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Abstract: Accurate mapping of landslides and the reliable identification of areas most affected by
landslides are essential for advancing the understanding of landslide erosion processes. Remote
sensing data provides a valuable source of information on the spatial distribution and location of
landslides. In this paper we present an approach for identifying landslide-prone “hotspots” and their
spatio-temporal variability by analyzing historical and recent aerial photography from five different
dates, ranging from 1944 to 2011, for a study site near the town of Pahiatua, southeastern North
Island, New Zealand. Landslide hotspots are identified from the distribution of semi-automatically
detected landslides using object-based image analysis (OBIA), and compared to hotspots derived from
manually mapped landslides. When comparing the overlapping areas of the semi-automatically and
manually mapped landslides the accuracy values of the OBIA results range between 46% and 61% for
the producer’s accuracy and between 44% and 77% for the user’s accuracy. When evaluating whether
a manually digitized landslide polygon is only intersected to some extent by any semi-automatically
mapped landslide, we observe that for the natural-color images the landslide detection rate is 83%
for 2011 and 93% for 2005; for the panchromatic images the values are slightly lower (67% for
1997, 74% for 1979, and 72% for 1944). A comparison of the derived landslide hotspot maps shows
that the distribution of the manually identified landslides and those mapped with OBIA is very
similar for all periods; though the results also reveal that mapping landslide tails generally requires
visual interpretation. Information on the spatio-temporal evolution of landslide hotspots can be
useful for the development of location-specific, beneficial intervention measures and for assessing
landscape dynamics.

Keywords: landslides; object-based image analysis (OBIA); aerial photography; visual interpretation;
remote sensing; spatio-temporal hotspot mapping

1. Introduction

Landslide erosion is a serious land management problem in many parts of the world, and
especially in New Zealand where a combination of steep erodible hill country, a maritime climate
featuring frequent and intense rainstorms, and recent forest clearance for pastoral farming have led to
extensive landslide erosion on many parts of the country’s hill country farmland. Effective mitigation
measures against landslide erosion and its consequences require a detailed understanding of the
location, extent, and severity of landsliding. In New Zealand, this usually relies on detailed manual
mapping from aerial photography [1] and, more recently, spectral classification of regional satellite
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imagery following major storm events [2]. For catchment- to farm-scale applications, however, manual
image interpretation and mapping has to date been the most-used method for accurately identifying
and mapping landsliding, but it is a very slow and tedious process and is thus limited to studies of
relatively small areas and can be difficult to implement in practice. In addition, the quality of the
resulting landslide maps depends on the experience of the investigator, the purpose of the mapping,
the scale, and the data used [3–6].

Just as the availability and quality of remote sensing data steadily increases, so too do the demands
for extracting relevant geospatial information in a semi-automated or even fully automated manner.
Optical remote sensing imagery constitutes a valuable and cost-effective source for the development of
such classification techniques that offer the potential to significantly improve existing manual landslide
mapping approaches, especially when combined with a degree of manual interpretation to create a
“hybrid” approach to landslide identification. For example, landslide inventory maps can be prepared
using such techniques [7].

The selection of an appropriate technique depends on the purpose of the inventory, the size of
the coverage, the time required by investigators, and the available resources [7–10]. Conventional
approaches for landslide recognition comprise resource- and time-consuming ground surveys and
visual image interpretation using very high resolution (VHR) satellite or aerial photographs [11,12]
based on morphological appearance [13]. High resolution (HR) imagery is used for delineating larger
landslides [14]. While visual interpretation is still the most common procedure for landslide mapping,
recently, there has been a trend towards semi-automated landslide mapping approaches based on
remote sensing data [15]. Efficient image analysis techniques have opened a new era, particularly
for studying denied-access, difficult-access, or remote sites [16], but also for performing retrospective
analysis based on historical images. Current approaches can basically be split into pixel-based and
object-based categories [12,17].

Over the last decade, object-based image analysis (OBIA) has been increasingly used for
semi-automated landslide mapping using remote sensing data [6,18–24]. OBIA, recently recognized
as a new paradigm in remote sensing and Geographic Information Science [25], enables researchers
to work seamlessly with existing multi-scale geospatial data by combining image processing and
GIS functionalities in one interlinked framework [26,27]. OBIA allows the use of spectral, spatial,
textural, contextual, and morphological properties. Geomorphological features such as landslides can
be treated as aggregates of pixels and can be grouped into homogeneous objects, providing additional
information on topological relationships of neighborhood, embeddedness, or shape [28]. Unlike single
pixels, image objects are enriched by a range of features/properties stemming from different data
sources that can be used during classification. This is especially useful for VHR imagery, where objects
of interest are usually significantly larger than the pixel size (H-resolution situation [29]). Optical
imagery is most often used in combination with a digital elevation model (DEM) and its derivatives
such as slope or curvature. However, relatively few studies in literature so far have used aerial
photographs for object-based landslide mapping [24,30–32]. Even less research has been done for
semi-automatically detecting landslides on panchromatic images, even though the creation of historical
landslide inventory maps relies on the analysis of remote sensing data that has been acquired over the
past few decades and is most often only available in black and white [23]. A major reason therefore is
that the limited spectral information of panchromatic images hampers the differentiation of classes
and the detection of features of interest. This is particularly true for semi-automated methods, since
they mainly rely on thresholds derived from multispectral bands [23]. However, brightness thresholds
from panchromatic images can be used for detecting landslide-affected areas, since these areas tend to
appear brighter due to a loss of vegetation and the exposure of fresh rock and bare soil [33].

Manually or semi-automatically mapped landslides from optical images can be used as input for
creating landslide hotspot (or density) maps, which are ideal for an easy-to-grasp visual representation
of the worst landslide-affected areas after a triggering event (e.g., as produced by the Earthquakes
without Frontiers project following the earthquake in Nepal in April 2015 [34]). A few studies
investigated the spatial patterns of PSI (Persistent Scatterer Interferometry) point targets for slow
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moving landslides using synthetic aperture radar (SAR) data complemented by landslide inventories
for the identification of landslide hotspots [35–37]. Landslide hotspot maps are also valuable when
planning field surveys and in situ validation campaigns, so that field work can be prioritized and the
time and effort needed significantly reduced [35].

In this study we aim to identify spatio-temporal landslide hotspots by analyzing historical and
recent aerial photography for a landslide-prone study site in New Zealand. Landslide hotspots
are calculated based on the distribution of semi-automatically detected landslides using OBIA, and
compared to hotspots derived from manually mapped landslides.

2. Materials and Methods

2.1. Study Area

We selected a ~1010 hectare study area located approximately 5 km southeast of the town of
Pahiatua, southeastern North Island, New Zealand (Figure 1).
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The study site comprises pastoral hill country on moderately indurated Tertiary sandstone and
mudstone, with relief in the order of 100–300 m above sea level and slopes typically in the 16–25 degree
range. Most of the area’s indigenous forest cover was cleared following European settlement in the
late 1800s and early 1900s and, as a consequence, rain-triggered shallow landslide erosion is common
(Figure 2).
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Figure 2. Landslides caused by a heavy rainstorm in June 2015 (Photo © Harley Betts).

2.2. Data

Historical and recent aerial photographs were acquired for five dates ranging from 1944 to 2011
(Table 1) and used for the detection of landslides and identification of spatio-temporal landslide
hotspots. Aerial photography was supplied as orthorectified digital images with a nominal positional
accuracy of 15 m and a spatial resolution of up to 0.4 m. The photographs from the two most
recent dates are available as three-band natural color images (RGB); the older photographs only have
a panchromatic band. The photographs from 1944 and 1979 were provided as single mosaicked
images; for each of the other dates five tiles were mosaicked into one raster dataset to cover the study
area. Additionally, a DEM with 15 m resolution, based on 20 m contour lines available from the
Land Information New Zealand (LINZ) [38], was used as ancillary data during landslide mapping,
particularly the derived slope information.

Table 1. Aerial photographs for the study area.

Acquisition Date Spatial Resolution (m/pixel) Spectral Resolution

25/01/2011 0.40 three-band natural color
16/01/2005 0.75 three-band natural color
01/05/1997 0.40 panchromatic
17/12/1979 0.40 panchromatic
31/03/1944 0.40 panchromatic
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2.3. Visual Landslide Interpretation

Visual landslide interpretation from the orthorectified digital imagery was carried out on-screen
using ArcGIS 10.0. Landslides were digitized at scales ranging between 1:600 and 1:1250. Each
landslide was then subdivided visually into “scar” and “debris tail” in an effort to separate sediment
sources (scars) from areas receiving sediment (debris tails). The aim of the mapping was to identify all
landslides that had occurred since the date of the first photography. The mapping results were stored
as polygon shapefiles containing delineated landslides, subdivided into scars and debris tails, for each
date of photography.

2.4. Semi-Automated Landslide Mapping

For semi-automated landslide mapping, an object-based mapping approach was developed.
Analyses were conducted using eCognition (Trimble) software, whereby a set of knowledge-based
classification rules were defined. Since aerial photographs from five different points in time were
used, major efforts were made to come up with a mapping routine that is applicable to all images.
The classification ruleset was developed using the most recent image from 2011 and subsequently
transferred to the other aerial photographs. The landslide mapping workflow is shown in Figure 3.
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As a first step, the multiresolution segmentation algorithm [39] was applied to create initial image
objects that serve as basic units for the classification. Spectral information (panchromatic band or RGB
bands, respectively) and the slope layer were considered for image segmentation. Spectral, spatial,
morphological, and contextual parameters of image objects were used to classify landslides. However,
the spectral values of the RGB bands available for the aerial photographs from 2011 and 2005 were
deliberately omitted during rule-based classification. Instead, an average or “panchromatic” brightness
layer was calculated for the multispectral images by dividing the sum of the three spectral bands by
three. This was done to increase the transferability of the method across the panchromatic images from
1997, 1979, and 1944. For the detection of potential landslide objects, this brightness/panchromatic
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layer was mostly used, since landslides usually appear brighter than their immediate surroundings on
optical images due to the exposure of bare ground [4,33,40]. Next to the mean brightness values of the
image objects, the spectral difference between landslide objects and their neighbors was considered.
Slope gradient thresholds were always applied in conjunction with other parameters, such as the
brightness/panchromatic information, to avoid the classification of image objects with similar spectral
characteristics. For example, bright image objects with a mean slope below 5 degrees were excluded
from the initial classification of target areas.

To remove false positives from the initial landslide classification, spatial properties of image
objects such as compactness (product of the length and the width, divided by the number of pixels) or
length/width ratio together with slope gradient thresholds, ranging between <15 and <30 degrees,
were used. These parameters were applied since landslide objects appeared to be more compact but at
the same time more elongated than false positives. It is hardly possible to define a fixed slope gradient
threshold at which a landslide occurs as slope failure has in some cases been observed on gentle slopes
of 1–2 degrees [41]. Therefore, next to the varying slope gradients, the relation between the maximum
elevation and minimum elevation within an image object also proved to be useful for the elimination of
misclassified objects. Finally, after merging the classified landslide objects, very small (<10 m2) or very
large polygons (e.g., large quarries) were eliminated. The classified objects were merged to more easily
remove some of the remaining false positives afterwards. Apart from the visual interpretation, it was
not possible to effectively differentiate between scars and debris tails. Thus, only the landslide-affected
area was semi-automatically mapped.

This approach was then transferred to the other aerial photographs, whereby only minor
adaptations of thresholds and small changes regarding the usage of specific image properties were
necessary. Some remaining errors (e.g., road segments, buildings) were removed manually in a
final step, whereby this concerned only the obvious misclassifications and took less than 10 min for
each date.

2.5. Identification of Landslide Hotspots

To facilitate a visual comparison of the manually mapped landslides and the landslides mapped
with OBIA, hotspot maps were created. The landslide features were rasterized at 1 m cell size
and aggregated to 25 m pixel resolution by calculating the sum of 1 m landslide pixels per 25 m cell.
The resulting map is a landslide cover map which can also be interpreted as a density map, as it displays
the proportion of landslide area covering each pixel (625 m2) in percent. A bilinear interpolation is
used to create a smoother representation of the results. Hotspot maps have the advantage that areas
most affected by landslides can be immediately identified. The maps also provide a more appropriate
scale for comparing results as the general distribution of landslides is more pronounced.

3. Results

3.1. Landslide Mapping Results

Visual mapping identified a total of 2703 landslide scars and 2343 landslide tails over the five dates
of photography mapped. Fewer landslide tails than scars were mapped, as tails had frequently grassed
over prior to aerial photography being captured, whereas scars tended to take longer to revegetate
owing to a lack of remaining soil on the scar faces. The cumulative area covered by landslide scars
was considerably less than that covered by tails, reflecting the fact that sediment generated from even
small scars is often spread over a relatively large downslope area.

In contrast to the manual mapping, no differentiation between scars and tails was done during
semi-automated mapping. Furthermore, due to the variability of landslides appearance it was hardly
possible to delineate single landslides as single objects semi-automatically and thus to identify the
number of mapped landslides (see also the Discussion section). For both approaches, most landslides
were detected based on the data from 2005, since the imagery were taken after a large storm event that
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triggered a lot of landslides. Figure 4 shows the semi-automated and the manual mapping results for
2005. A subset with the mapping results from each date of the aerial photography is shown in Figure 5.Geosciences 2016, 6, 48 7 of 15 
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Figure 5. Subset from the southwestern part of the study area showing the aerial photographs (left),
the OBIA (middle) and manual (right) landslide mapping results for each date. The figure shows how
this sub-area is affected by landslides over time. Most landslides disappeared when comparing an
aerial photography to the subsequent one, since vegetation started to grow again. The distribution of
the detected landslides is very similar for both methods.

Comparison of Semi-Automated Mapping with Visual Interpretation

For assessing the classification accuracy, the semi-automated OBIA results have been compared
to the respective results from visual landslide interpretation, which were used as reference data. To do
so, the amount of overlapping area was calculated. Based on this overlapping area the respective
producer’s and user’s accuracies were computed [42] (Table 2). The producer’s accuracy was calculated
by dividing the correctly classified landslides area (overlap area) by the total area of manually mapped
landslides (i.e., the reference data). The user’s accuracy was computed by dividing the correctly
classified landslides area (overlap area) by the total landslide area mapped by OBIA.

The (at first glance) moderate accuracy values can be explained by several reasons.
The semi-automated detection of landslides with OBIA relies mainly on spectral differences of the
landslide body to the surrounding areas (i.e., landslides appear brighter on the aerial photographs).
This works well for the landslide source areas, but with limited accuracy for landslide tails, considering
the fact that data with limited spectral information was available and only the brightness was used
(neither other spectral values nor spectral indices were used). A number of landslide tails were
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identified during visual interpretation that require a trained eye for detection—a capability that can
hardly be directly transferred into computer-based classification rules. Figure 6 shows an example
where landslides’ source areas were well detected by the object-based approach, but where several
landslide tails were missed due to a lack of distinct spectral, spatial, or morphological characteristics.
This also becomes evident when comparing the overall mapped area between the OBIA classification
and the manual mapping (Table 2). Apart from the result for 1997, the total area of landslides mapped
was less with OBIA. The difference of total area mapped can be explained by the large landslide tails
(Figure 6), which were more difficult to identify. The small landslides were more reliably automatically
detected with OBIA.

Usually, manual mapping results produced by local experts are often the only reference available,
but they cannot constitute a completely true reference as their generation depends on various factors [6].
This should be considered when interpreting the accuracy values.

When not comparing the overlapping area, but rather evaluating whether a manually digitized
landslide polygon is only intersected to some extent by any semi-automatically mapped landslide,
we observe that for the two natural-color images the landslide detection rate is 83% for 2011 and 93%
for 2005; for the panchromatic images the values are slightly lower (67% for 1997, 74% for 1979, and
72% for 1944). Consequently, it can be stated that a large percentage of landslides have been correctly
detected by OBIA, but the actual delineation of the landslides varies between the two methods.

Table 2. OBIA and manual mapping results, difference between OBIA and manual mapping results,
overlapping area, and producer’s and user’s accuracy for each image acquisition date.

Aerial
Photograph

OBIA
Mapping (ha)

Manual
Mapping

(MM) (ha)

Difference
OBIA—MM

(%)

Overlap
Area (ha)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

2011 9.52 12.71 −25.10 6.57 51.65 68.96
2005 44.66 56.63 −21.15 34.59 61.08 77.46
1997 10.49 8.34 +25.75 4.66 55.85 44.41
1979 4.74 4.82 −1.68 2.29 47.57 48.38
1944 7.18 9.28 −22.68 4.35 46.86 60.60
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Figure 6. Manually identified landslide scars and debris tails compared to OBIA mapping results for a
subset of the aerial photograph from 2011. Landslide source areas (scars) were well detected by the
object-based approach, but several landslide tails were missed due to a lack of distinct spectral, spatial,
or morphological characteristics that could have been used during semi-automated mapping.
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3.2. Landslide Hotspots

A comparison of the landslide hotspot maps (Figures 7 and 8) shows that the distribution of the
manually identified landslides and those mapped with OBIA is very similar for all periods. The major
difference, which is particularly well observed in the hotpots maps of 2005 (Figure 7), is the proportion
that landslides cover an affected area. As stated above, one explanation is the fact that the total area of
landslides identified using manual mapping techniques is greater than that detected by OBIA since the
detection of landslide tails is a challenging task with a semi-automated approach. A closer inspection
of the 2005 results not only shows this to be true, but offers an explanation for the difference of total
area mapped. Eighty-five percent of the manually mapped landslide area that does not overlap with
the OBIA landslides is classified as landslide tails. These non-overlapping segments of landslides
are generally located at lower ends of long narrow debris tails where the grass cover is more quickly
restored. Though the OBIA landslides in 2005 are fairly evenly distributed over the scar and tail areas
(47.8% to 52.2%, respectively), our results show that mapping lower ends of landslide tails generally
requires visual interpretation. However, the hotspot maps confirm that the two different methods of
landslide detection render consistently comparable results and that OBIA can be employed to gain
rapid insights into the distribution and intensity landslide-affected areas.
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4. Discussion

Visual interpretation enables landslide scars and debris tails to be differentiated. It is worth noting
that fewer landslide tails than scars were mapped, because tails had frequently grassed over prior to
aerial photography being captured, whereas scars tend to take longer to revegetate owing to a lack of
remaining soil on the scar faces. On the other hand, the cumulative area covered by landslide scars
was considerably less than that covered by tails, reflecting the fact that sediment generated from even
small scars is often spread over a relatively large downslope area.

Such a differentiation of landslide scars and debris tails could not be done with OBIA, because
the debris tails did not show distinct spectral characteristics that would have facilitated their reliable
detection. Semi-automated (OBIA) mapping results would be sensitive to the length of time elapsed
between a landslide triggering event and the next available image (Table 3). Imagery taken immediately
after a heavy rainfall is ideal for capturing the full extent of landslides, and is a significant reason
for the large area of landslides mapped in 2005 following the storm event in 2004. In contrast, no
large rainfall event precedes the 2011 photography, which may indicate that old landslide scars from
the 2004 event have been captured. An accurate differentiation of the actual source areas (scars) and
deposition areas (tails) by OBIA may be facilitated with additional imagery taken a number of weeks
after an event when the depositional tails will have started to revegetate, whilst the scars would still
be clearly visible.
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The manual mapping approach shows advantages over the semi-automated method for
delineating single landslides or splitting up compound landslide complexes into separate
landslides [43]. Since segmentation-derived image objects rarely correspond to single landslides
due to over- or undersegmentation and the variability inherent to landslides, the exact demarcation
of objects that represent single landslides is a major challenge and further research is needed in this
direction. Advanced algorithms for object boundary refinement (e.g., split and merge based on specific
conditions) could be used to improve the delineation of single landslides. However, the creation of
“meaningful” objects with regard to a particular context or aim can be very complex [25]. Thus, only
landslide-affected areas and not the number of landslides were mapped by OBIA.

Table 3. Time lag between recorded rainfall events (Eastry Station—NZTM 1841003 E 5501939 N) and
next available photography.

Date of Rainfall Event
>100 mm/Day

Max Daily
Rainfall (mm)

Next Available
Photography (Date)

Lag between Storm and
Photography (Years)

- - 25/01/2011 -
16/02/2004 105.8 16/01/2005 0.9
11/04/1991 105.4 01/05/1997 6.1
18/02/1991 102.3 - -
01/01/1980 106.4 - -
03/02/1967 115.3 17/12/1979 12.9
04/05/1941 170.9 31/03/1944 2.9

Guzzetti et al. [7] review conventional methods for the production of landslide inventory maps
and examine the role of new techniques based on modern technologies. The review discusses the
value and limitations of geomorphological field mapping and the interpretation of stereoscopic aerial
photographs and evaluates semi-automatic approaches for the recognition of landslides, including the
OBIA method. Guzzetti et al. [7] conclude that the systematic use of semi-automatic techniques limits
subjectivity and can contribute to improving the reproducibility of landslide maps.

Manual mapping, while generally more accurate than semi-automated methods, is also a very
time-consuming process, and any large-scale mapping task would presumably benefit from a degree
of automation [30]. A hybrid approach that combines both semi-automated feature delineation and
manual interpretation could improve the whole mapping process and can lead to acceptably accurate
mapping results with the potential to greatly reduce the time and effort needed for generating landslide
inventories. For example, the initial delineation of areas of bare ground (i.e., the rapid identification of
target areas) could be automated, followed by a manual refinement by an experienced interpreter.

The produced landslide hotspot maps show that the distribution of the manually identified
landslides and those mapped with OBIA is very similar for all periods. Hotspot maps have the
advantage that areas most affected by landslides can be immediately identified, even if the accuracy
of the actually mapped landslides is limited. Hotspots maps created on the basis of OBIA mapping
results can be produced very quickly and thus might be particularly valuable for the rapid information
provision after landslide triggering events.

5. Conclusions

Findings from the analysis of recent and historical images can provide useful information for
predicting unstable areas prone to erosion and landslides, and thus can serve as input for spatial
planning, risk zone identification, and hazard mitigation. Therefore, improving our capability to map
landslides and to identify spatio-temporal landslide hotspots has considerable practical implications
and socio-economic importance. While landslide erosion is already a problem in many areas under
present-day climate regimes, future climate change is likely to cause significant environmental changes
which may lead to even more frequent landslide triggering events (heavy rainstorms). With this
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in mind, the significance of (semi)-automated and reliable methods that are widely applicable for
monitoring landscape changes becomes evident.
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