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Abstract: The last increased volcanic activity of the Stromboli volcano, from 2016 to 2018,
was characterized by increases in the number and frequency of crater explosions and by episodes
of lava overflow. The volcanic activity was monitored utilizing CO2 soil fluxes acquired from the
Stromboli summit area (STR02 station). To better understand the behavior of the shallow plumbing
system of the Stromboli volcano in the period of 2016–2018, we utilized a large data set spanning from
2000 to 2018. The data in this last period confirm a long growing trend of CO2 summit degassing,
already observed in the years since 2005 (reaching 23,000 g·m−2

·d−1). Moreover, within this increasing
trend, episodes of sudden and sharp increases in the degassing rate, up to 24.2 g·m−2

·d−2 were
recorded, which are correlated with the observed paroxysmal activity (increased summit explosions
and overflow).

Keywords: Stromboli volcano; geochemical monitoring; summit soil; CO2 degassing;
Strombolian activity

1. Introduction

The 916 m-high Stromboli island is the emerged part of a 3000 m-high volcano lying in the north-
eastern sector of the Aeolian archipelago, located in the South Tyrrhenian Sea. Erupted products
include basaltic andesites, shoshonites, and latite-trachytes (e.g., [1–5]), dated between 200 ka and
>100 ka before present, in Strombolicchio and Stromboli, respectively [6].

Stromboli is an open-conduit volcano characterized by an intense and constant degassing,
mainly from the active vents (volcanic plume) and secondarily through the soil, both from the crater
terrace (located at ≈750 m above sea level (a.s.l.) in the upper portion of the Sciara del Fuoco) and
peripheral areas [7]. A thermal aquifer is also present and accessible in the coastal area, showing a
quite constant temperature of ≈40 ◦C [8].

The total output of CO2 emitted from the entire volcano edifice (416 t·day−1) has been estimated
by [7], highlighting that the main contribution comes from the summit area (396 t·day−1) and that the
CO2 released from the peripheral areas is only around 20 t·day−1. Summit degassing is both active
(i.e., explosions from the vents) and passive (i.e., plume from the conduit and diffuse soil degassing
in the crater area). Peripheral degassing is due to outgassing of dissolved volatiles from the coastal
hydrothermal aquifer, and soil degassing controlled by tectonic discontinuities [9].

During normal Strombolian activity, a delicate dynamic balance is established between a deep
input of volatiles, magma degassing, and shallow volatile degassing [10].

This intense degassing is fed by a shallow magma reservoir that releases volatiles during both
eruptive activity and inter-eruptive periods [11–13], composed of H2O, CO2, SO2, H2S, HF, and HCl
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(condensable gases); some non-condensable gases (e.g., He, H2, N2, CO, CH4) are also released.
These fluids are continuously released by magma convection in a shallow magma reservoir (1 km),
during which ascending less dense gas-rich magma moves upward, replacing the denser degassed
magma that sinks downward [14–16].

Geochemical changes between passive degassing and Strombolian explosions suggest that the
former is due to gas released from a shallower magma body within the upper conduits, and the latter
is driven by CO2-rich gas bubbles coming from major depths (>4 km) [16].

Geochemical investigations of volcanic systems utilize two types of data, intensive (chemical
and isotopic composition of fluids) and extensive (volatile output) parameters that allow for the
formation of a valid fluid degassing model, useful in identifying changes in volcanic activity [10,17–22].
Continuous CO2 monitoring at volcanoes, as is presented here, is an emerging tool in hazards
forecasting, which has enormous potential and tremendous societal relevance, as highlighted in several
international and multidisciplinary strategy papers (e.g., [7,9,17–25]).

This paper is focused on the study of the increased volcanic activity of Stromboli (2016–2018),
monitored utilizing the large data set of CO2 soil fluxes acquired from 2000–2018 in the Stromboli
summit area (STR02 station).

2. Volcanic Activity

Strombolian activity originates when a discrete gas volume (gas slug) upwells along the conduit
at a high velocity, with respect to the surrounding mafic magma, and reaches the cooler upper surface
of the magma column, promoting its ascent and the explosive release of gas that is accompanied by the
ejection of magma clots [26–29].

Normal Strombolian activity is characterized by passive magma degassing alternating with
short-term (up to few tens of seconds) 100- to 200-m high scoria-rich jets caused by variable energy
explosions every 10–20 min [30–32]. These explosions show a very low Volcanic Explosive Index
(VEI), in the range of −6/−3 utilizing the modified VEI scale as suggested by [33] for very small
bulk volume deposits, like those of the Kilauea volcano (Halema’uma’u explosions, HMM; VEI:
−2/−4). The normal Strombolian activity is occasionally interrupted by explosive events of higher
intensity [34,35], defined as paroxysmal (VEI = 0 or 1) or major explosions (VEI = −2 or −1).

The normal Strombolian activity is fed by a high-porphyritic (HP), volatile-poor magma,
whereas paroxysmal and major explosions implicate the discharges of low-porphyritic (LP), volatile-rich
magma [36–41].

Major explosions are normally grouped in short time periods (1–2 months), during which
Strombolian activity is particularly intense (up to five explosions per hour, [31,42]) and a cool crust
forms in one of the craters [43,44]. During these periods of intense Strombolian activity and/or effusive
activity, soil and plume CO2 fluxes are high (over 10,000 g·m−2

·d−1 and ~10,000 tons day−1 respectively,
as reported by [19]), and frequently associated with lava overspills from the summit craters [35]. In the
last 30 years, four effusive eruptions occurred in 1985, 2002–03, 2007, and 2014; they lasted 5, 7, 1,
and 3 months, respectively, with two of these (2002–2003 and 2007) accompanied by paroxysmal events

3. Materials and Methods

Continuous soil CO2 flux at Pizzo sopra la Fossa (Stromboli summit) was measured on an hourly
basis by means of an automated accumulation chamber device (West Systems Ltd.). The dynamic
accumulation chamber approach is a direct passive method to measure soil CO2 fluxes in geothermal
and volcanic areas. The increase in CO2 concentration in the accumulation chamber at a known volume
adhering to the soil is directly proportional to the CO2 flux [45–47]. This method, modified and applied
by [48,49], is commonly utilized in the scientific community for geochemical monitoring in volcanic
areas [7,9,12,18,19,22,24,25,50–60].

The soil CO2 measurement station (STR02) is composed of a mechanical automated accumulation
chamber and an electronic system that manages the measurement cycle, logs the data, and transmits it,
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as described in [18,22]. Carbon dioxide was measured with a Dräger Polytron IR spectrometer, which
operates in the range of 0–9,9999 ppm (precision of ±5 ppm).

Environmental parameters (wind speed and direction, soil and atmospheric temperatures,
atmospheric pressure, and soil and atmospheric relative humidity) were acquired at the same time [22].

Acquired data were transmitted to the Civil Protection Advanced Operations Center (COA) at
the Stromboli volcano observatory via a WLAN (wide local area network), where through a VPN
(virtual private network link), they were sent to the Istituto Nazionale di Geofisica e Vulcanologia
(INGV)-Palermo geochemical monitoring center.

4. Summit Soil CO2 Flux Continuous Monitoring

The volcanic activity of the Stromboli volcano was monitored over the last 20 years utilizing
several geophysical and geochemical techniques. This monitoring activity allowed us to evaluate the
level of the Strombolian activity and to individuate the changes between Strombolian and effusive
activities [8,9,22,23,52,61–63]. The summit soil CO2 degassing (Pizzo sopra La Fossa) was monitored
using the accumulation chamber method at the continuous STR02 station (Figure 1), a part of the
geochemical monitoring network installed on the Stromboli volcano. This equipment represents one
of the best tools for monitoring the volcanic activity at Stromboli, as inferred by several investigations
carried out in the last years [8–10,12,22,63].
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coinciding with an increase of explosive activity from the summit craters.  

Both short-term (2–3 years) and long-term (10–13 years) increases of CO2 summit degassing, 
observed in the last 20 years, are linked to direct degassing of shallow magma stored in the open vent 
of the summit craters [10,18]. In particular, in the first investigated period (2000–2004) the soil flux 
showed strong degassing (up to thirty thousand g·m−2·d−1) with high natural daily variation (NDV), 

Figure 1. (a) Stromboli map with the location of the Stromboli summit area (STR02 station); (b) inset
of Aeolian archipelago located in the north-east side of the Sicilian coast; (c) picture of the STR02
equipment, installed on the summit area (Pizzo sopra La Fossa) of the Stromboli island.

The daily average CO2 flux of the complete data set, based on 24 measurements per day, acquired
from 2000 to 2018, is shown in Figure 2, and the entire period is divided into four sub-periods. The first
three periods (five years each) include the three effusive eruptions that occurred in 2002–2003, 2007,
and 2014. The last period (January 2016 to February 2018, 26 months) did not include any effusive
eruption, but it was characterized by a strong and abrupt increase of summit degassing, coinciding
with an increase of explosive activity from the summit craters.
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Figure 2. Daily average (24 measurements/day) of CO2 fluxes at STR02 station, 2000–2018 period.
The entire period was grouped into four sub-periods of five years each, except for the last period
2016–2018 (26 months). The first three periods include the effusive eruptions that took place in
2002–2003, 2007, and 2014. The long growing trend of 4.1 g·m−2

·d−2 (white dashed line, 2005–2018) and
the short-term changes of CO2 degassing (red dashed lines, 9.8, 12.8, and 24.2 g·m−2

·d−2, respectively)
have been included.

Both short-term (2–3 years) and long-term (10–13 years) increases of CO2 summit degassing,
observed in the last 20 years, are linked to direct degassing of shallow magma stored in the open vent
of the summit craters [10,18]. In particular, in the first investigated period (2000–2004) the soil flux
showed strong degassing (up to thirty thousand g·m−2

·d−1) with high natural daily variation (NDV),
(expressed as normalized standard deviation of 24 daily CO2 flux measurements; see Inguaggiato et al.
2011 for more details). A long growing trend of daily CO2 degassing, from 4000 and to 23,000 g·m−2

·d−1

has been observed in the following sub-periods (from 2005 to 2018, white dashed line in Figure 2) with
an increasing average degassing rate of 4.1 g·m−2

·d−2. The average degassing rate was determined
from the difference between the daily degassing rates at the beginning and at the end of the period,
divided by the number of days in that period.

Moreover, we can also observe that the periods prior to the increases in volcanic activity (paroxysms,
lava overflows, effusive eruptions) have always been characterized by higher degassing rates, from 2 to
6 times (from 9.8 to 24.2 g·m−2

·d−2) relative to the long trend average rate of 4.1 g·m−2
·d−2. These abrupt

changes in the degassing rate suggest a large increase in deep volatiles input, which the volcanic
system responds to by increasing the rate of shallow degassing. Then, we can observe a greater CO2

degassing rate increase of 24.2 g·m−2
·d−2 in the last period, from 2016 to 2018 (6 times higher than the

2005–2015 period), highlighting an abrupt change in the volatile degassing style, which reached up to
24,000 g·m−2

·d−1 in few months (Figure 2).
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For better investigating the behavior of the summit CO2 fluxes degassing style, during both
Strombolian and effusive activities, a statistical approach has been applied to a complete daily average
flux data set (2000–2018, Figure 3a,b), considering the selected four sub-periods.
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Figure 3. (a) Frequency histogram of log CO2 flux of the four sub-periods (2000–2004, 2005–2010,
2011–2015, 2016–2018); the data shows a quasi-unimodal distribution for the first three periods and
bimodal for the last period; (b) cumulative probability diagram of log CO2 flux, the data distribution
highlights the different percentage of values over 10,000 g·m−2

·d−1. The 2016–2018 sub-period is
characterized by the highest percentage (more than 50%) of data over 10,000 g·m−2

·d−1) similar
to the 2000–2004 period. The other two sub-periods (2002 and 2014) showed only 2% and 30%,
above 10,000 g·m−2

·d−1, respectively.

The frequency histogram of log CO2 flux (Figure 3a) shows a similar behavior within sub-periods
1–3 with a quasi-unimodal distribution, although different average values have been recorded in the
sub-periods (10,000, 5000, and 9000 g·m−2

·d−1 for 2002, 2007, and 2014 effusive eruptions periods,
respectively). The last period of observation (2016–2018) shows a bimodal distribution, with modal
values at 5000 and 14,000 g·m−2

·d−1.
Moreover, the cumulative probability diagram of log CO2 flux (Figure 3b) showed that the

2016–2018 sub-period was dominated by more than 50% of data over 10,000 g·m−2
·d−1, like the

2000–2004 period. On the contrary, the other two sub-periods (which include the 2007 and 2014 effusive
eruptions) showed 2% and 30% of values above 10,000 g·m−2

·d−1, respectively.

5. Discussion and Conclusions

The Stromboli volcano plumbing system is characterized by the continuous refilling of a
volatile-rich magma, which produced during the last two thousand years, the peculiar explosive
activity called “Strombolian activity” [16,64]. This continuous magma recharge determines a deep
volatile input responsible for the increase of the total volatile content inside the shallower plumbing
system (located at about 2–4 km depth, [64]), which is partially compensated by the degassing that
regulates the delicate dynamic balance between input and output [10].

The last period of observation (2016–2018) highlighted a strong and abrupt increase of soil CO2

degassing in the summit area of Stromboli, at a CO2 flux increase rate of 24.2 g·m−2
·d−2. This high

flux rate was accompanied by an increase of energy and frequency of explosions from 26 July to 01
December 2018, and by the rising of the magma level and consequent lava overflow from the summit
vents (Figure 4).
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Figure 4. Daily averages (24 measurements/day) of CO2 fluxes at STR02 station of 2016–2018 period.
A strong and sharp increase of soil CO2 flux is evident: two clear increased degassing families have
been recognized (yellow and red dashed circle).

The large data set of summit CO2 soil degassing, recorded from 2000 to 2018, allowed us to validate
the degassing geochemical model formulated by [10] and gave us the opportunity to characterize,
from the geochemical viewpoint, the transition between Strombolian and effusive activity.

The study of the cumulative CO2 flux made it possible to better identify the abrupt slope changes
in the summit degassing, highlighting the changes in the degassing styles (Figure 5a). In particular,
six main inflection points, marked with dashed red lines, have been recognized from 2005 to 2018,
that indicate transient modifications of the shallow system. These inflection points are: (a) in 2007,
marking the onset of the 2007 eruption; (b) in 2011 and 2013, identifying the lead-up to the 2014 eruption;
(c) in 2015, 2016, and 2017, suggesting the onset of a new critical phase of increased volcanic activity.
The significantly large continuous increasing trend of CO2 flux has been inferred from a monthly
average of CO2 fluxes (Figure 5b, white dashed arrow), which indicates a long-lasting modification
of the shallow plumbing system pressure as already hypothesized by [9]. In particular, during the
2007–2013 period, a contemporaneous increase of CO2 partial pressure in the thermal aquifer and
peripheral soil CO2 degassing corroborate the soil CO2 fluxes increases recorded at the summit of the
volcano. This simultaneous and extended volatile increases support the thesis of a continuous process
of pressurization of the shallow plumbing system that affects all the surficial fluid manifestations of
the entire volcanic edifice [9].
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Figure 5. (a) Cumulative CO2 flux vs. time, the inflection points marked with dashed red lines indicate
the abrupt changes of degassing style (transient modification); (b) monthly average of CO2 fluxes at
STR02 station, the significant large continuous increasing trend of CO2 flux is evident (white dashed
arrow) that indicates a long-lasting modification of the pressure of the shallow plumbing system.

The sketch map of the Stromboli volcano (Figure 6) summarizes and characterizes the main stages
of volcanic activity that have been observed at Stromboli over the last 20 years.

In particular we observe:

(a) A highly pressurized shallow plumbing system during the period 2000–2004, inferred from
high diffuse CO2 degassing that culminated in the effusive eruption of 2002–2003 that lasted
seven months;

(b) A less pressurized shallow plumbing system during the period 2005–2010, inferred from low
diffuse CO2 degassing and by a very short effusive eruption period that occurred in 2007 and
lasted only one month;

(c) A continuous refilling of deep volatiles, starting in 2005, which lead to a new phase (2011–2015),
characterized by a constant increase of shallow CO2 degassing, which culminated in the 2014
effusive eruption that lasted 4 months;
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(d) Finally, the 2016–2018 period, characterized by an abrupt increase of shallow CO2 degassing,
which has restored the presence of a very high volatile content in the shallow plumbing system,
reaching CO2 flux values similar to those observed in the 2000–2004 period.

This most recent behavior suggests a new critical phase of degassing, in the delicate dynamic
balance between input and output of fluids. This interpretation is well corroborated by the strongly
increased volcanic activity recorded, in terms of both frequency and energy, of crater explosions and
magma overflow.
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