of time before technological giants
combine big data and DL algorithms to develop innovative devices that shape the future of
coronary disease prevention and diagnosis worldwide. We have already seen in the last
decade a meteoric rise in the use of individual data available on social media platforms such
as Twitter and Facebook, in order to inform and manipulate behaviour. Several authors,
such as Silicon Valley pioneer Jaron Lanier, have argued that social media platforms have
the potential to twist our relationship with the truth and reduce autonomy by continuously
prodding the public with algorithms designed to alter behaviour [87]. It will thus be vital
for our society to agree on how to define the limits and responsibilities of these companies
if they were to step into healthcare. Figure 4 illustrates the stakeholders in the future
expansion of AI in enabling personalized medicine [88,89].
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7. What Is the Future of AI in Cardiovascular Imaging?

There is a unique opportunity in the next few years for cardiovascular imaging to be
at the forefront of the application of AI, including ML. AI introduces new possibilities in
terms of reducing human error and saves time in the clinical workflow through automatic
segmentation of cardiac structures in far less time than manual techniques, as discussed
earlier [90]. ML has the potential to maximize the information obtained from diagnostic
echocardiographic, CT, or CMR images solely or in a combination of imaging and clinical
predictors, thereby enabling disease diagnosis and prognosis, but also risk stratification
influencing management strategies. The use of AI in cardiovascular imaging can in the
future translate into increased processing speeds, improved accuracy, higher test volumes,
reduced human expert time and, in certain cases, enhanced safety to patients where, for
instance, non-invasive tests such as CT-fractional flow reserve (CT-FFR) would avoid
the need for unnecessary invasive coronary angiography—the caveat being that much
more work in this field still requires cross-validation and comparison with traditional
methods before they can be fully and widely implemented. The next decade is also
likely to bring exciting opportunities to merge data from biomarkers, epigenetics, and
proteomics, alongside imaging data and clinical cardiovascular risk factors in order to
refine the predictive accuracy and power of ML algorithms and thus empower physicians
to deliver highly personalized healthcare to their patients.

8. Limitations and Challenges

One criticism of AI when used in healthcare is the challenge associated with inter-
preting the output of a particular ML algorithm. There is a notable difference between
‘interpretable’ and ‘explainable’ data—the former refers to ML models that can be un-
derstood by humans (for instance, decision tree models); whereas the latter pertains to
overly complex models such as neural networks, which require further tools to gain an
understanding of how they function [91]. Therefore, there is a steep learning curve when it
comes to developing algorithms, as well as novel technology for treatment. In the future,
this is likely to translate to special modules focusing on AI, and already numerous courses
have been developed to equip the workforce for digital transformation. Secondly, there
is no known randomized trial to date showing that improved phenotyping and personal-
ized medicine based on this leads to better outcomes. At present, the majority of newly
developed ML models are validated in single-centre studies with a restricted number of
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cases [14]. Early-stage evaluation studies are needed to investigate whether AI can lead to
better care and outcomes whilst lowering costs [90]. However, reporting of early studies
remains suboptimal. In an effort to address this issue, the DECIDE-AI guideline [92] was
deigned taking into consideration international expert consensus, in order to report studies
looking at the early-stage clinical assessment of AI-based decision support systems [92].
The DECIDE-AI checklists comprise information on the following: title, abstract, study
objectives, research governance, participants, AI system, implementation, outcomes, safety
and errors, analysis, ethics, human factors, main results, human-computer-agreement, and
support for intended use [92].

One important limitation of ML at the development stage is sampling bias [15,93].
This arises because ML models are usually built from large datasets, some of which are
obtained from electronic health records (EHRs). Because of the nature of these datasets,
information extracted can be skewed and unrepresentative of the wider population, thus
resulting in considerable bias and lack of generalizability [15]. An example of this is
the underrepresentation of ethnic minorities in datasets but also clinical trials [14,94,95].
This is a crucial problem, as it can lead to these groups potentially missing out on life-
saving treatment and novel technology, with adverse outcomes [14]. In fact, disparities in
cardiovascular outcomes have been reported in the last few decades with regards to ethnic
minorities [96–98]. Although some models have attempted to avoid losing representation
of subgroups by stratifying their datasets, randomised trials are urgently needed to address
this bias and evaluate the model’s performance against traditional clinical criteria [15]. At
present, there are no clear guidelines for reporting bias in AI-based studies. Therefore, in
recent times, protocols have been advocated for the development of a reporting guideline
(TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction
model studies based on AI [99]. These are the AI versions of the TRIPOD Transparent
Reporting of a multivariable prediction model of (Individual Prognosis or Diagnosis)
statement and the PROBAST (Prediction Model Risk of Bias Assessment Tool), and whilst
they are currently works in progress, it is anticipated that PROBAST-AI will help the
scientific community to critically evaluate the design, conduct, and analysis of AI-based
prediction model studies, with a reliable, standardised tool for bias assessment [99].

Another considerable challenge faced by data scientists building ML models is the
reliance on large datasets for model training and testing. As mentioned earlier, these large
datasets are derived from EHRs. These are often subject to data heterogeneity, which arises
because data is collected across different hospital sites, introducing variation in definitions
and coding systems for diagnoses, as well as enzyme assays [15,100]. Another significant
concern of large datasets is missing data, which can arise due to human error or system
malfunction [101]. Missing values can lead to biased outcomes and reduced ML model
performance, although techniques such as imputation can help reduce the problem [102].
Overfitting is an issue that arises when the model struggles with processing components
of the testing dataset, which may differ from the training set. Overfitted models have
a tendency to memorise the whole data, including irrelevant noise on the training set,
instead of learning the pattern concealed behind the data [103]. In the medical field, more
precisely in deciphering the correlation between symptoms and final diagnosis, an example
of overfitting would be as follows: if in error the patient’s hospital number is entered as one
input feature, an overfitted model may conclude that the illness in question is influenced
by the hospital number [103,104].

There are also other factors to consider. According to a white paper by Stanford
Medicine [105], the sheer volume of healthcare data is growing at an astronomical rate: an
estimated 2314 exabytes (one exabyte = one billion gigabytes) would have been produced
in 2020. With such vast amounts of data available it may become confusing to cardiologists
and patients. As a result, clinicians will have to ensure that AI-generated findings are
critically appraised when considering treatment implications for patients. Another impor-
tant challenge will be navigating the evolving scientific, ethical, and regulatory landscape,
including patient privacy [91,106]. Indeed, data privacy issues can arise since commercial
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algorithms are designed by organizations that require access to electronic health records.
Thus, whenever assessing those algorithms, users and clinicians should keep informed
as to who manages the source data, as well as the precautions taken to protect patient
anonymity and privacy [91].

9. Cost-Benefit Implications

As with any innovative technology, healthcare organisations will need to be metic-
ulous when conducting their cost-benefit assessments, in order to evaluate the potential
value of the proposed novel AI-assisted cardiac imaging tool prior to implementation [107].
This will involve balanced considerations relating to direct costs involved with the new AI
imaging tool, such as software pricing; information technology (IT) specialists and data
scientists to refine the model, develop apps, and ensure seamless integration of the software
onto the healthcare interface; data protection officers in charge of overseeing the overall
data processing agreement; as well as imaging trained specialists such as radiologists,
echocardiographers, and MRI-trained cardiologists who will be responsible for testing the
new AI solution, providing feedback, and assisting in rolling out the model on a broader
scale [108]. These costs will need to be carefully weighed against anticipated gains, such
as potential cost savings per patient when factoring in faster processing times resulting
in shorter patient waiting lists; percentage reduction of missed diagnoses, assuming that
the new AI technology offers greater sensitivity and specificity [109]. In-depth studies
regarding the cost effectiveness and related quality-adjusted life year (QALY) associated
with using an AI-based intervention will be necessary to assess clinical and economic
implications [110]. Various programmes have been set up recently to support the devel-
opment, evaluation, and cost assessment of promising new AI technology. In fact, the
accelerated Access Collaborative (AAC), in partnership with the National Institute for
Health Research (NIHR), has introduced the AI in Health and Care Award [110], which is a
National Health Service (NHS) AI Lab programme designed to support technologies across
a spectrum of development, from initial feasibility to final evaluation, within the NHS. This
award’s key role is to help establish a broad network of technology testing infrastructure
for innovation [110].

10. Conclusions

There is no doubt that AI holds tremendous potential for developing and improving
patient care, as demonstrated through ML models that can be used to improve diagnostics
and risk prediction in the field of non-invasive cardiac imaging and the assessment of CAD.
However, this comes with a word of caution. Despite the considerable potential of AI,
it is still likely that due to the complex intricacies of each individual patient, it will still
be important for the human expert to take in these large clusters of information, process
them, and objectively present the pros and cons to the patient, taking into consideration
patient beliefs, opinions, concerns and anxieties—in a way that no machine can. A mul-
tidisciplinary approach in tackling all facets of coronary disease will therefore remain of
prime importance.

11. Future Perspectives: Highlights

Artificial intelligence offers huge potential in cardiac imaging and the assessment of
CAD; and by reducing human error and saving considerable amounts of time, AI has the
capacity to unlock rapid, personalized treatment strategies for patients.

Challenges that are likely to emerge include ethical issues and patient privacy, as well
as training requirements, to adapt to new technology.

A multidisciplinary approach remains key in combining AI and human expertise to
offer the best treatment to patients.
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