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Abstract: In this paper, we suggest two machine learning methods for seismic hazard forecast.
The first method is used for spatial forecasting of maximum possible earthquake magnitudes (Mmax),
whereas the second is used for spatio-temporal forecasting of strong earthquakes. The first method,
the method of approximation of interval expert estimates, is based on a regression approach in which
values of Mmax at the points of the training sample are estimated by experts. The method allows
one to formalize the knowledge of experts, to find the dependence of Mmax on the properties of
the geological environment, and to construct a map of the spatial forecast. The second method,
the method of minimum area of alarm, uses retrospective data to identify the alarm area in which the
epicenters of strong (target) earthquakes are expected at a certain time interval. This method is the
basis of an automatic web-based platform that systematically forecasts target earthquakes. The results
of testing the approach to earthquake prediction in the Mediterranean and Californian regions are
presented. For the tests, well known parameters of earthquake catalogs were used. The method
showed a satisfactory forecast quality.

Keywords: machine learning; expert estimate; maximum possible magnitudes of earthquakes;
one class classification; seismic hazard; seismic zoning; earthquake forecasting

1. Introduction

Tectonic earthquakes are invariably preceded by a period when stresses increase in the Earth.
This process forms anomalous changes in the geological environment near the source of the
expected earthquake [1–3]. To describe the seismotectonic properties of the geological environment,
various types of data are used: Earthquake catalogs, time series of geodetic [4], geophysical [5] and
geochemical measurements [6], and aerospace observations [7]. The success of seismic hazard forecast
is largely influenced by both completeness of the description of the spatial and spatio-temporal
properties of the seismic process, and the possibility of their joint analysis. In our approach to joint
analysis, all available data on the properties of the process are converted into grid fields [8].

Seismic zoning is prerequisite for seismic hazard assessment [9]. The most important and complex
problem of seismic zoning is to map the maximum possible magnitudes of earthquakes (Mmax).
The values of Mmax cannot be measured instrumentally. Two assumptions are used to construct
a digital map of Mmax: (1) The assumption of large earthquake repetition [10] and (2) the assumption
that the values of Mmax depend on the properties of the geological environment [11,12].

The statistical approach uses only the first assumption. This means that the Mmax map is calculated
using only those earthquakes whose epicenters fall into a sliding spatial window. The methods of
extreme statistics are used for the estimation of Mmax [13–16]. These methods require a sufficiently
large number of observations, which may be unavailable for some zones in the region. To improve
this method, [17] used the second assumption, and estimated Mmax by earthquake epicenters within
geologically homogeneous zones identified by an expert geologist. As in the previous approach,
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this method does not provide for extrapolating Mmax values from zones in which there are many
epicenters of strong earthquakes and therefore estimates of Mmax are fairly accurate, to zones with
similar seismotectonic properties, but with a small number of strong earthquakes.

The history of seismic observations is very short in relation to the speed of tectonic processes,
and earthquakes with magnitudes close to maximum occur relatively rarely. To compensate for
this effect, attempts are made to extrapolate reliable estimates to areas with similar seismotectonic
properties of the geological environment. Reference [18] used the Mmax mapping method based
on a solution of a group of experts. One of the possible algorithmic approaches applies cluster
analysis [19]. A cluster analysis program divides the region into zones with similar values of
geological and geophysical characteristics. These zones may consist of several isolated areas. Next,
the maximum magnitudes of earthquakes recorded in one area of the zone are extrapolated to all
other areas. The disadvantages of this approach are related to the fact that the zoning of a region into
quasi-homogeneous zones is largely determined a set of selected features, the method of measuring
the similarity between clusters, the type of clustering algorithm and, finally, the criterion of stopping
the clustering process.

We describe the method of approximation of interval expert estimates which is a regression
approach to the construction of a forecast map of Mmax [20–22]. To compile the map, dependence of
Mmax on properties of geological environments x = (x1, . . . , xI) is used. The values at the training
sample points are determined using expert knowledge. To this end, experts choose the most studied
points of the region with different seismicity and geological conditions. The expert indicates the
boundaries of the interval in which, in his opinion, lies the value of Mmax, and evaluates the values of
the confidence that Mmax cannot exceed the lower and upper limits of the interval. In the assessment,
the expert uses historical seismic data, instrumental data on the maximum magnitude of an earthquake
in the vicinity of the point in question and data on the properties of the geological zone to which this
point belongs. The algorithm generalizes the least squares approximation algorithm.

The task of predicting an earthquake is to determine the time, location, and magnitude of a future
earthquake. Earthquake prediction studies are conducted in many directions. They include the study
of the rock failure and earthquake precursor phenomena, the study of stochastic models for earthquake
prediction, machine learning methods, and testing earthquake prediction algorithms [1–3,23–29].
At the same time, there are a number of works in which it is stated that earthquakes cannot be
predicted [30].

Here we suggest a new method of machine learning, called the method of the minimum
area of alarm, and describe a web-based platform that predicts earthquakes in automatic mode
(http://distcomp.ru/geo/prognosis/). Our method solves the one-class classification problem
(other methods can be found, for instance, in [31–33]). Our training sample set includes rare anomalous
objects (the epicenters of target earthquakes) and grid fields of properties of the seismic process
(field of features). The method allows one to detect the largest number of the target earthquakes for the
training set, provided that the size of the spatio-temporal alarm area does not exceed a specified value.
We present the results of testing the approach on the data of the Mediterranean and California regions.

2. The Method of Approximation of Interval Expert Estimates

Let the seismotectonic properties of the region under study be represented by a set of spatial grid
fields of features X1, X2, ..., XI , and the values of the maximum possible magnitudes of earthquakes
(Mmax) be represented by a sample set of expert estimates. The task is to find from these data the
function F(x), which approximates the values of Mmax at the sample set, where x = (x1, ..., xI) is the
vector with the values of the fields of features. The Mmax map is the F(x) values calculated for all grid
nodes of a region.

The type of expert evaluation should be convenient and straightforward for unambiguous
understanding by all participants of the expert survey and should enable the expert to formalize
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his knowledge about the value of the forecast fully. These requirements correspond to interval
expert estimates:

Qqn = (m(1)
qn , m(2)

qn , w(1)
qn , w(2)

qn ), (1)

where m(1)
qn , m(2)

qn are the interval boundaries within which all the values of Mmax at the point n are the

most probable and equally possible, in the opinion of the q-th expert, m(1)
qn ≤ m(2)

qn ; w(1)
qn > 0, w(2)

qn > 0
are the weighs on which the q-th expert indicates the degree of his confidence in the possibility that
the value of Mmax may be less or greater than the corresponding interval boundary m(1)

qn or m(2)
qn .

We can assume that the expert estimate Q corresponds to some function of the subjective
probability density f (Y, Q), which reflects the expert’s opinion about the value of Y at a given sample
point. This function takes a constant value within the interval [m(1), m(2)] and decreases with the
weights w(1) and w(2) respectively to the left and right of the interval boundaries:

f (Y, Q) = C · exp{−(w(1) |m(1) −Y|+ m(1) −Y
2

+ w(2) |m(2) −Y| −m(2) + Y
2

)p}, (2)

where p ≥ 1, and C is defined by the condition
∞∫
−∞

f (Y, Q)dy = 1.

Suppose that there is a training sample {Qqn, xn}, where q and n represent the expert and sample
number. It is required to approximate the function Y(x) in a certain class of functions F(x, θ) : θ ∈ Θ,
where Θ is the domain of admissible values of the vector θ.

Let’s replace Y in (2) with the value of the forecast function F(x, θ) and consider the function

r(x, θ) = − ln f (Y, Q) + ln C = (w(1) |m(1) −Y|+ m(1) −Y
2

+ w(2) |m(2) −Y| −m(2) + Y
2

)p. (3)

The function r(x, θ) determines the penalty for the inaccuracy of the approximation of the expert
judgment Q by the value F of the forecast function. To estimate θ, the average penalty on the set is
minimized. The estimation has the form

θ̂ = arg min
θ∈Θ

∑
n

∑
q

r(F(xn, θ), Qqn). (4)

It is obvious that if the forecast function F(x, θ) is linear in the parameters, then the functional (4)
is convex. If the domain Θ of admissible values of the vector is also convex, then it is possible to use
iterative gradient algorithms for estimation.

It is easy to see from (3) and (4) that in case of m(1) = m(2) and w(1) = w(2) for all expert estimates
the estimation algorithm (4) coincides with the method of the least absolute errors for p = 1, and with
the method of least squares for p = 2. It was shown in [22] that under certain assumptions, the estimate
(4) is an estimate of the maximum likelihood.

The method of approximation of interval expert estimates was repeatedly used to construct the
maps of Mmax in a number of regions, in particular, Bulgaria [34], Caribbean and Middle America
Region [35], Central Europe [12,36], Costa Rica [37], the Caucasus [21], and North Caucasus [38].
In these papers, the dependences Mmax(x) were always estimated in a class of the sum of piecewise
linear functions of geological and geophysical features. This estimation allows one to interpret the
Mmax map as the sum of non-linearly transformed fields of features.

For each of the above regions, from 10 to 200 geological and geophysical fields were analyzed.
3–4 of the most informative fields were selected from this set using the stepwise regression method.
Prediction functions are the sum of piecewise linear dependencies on the values of these fields. The sum
of nonlinearly transformed fields defines the Mmax field. This is convenient for the seismotectonic
interpretation of the Mmax map.
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Interpretation of the Mmax map by a specialist allows a qualitative assessment of the accuracy
of determining the maximum possible seismic hazard but is not an assessment of its accuracy.
By definition, Mmax values cannot be measured instrumentally. Statistical estimates of Mmax estimates
are possible only in areas with sufficiently high seismic activity. In the considered method, the values
of Mmax are replaced by interval expert estimates. These estimates are approximated by a nonlinear
function of geological and geophysical fields. The accuracy of the Mmax forecast is determined by the
deviations of the Mmax forecast map values from expert estimates. For the above regions, from 100 to
400 expert evaluations were used. The number of parameters estimated during training ranged from
eight to 14 in each region. For those regions, who did not participate in the training, the average
approximation errors of expert estimates are in the range from 0.2 to 0.34.

3. Method of the Minimum Area of Alarm

Let the properties of the seismic process are described by the spatial and spatio-temporal fields of
features in a single coordinate grid with a step ∆x× ∆y× ∆t. The values of these fields at the nodes
of the grid n = 1, . . . , N correspond to the vectors of the I-dimensional feature space f(n) = { f (n)i }.
A spatio-temporal forecast field Φ is a function of the fields of features. It is trained using retrospective
data: (1) A sample set of target earthquakes q = 1, . . . , Q with the magnitudes M ≥ M∗ and (2) a set of
grid fields of features F i, i = 1, . . . , I, which describes spatial (quasi-stationary) and spatio-temporal
(dynamic) properties of the seismotectonic process.

The method of the minimum area of alarm uses the following data model.

1. The epicenters of earthquakes with magnitudes M ≥ M∗ (target events) are preceded by the
anomalous (low-probability) values of the fields of features. Let’s consider the fields of features
to be designed in such a way that for each anomaly, the values of some of these fields are close to
their maximum or minimum. To simplify the explanation, we assume that the anomalies refer
only to the largest values of the fields of features.

2. If the f (q) is an anomaly vector, preceding the target event q, then any vector f with the components
fi ≥ f (q)i for all i = 1, . . . , I can also precede a similar target event (monotonicity condition).

We will call the base vectors of the feature space the vectors for which f ≥ f (q) componentwise.
The nodes of the grid of the forecast field Φ with the values φ ≥ φ(q) we will call the base nodes of the
forecast field.

From the assumption that anomalous refers only to the largest values of the fields of features
and the monotonicity condition, it follows that the earthquake forecast can be carried out using the
simplest threshold decision rule. If the value of the forecast field φ(n)≥θ , then spatio-temporal alarm
cylinders are created at all base nodes of the forecast field with the values φ ≥ φ(q). The alarm
cylinder of the grid node n with the coordinates (x(n), y(n), t(n)) has the center of the base in the
node (x(n), y(n), t(n)), the base radius R, and the element [(x(n), y(n), t(n)), (x(n), y(n), t(n))]. From this,
it follows that for a given value of the threshold θ an earthquake with the epicenter coordinates and
time (x∗, y∗, t∗) will be detected if and only if the cylinder with the center of the base (x∗, y∗, t∗),
the radius R, and the element [(x∗, y∗, t∗ − T), (x∗, y∗, t∗)] contains at least one grid node with the
value φ(n) ≥ θ. This cylinder will be called a precursor cylinder.

The alarm field detects an earthquake if its epicenter falls within an area consisting of
a combination of alarm cylinders (alarm area). The quality of the forecast field at threshold θ is
determined by two indicators: (1) The fraction of correctly detected events Q∗(θ) from all Q events
U(θ) = Q∗(θ)/Q (probability of detection) and (2) the fraction of number of grid nodes, falling in the
alarm area L∗(θ), from the number of all grid nodes L of the analyzed area V(θ) = L∗(θ)/L (alarm
volume).

For training, we have a set of target events with magnitudes M ≥ M∗ and a set of fields. At the
first step, the algorithm should move from a set of target earthquakes to a set of target earthquake
precursors. A precursor of the earthquake q is the vector f (q) of a feature space which has a minimum
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volume of alarm v(q) = L(q)/L among all vectors corresponding to the grid nodes of the precursor
cylinder of the event q, where L is the number of all grid nodes of the analyzed area, L(q) is the number
of nodes in the grid of the alarm area generated by the base points of the vector f (q).

The algorithm for constructing the forecast field is nonparametric. There are the three most
important versions of the algorithm. The first version of the algorithm is to construct the forecast field
so that when the threshold θ decreases, the training earthquakes are detected in the sequence in which
the corresponding alarm volumes increase v(Q) ≤ v(Q−1) ≤ . . . ≤ v(2) ≤ v(1) (this version is selected
for testing). The version consists of the following steps.

1. To generate a training set { f (q), v(q)}, which consists of earthquake precursors f (q) and
corresponding alarm volumes v(q).

2. To sort the precursors f (q), q = 1, . . . , Q, by the alarm volume v(Q) ≤ v(Q−1) ≤ . . . ≤ v(1) in
ascending order.

3. To assign to the nodes of the grid of the forecast field Φ a value of 0.
4. To replace the value of 0 by Q at the nodes of the grid of the forecast field, for which the

monotonicity condition, f (n)i ≥ f (Q)
i for all i = 1, . . . , I, is satisfied in the feature space; to replace

the value of 0 by Q− 1 at the nodes of the grid of the forecast field, for which the monotonicity
condition, f (n)i ≥ f (Q−1)

i for all i = 1, . . . , I is satisfied in feature space, and then, successively,
in the same way, to replace the values 0 by Q + 1− q.

Obviously, the choice of the order of the earthquake precursors at the 2nd step of the algorithm
determines the dependence U(V) obtained from the forecast field. The 2nd version of the algorithm
makes it possible to optimize the forecast field so that when the next target earthquake is detected,
the alarm volume increases by a minimum value. To do this, one should arrange the precursors so that,
when changing from event detection q + 1 to event q, the increase in alarm volume is minimal. Here,
at each transition from the previously selected event q + 1 to q, a small search through the remaining q
events is required. The 3rd version of the algorithm allows one to optimize the forecast field so that it
detects the maximum number of target earthquakes with a total alarm volume of less than or equal
to the predetermined value. In this case, you need to perform a full search on the selected number
of events. The 3rd version of the algorithm allows optimizing the forecast field so that it detects the
maximum number of target earthquakes, provided that the total alarm volume does not exceed the
specified value. In this case, you need to perform a full search for the selected number of events.

4. Testing

The purpose of testing is to verify the proposed method of the forecast. Testing is carried out in
accordance with the known characteristics of the catalog of earthquakes. Exploring the possibility to
improve the quality of the forecast using a wider set of characteristics of earthquake catalogs or by
adding other sources of input data is beyond the scope of this work.

The method of minimum area of alarm was tested on the platform of automatic earthquake
forecast (http://distcomp.ru/geo/prognosis). The system tests the data with a constant step ∆t.
On each step (at time t) the raster fields of features are computed, the alarm area is trained based on
data before the time t, and the system tests for time since t till t+∆t if the alarm area covers an epicenter
of the target earthquake. Then at time t + ∆t, the training time is increased by ∆t, the alarm zone is
updated and the test is repeated.

Testing of the forecast method should provide an opportunity to compare different methods of
solving the problem on the same indicators of the forecast quality. In this method, we use two quality
indicators: The probability of detecting the target events from the test interval U = Q∗/Q and the
volume of alarm V = L∗/L. The number of target events Q is determined by a set of test samples,
the number of target events detected Q∗ is determined by the results of the forecast, the analysis area
and its size L is selected at the beginning of the test, the size of the alarm zone L∗ is determined by the
training data.

http://distcomp.ru/geo/prognosis
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In the following test experiments, the area of analysis was constructed in the following way:
Any point is included in the area if in a circle around this point with radius R = 100 km for the
period 1984–1993 there are more than 300 earthquake epicenters. This condition allows one to
select a seismically active area for analysis but does not ensure its seismic homogeneity. Therefore,
the indicator of the volume of alarm obtained during testing should be considered only in the context
of the selected area of analysis. At the same time, the choice of the field of analysis according to
a formal rule makes it possible to compare the results of the forecast obtained using various methods
and according to different data.

One way to assess the quality of a forecast is to compare a regular forecast obtained by the
algorithm under analysis (regular forecast) with a random one. We will assume that the forecast is
random if the values of the forecast field are selected from a segment in accordance with a uniform
distribution. Obviously, for this probabilistic model, the alarm volume Vr is equal to the probability
of a random prediction Ur. It follows from this that comparing the probability of a regular forecast
U with the probability of a random forecast Ur for the same alarm volumes V = Vr is equivalent to
comparing U with the corresponding alarm volume V. If, at the same time, a sample of target events
were cleaned of aftershocks and foreshocks, then by proposing the independence of target events and
using the binomial distribution model for them, we could build a confidence interval for estimating U.

In the number of articles, the results of a regular forecast are compared with the results of a forecast
by a stationary field. In papers [39–41] the regular forecast is compared with the forecast by the 2D field
of seismic activity (or earthquake epicenter density). The result of the comparison makes it possible to
evaluate the efficiency of a regular forecast in relation to the forecast by the field F, which is based
only on the spatial heterogeneity of the seismic process. Comparison of results can be done in two
ways. In one method the probabilities of regular prediction of Q target earthquakes are compared with
the results of predicting the same earthquakes by a stationary field F (for example, F is a 2D field of
the earthquake epicenter density). Another method uses the Gutenberg–Richter model [42]. In the
beginning, the catalog of earthquakes with the following conditions is constructed: (1) The epicenters
of earthquakes are in the area of analysis, (2) the magnitudes exceed the representative, and (3) the
depth of the epicenters does not exceed the values specified for the target earthquake. It is assumed
that b-value is the same for the entire area of analysis and the earthquake catalog agree well with the
spatial distribution of seismicity. The alarm field V(θ) is calculated by the field F. Then, in accordance
with the alarm field, the dependence N∗(V), is calculated, where N∗ is the number of epicenters in the
alarm zone, and V is the alarm volume. The dependence N∗(V) is normalized to the number of all N
epicenters in the analyzed area. According to the Gutenberg–Richter law and the assumption b =const,
we have N∗(V) = C exp(d∗ − bm), N(V) = C exp(d − bm), and µ(V) = N∗/N = exp(d∗ − d).
Thus, the value µ(V) does not depend on the magnitude of earthquakes. It shows the proportion of
earthquakes with a magnitude higher than a given, which fall into the alarm zone. Consequently,
the value of µ(V) in the scope of our model is equal to the probability of forecasting the target
earthquakes using the stationary field F. If the field F is the density field of the earthquake epicenters,
then the field obtained according to the Gutenberg–Richter law is denoted by the letter µ.

Testing was performed for two regions: The Mediterranean and California. The Mediterranean
region: 10◦–30◦ E, 34◦–47◦ N. Input data: Earthquakes for the period from 27.05.1983 till 14.02.2018
with magnitudes M ≥ 2.7 and depths of hypocenters H ≤ 160 km from the International Seismological
Centre catalog (see Materials and Methods). Target earthquakes: Magnitudes M ≥ 6.0 and hypocenter
depths H ≤ 60 km. California region: 126◦–114◦ W, 32◦–43◦ N. Input data: Earthquakes for the period
of 01.01.1983–15.02.2018 with magnitudes M ≥ 2.0 and depths of hypocenters H ≤ 160 km from
the NEIC USGS catalog (see Materials and Methods). For the forecast, the target earthquakes with
magnitudes M ≥ 5.7 have been selected.

The following six fields of features were analyzed for forecasting:

• F1 is the 3D field of the density of all considering earthquakes in the region.
• F2 is the 3D field of mean magnitudes among all considering earthquakes in the region.
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The estimation of 3D fields of F1 and F2 is performed with the method of local kernel regression.
The kernel function for the n-th earthquake has the form Kn = [cosh2(rn/R)2 cosh2(tn/T)]−1,
where rn < Rε, tn < Tε are the distance and time interval between the n-th epicenter of the
earthquake and the node of the 3D grid of the field, ε = 2, R = 50 km, T = 100 days for F1 and
R = 100 km, T = 730 days for F2.

• F3 is the 3D field of negative temporal anomalies of the density of earthquakes.
• F4 is the 3D field of positive temporal anomalies of the density of earthquakes.
• F5 is the 3D field of positive temporal anomalies of mean earthquake magnitude.

To estimate the field of F3, F4, F5, the Student’s t-statistic was used, which is defined for each grid
node as the ratio of the difference of average values of the current (196 days) and background
(3650 days) intervals to the standard deviation of this difference. Positive t-statistics values
correspond to higher values on the test interval.

• F6 is the 2D field of the density of earthquake epicenters: Kernel smoothing in the interval
1988–2008 the parameter R = 50 km.

The grid fields for the Mediterranean were calculated in a grid step ∆x × ∆y × ∆t = 0.2◦ ×
0.13◦ × 49 days. The forecast field was trained from 1998 until the next step of the forecast after 2008.
The radius of the alarm cylinder is R = 20 km, and the element is T = 50 days. Testing is performed
in 2008–2019. There are 11 target earthquakes in the analysis area. We used the method of stepwise
selection to find the most informative fields of features. The algorithm selected the F3 and F6 fields to
construct the alarm field.

We compare the earthquake prediction probabilities obtained using different fields of features in
Table 1: U1 is the forecast probability using the earthquake density field 2D (F6), U2 is the probability
using the 3D field of negative earthquake density anomalies (F3), µ(V) is the probability of forecast by
2D field of earthquake epicenters density, obtained using the Gutenberg–Richter model, and U3 is the
probability using F3 and F6 fields. We can see that the highest probability of a successful forecast occurs
when the fields F3 and F6 are used together. When V = 0.2 (Ur = 0.2), the ratios for the prediction
probability obtained with F3 and F6 fields to the prediction probabilities obtained with 2D earthquake
density field (F6) and for the field calculated using the Gutenberg–Richter ratio, are equal respectively
U3(0.2)/U1(0.2) = 0.91/0.64 = 1.49 and U3(0.2)/µ(0.2) = 0.91/0.41 = 2.2. Table 1 shows the values
of two types of alarm volumes: Vlearn is the alarm volume received in accordance with the training
data, and Vtest is the alarm volume corresponding to the alarm volume Vlearn but observed on the test
data. You can see that when testing in almost all cases, except for testing the 2D-field F6, the volumes
of Vtest are greater than Vlearn. This is explained by the fact that the number of recorded earthquakes in
a region changes over time (Figure 1). The number of earthquakes is influenced by the development of
a seismic network and natural changes in the seismic process. The Figure 1 shows that the number
of earthquakes increases significantly in the test interval. The same anomaly appears on the plot of
the time series of average values of the density of earthquake epicenters throughout the analysis area
(Figure 2). An increase in the density of earthquake epicenters leads to an increase in the field values
of the F3 function, which ultimately leads to an increase in the volume of anxiety during testing.

The grid fields for California were calculated in a grid step ∆x × ∆y× ∆t = 0.125◦ × 0.11◦ ×
49 days. The radius of the alarm cylinder is R = 14 km, and the element is T = 100 days. Testing of
the earthquake forecast was performed for the interval 2009–2018. There were nine target earthquakes.
The algorithm selected tree fields of features for the construction of the alarm field: F4, F5, and F6.

Table 2 shows the probabilities of earthquake forecast for California.
Figures 3 and 4 show the test results for both regions. They depicted polygons selected as the

area of analysis, and circles are the target epicenters of earthquakes in 2009–2018 with M ≥ 6.0 for
Mediterranean and M ≥ 5.7 for California.
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Table 1. Comparison of the probabilities of earthquake forecast for the Mediterranean.

Vlearn: Alarm Volumes for Learning Interval 0.01 0.05 0.1 0.15 0.2

Test indicators Vtest Utest Vtest Utest Vtest Utest Vtest Utest Vtest Utest

Field F6 0.00 0.00 0.03 0.09 0.10 0.09 0.15 0.45 0.20 0.64

Field F3 0.00 0.00 0.02 0.09 0.20 0.36 0.29 0.45 0.35 0.64

µ(V): probability for the field F6 obtained by
the model - 0.00 - 0.1 - 0.26 - 0.35 - 0.41

Fields F3 and F6 0.03 0.00 0.08 0.36 0.15 0.45 0.24 0.55 0.32 0.91

1985 1990 1995 2000 2005 2010 2015 2020

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Figure 1. Histogram of the number of earthquakes with a magnitude greater than 2.7 and a depth of
hypocenters less than 160 km.

1985 1990 1995 2000 2005 2010 2015 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2. Time series of average values of the density of earthquake epicenters throughout the analysis
area (trend line).
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Table 2. Probabilities of earthquake forecast for California.

Volume of Alarm Vlearn Volume of Alarm Vtest Number of Correct Forecasts Forecast Probability U

0.01 0.01 1 0.11
0.05 0.06 4 0.44
0.1 0.13 4 0.44
0.15 0.13 4 0.44
0.2 0.25 8 0.89

Figure 3. Area of analysis (marked with thick black line) and tested target epicenters of earthquakes in
2009–2018 in the Mediterranean region. Shades of grey indicates the minimum volume of alarm with
which the epicenter was forecasted. Darkness of grey decreases in accordance with the volume of the
alarm: 0.05, 0.1, 0.15, 0.2. A white color indicates that an earthquake is not forecasted with an alarm
volume of less than 0.2.
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Figure 4. Area of analysis (marked with thick black line) and tested target epicenters of earthquakes
in 2009–2018 in California. Shades of grey indicates the minimum volume of alarm with which the
epicenter was forecasted. Darkness of grey decreases in accordance with the volume of the alarm: 0.05,
0.1, 0.15, 0.2. A white color indicates that an earthquake is not forecasted with an alarm volume of less
than 0.2.

5. Discussion

The method of approximating the interval expert estimates compiles the Mmax map, assuming
a repetition of strong earthquakes and the existence of a relationship between Mmax and the properties
of the geological environment x = (x1, . . . , xI). At first, experts independently estimate Mmax values
in a set of the most studied points of a region. The algorithm approximates the dependence of Mmax on
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geological and geophysical features by the function F(x). The dependence F(x) is defined as the sum
of the non-linear functions of each of the feature. The Mmax map is the F(x) values calculated for the
whole region. The presence of the formal forecast rule F(x) allows the expert to study the contribution
to the forecast of each feature and interpret the map as the sum of the nonlinearly transformed
feature fields.

The method of the minimum area of alarm solves the problem of one-class classification.
The method algorithm has two peculiar properties. The first relates to the data model. The model
postulates two properties of anomalous objects: (1) Anomalous objects are unlikely, and some of their
properties take values close to the maximum (or minimum) among the sample, and (2) the vectors
of the space of features, which are componentwise larger (or smaller) of the vector corresponding to
the anomalous object, can also be anomalous objects. Both these properties seem sufficiently natural.
This model allows one to build a classification rule from a set of anomalous objects. In this case,
normal objects are taken into account statistically through the probability of detecting anomalous
objects by a random forecast. The second difference is that the algorithm allows constructing a forecast
function that optimizes the probability of detecting anomalous objects in the training sample if the
probability of a random forecast is not more than the predetermined value.

6. Conclusions

We considered two machine learning methods and their implementations to seismic hazard
forecast. The method of approximation of interval expert estimates of Mmax demonstrated good
seismic zoning for many seismically active regions. The method of the minimum area of alarm is the
basis of an automatic earthquake forecast system. The considered results of testing suggest that the
method and the forecast system might contribute to advance in the problems of earthquake forecasting.

7. Supplement

The method of minimum area of alarm is the basis of an automated web-based platform that
systematically forecasts target earthquakes. We presented the results of testing the approach to
earthquake prediction in the Mediterranean and Californian regions. The goal of the test was to
analyze the approach, the machine learning method, and the earthquake prediction platform. For the
tests, ordinary parameters of earthquake catalogs were used. The testing was performed on data
that did not participate in the training and showed a satisfactory forecast quality for both regions.
The web-based platform has been launched and automatically calculates the seismic hazard fields
from February 2018 [43]. During the time from 1 February 2018 to 8 July 2019, four target earthquakes
occurred in these regions. In the Mediterranean region, two epicenters were predicted and fell into
an area with an alarm volume of up to 15% (Figure 5), and in the California region, two epicenters fell
into an area with an alarm volume greater than 20% and were not predicted (Figure 6).
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Figure 5. Screenshot of the web-based platform working window in the Mediterranean region: The
map shows the alarm zone for earthquakes with a magnitude M ≥ 6.0 and the predicted epicenters
of earthquakes of 25 October 2018 with a magnitude of 6.6 and 30 October 2018 with a magnitude of
6.2 calculated for training according to data up to 26 September 2017. The palette shows areas with
different alarm volumes in percent: 1%, 5%, 10%, 15%, 20%.
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Figure 6. Screenshot of the web-based platform working window: The map shows the alarm zone
for earthquakes with a magnitude M ≥ 5.7 and the epicenters of earthquakes of 4 July 2019 with
a magnitude of 6.4 and 6 July 2019 with a magnitude of 7.1 calculated during training according to
data until 3 June 2019. The palette shows areas with different alarm volumes in percent: 1%, 5%, 10%,
15%, 20%.

8. Materials and Methods

International Seismological Centre [44] was searched using http://www.isc.ac.uk/iscbulleti
n/search/bulletin/ (last accessed on 14 February 2018). This online catalog was selected for its
robustness and universality. It combines data from a lot of catalogs, and every earthquake with
a magnitude more than three is manually checked. NEIC USGS catalog [45] was searched using
https://earthquake.usgs.gov/earthquakes/feed/ (last accessed on 15 February 2018). This catalog
was chosen because of numerous registered small earthquakes (magnitude of completeness less than
1.5) in California. Plots were made using the GeoTime 3 (www.geo.iitp.ru/GT3; [8]).

http://www.isc.ac.uk/iscbulletin/search/bulletin/
http://www.isc.ac.uk/iscbulletin/search/bulletin/
https://earthquake.usgs.gov/earthquakes/feed/
www.geo.iitp.ru/GT3
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