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Abstract: Air pollution induces the development of black crusts on the surface of built heritage
materials. Black layers on the limestone used on an emblematic Madrilenian building dating from
the early twentieth century, mainly built up in the 20 years lapsing between two façade cleaning
operations, was studied with POM and SEM-EDS. Particulate matter deposited on surfaces in the
same period was analyzed with XRD and IC. Climate change in the environs was also studied and
façade coloring patterns were compared. Since black crust and settled dust composition, as well as
façade soling intensity, were found to be closely related to the surrounding environment, both are
proposed as environment and climate change markers. These are considerations, moreover, that must
be addressed when designing conservation strategies. Domestic heating systems and vehicle traffic
were identified as the two main sources of pollution throughout the period studied in the target area,
where the temperature steadily rose and relative humidity declined. The progressive replacement
of coal with gas oil in domestic heating boilers and the proliferation of vehicles with diesel engines
have mostly determined the evolution of the pollutants emitted. The color of façade soiling, in turn,
has been primarily conditioned by the typology of the particles deposited on the limestone surface,
declining humidity and the passage of time.

Keywords: particulate matter; decay; soiling; dust; air pollution; cleaning; monitoring; conservation
strategies; built heritage

1. Introduction

Europe’s dynamic social and economic development in the nineteenth and twentieth centuries
had an adverse effect on air quality in its cities. Airborne pollution, primarily sulfur dioxide (SO2)
and the particulate matter (PM) generated by fossil fuel combustion, is the main cause of aesthetic
and material decay in the built heritage, particularly as regards carbonate materials [1–3]. In Europe,
SO2 levels spiked in the 1960s to 1980s, due especially to the proliferation of diesel engines and their
sulfur-heavy exhaust [4]. Beginning in the 1970s, European policy aimed to lower SO2 emissions [5]
and the consumption of (particularly sulfur-high) coal. Vehicle emissions have since become the
main source of airborne pollution [6], essentially nitrogen oxides and particulates, that are enough
to trigger building materials decay [7]. Strategies designed to conserve the cultural heritage should
be preceded by an understanding of air quality trends and the composition of background urban
aerosols, which entails systematic monitoring of the environmental conditions prevailing around
heritage buildings [8–10].
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In polluted urban areas building materials tend to darken due to the accumulation of pollutants,
particularly carbonaceous particles [1,11,12]. Surface materials exhibit layers of black decay that may
be attendant upon substantial damage and loss of material, especially sulfation-induced black crust
in protected areas of façades, i.e., areas not washed by rainwater [13–15]. In such sulfation calcite,
the interaction between carbonate materials and airborne SO2 yields gypsum that darkens gradually
with the build-up of carbonaceous particles [1,4,16]. These reactions are accelerated in the presence of
moisture and of the metals and metal oxides comprising carbonaceous particles and other airborne
pollutants [4,7,17]. Since airborne pollution accumulates gradually on construction materials and the
intervals between façade cleaning operations tend to be fairly long, the resulting layers of black decay
comprise microstrata whose composition constitutes a record of the change in the sources of pollutant
emissions [15,18–20].

Most anthropic combustion generates metal element-rich carbonaceous particulates that are
directly involved in façade soiling in polluted areas [21]. In Europe, in the first half of the
twentieth century, façade soiling was primarily the result of the deposition of thick, very dark
carbonaceous particles [22,23], mainly from coal combustion [24]. Since the 1970s, such soiling has been
chiefly attributable to finer and lighter-colored particles, essentially emitted by diesel engines [7,25].
In polluted urban environments, façades self-clean in response to wind action and rainfall, which rinse
away the oldest black deposits [2,22]. Nonetheless, the elements fail to remove elemental carbon
particles, the main constituent of diesel exhaust, whose small size (<1 µm) and concomitantly high
specific surface ensure their retention on stone surfaces. In addition, as they reduce surface reflectance,
they favor speedy surface soiling after cleaning operations [26,27].

Particle deposition and subsequent elimination by rainwater or wind or both are the main
processes that condition color patterns in façades: soiling takes places over several years, whereas
rainwater cleansing takes decades [22]. Although buildings continue to soil, for carbonaceous emissions
continue to be high [21], color patterns have been changing in recent years. In environments with high
organic component and low elemental carbon-polluted air, façade soiling has adopted warmer tones,
with a prevalence of yellowing [28].

This study analyses the layers of black decay found on an emblematic limestone building in
Madrid, built up primarily in the 20 years lapsing between two façade cleaning operations (1984–1986
and 2006–2008). Sulfation-induced black crusts were studied with polarizing optical microscopy (POM)
and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS).
Spherical particulate matter was also analyzed with the latter, while settled dust composition was
determined with X-ray diffraction (XRD) and Ion Chromatography (IC). The environmental conditions
prevailing in the area around the building in the period (1978–2006) and the aesthetic decay exhibited
by the façades in or around the 1970s and in 2006 are also addressed.

The paper primarily aims to determine the composition of the black crust that formed and the
dust that settled on the limestone surface prior to the second façade cleaning operation undertaken in
2006. It also purports to establish how the changes in climate and in the conditions prevailing in the
building environs between the 1970s and 2006 may have affected façade soiling intensity.

Environmental change in the area during the period studied was largely the result of global
climate trends, policies implemented in the city to improve its air quality and urban remodeling in the
immediate surrounds. The composition of the layers of black decay on the limestone and the soiling
intensity reflected in façade color patterns constitute markers of the change in the conditions prevailing
in the building’s environs. Posing the monitoring of such conditions as a preventive conservation
measure, the study charts the course for future comparisons of the effects of climate and air pollution
on façade decay in general and limestone decay in particular.

2. Experimental Section

The building chosen for the study was initially designed as a workers’ hospital by architect
Antonio Palacios Ramilo (1874–1945) and built between 1909 and 1916 in northwestern Madrid,
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Spain. The building remained vacant between 1970 and 1984, it was listed as a historic-artistic
monument in 1979 and since 1986 it has housed offices pertaining to the regional Government of
Madrid. The façades were mainly built with a weather-resistant, high quality, durable, light-colored
biosparite and biopelmicrite limestone [29], particularly suitable for bearing members [30]. Granite,
berroqueña stone, is slightly used at the façades construction, being both stone materials traditionally
used in the built heritage in Madrid and its surrounding region [31]. The limestone has been cleaned
twice by grit-blasting, in 1984–1986 and in 2006–2008; at second one, façades were cleaned by bead
blasting wet silica particles (microspheres and microparticles) and with a pressure of 2.5 kg/cm2.
This building was chosen for the study because it is emblematic, was built with light-toned limestone,
is located in a highly polluted urban area and was cleaned twice in a 20 year interval.

In the plan view, the building comprises four wings forming an “X” attached to a main entrance
building and a church. The building, along with two detached pavilions, is surrounded by a wall that
contains ground gardens and occupies a full city block bounded by four streets (Figure 1).

The eight-lane thoroughfare alongside the main façade of the church has constant and very busy
traffic. By 2002, the flyover built on that street very close to the church (Figure 2a) in 1969 was handling
150,000 vehicles daily, 80,000 on the upper and 70 000 on the lower level. After it was demolished and
replaced by an underpass in 2003–2005 (Figure 2b), traffic declined significantly, to 77,500 vehicles
daily in 2006, according to the Madrid Municipal Law Enforcement and Traffic Division. Those works
formed part of the urban remodeling undertaken in the city in recent years to improve air quality,
which has lowered the impact of airborne pollution on its heritage buildings [8].

Geosciences 2016, 6, 4 3 of 15 

Madrid. The façades were mainly built with a weather-resistant, high quality, durable, light-colored 
biosparite and biopelmicrite limestone [29], particularly suitable for bearing members [30]. Granite, 
berroqueña stone, is slightly used at the façades construction, being both stone materials traditionally 
used in the built heritage in Madrid and its surrounding region [31]. The limestone has been cleaned 
twice by grit-blasting, in 1984–1986 and in 2006–2008; at second one, façades were cleaned by bead 
blasting wet silica particles (microspheres and microparticles) and with a pressure of 2.5 kg/cm2.This 
building was chosen for the study because it is emblematic, was built with light-toned limestone, is 
located in a highly polluted urban area and was cleaned twice in a 20 year interval. 

In the plan view, the building comprises four wings forming an “X” attached to a main entrance 
building and a church. The building, along with two detached pavilions, is surrounded by a wall that 
contains ground gardens and occupies a full city block bounded by four streets (Figure 1). 

The eight-lane thoroughfare alongside the main façade of the church has constant and very busy 
traffic. By 2002, the flyover built on that street very close to the church (Figure 2a) in 1969 was 
handling 150,000 vehicles daily, 80,000 on the upper and 70 000 on the lower level. After it was 
demolished and replaced by an underpass in 2003–2005 (Figure 2b), traffic declined significantly, to 
77,500 vehicles daily in 2006, according to the Madrid Municipal Law Enforcement and Traffic 
Division. Those works formed part of the urban remodeling undertaken in the city in recent years to 
improve air quality, which has lowered the impact of airborne pollution on its heritage buildings [8]. 

 
Figure 1. Aerial view of the former hospital ca. 1986, showing the overall layout: church, main 
entrance, diagonal wings and free-standing pavilions. Enclosed inside a surrounding wall, the 
compound is bounded by four streets, with very heavy traffic on the one bordering the church portal 
(courtesy of the Specialized Documents Centre, Madrid Regional Department of Environmental 
Affairs, Housing and Land Management). 

 
Figure 2. (a) Flyover on the street with heavy traffic in the 1960s (courtesy of Fernando de Castro 
López-Villarino); and (b) eastern entrance to the underpass in 2006. 

  

Figure 1. Aerial view of the former hospital ca. 1986, showing the overall layout: church, main entrance,
diagonal wings and free-standing pavilions. Enclosed inside a surrounding wall, the compound is
bounded by four streets, with very heavy traffic on the one bordering the church portal (courtesy of the
Specialized Documents Centre, Madrid Regional Department of Environmental Affairs, Housing and
Land Management).
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2.1. Environs and Climate

Madrid has a continental Mediterranean climate (as per the Köppen classification) with
cold winters (XTannual = 8 ˝C), warm summers (XTannual = 29 ˝C) and low relative humidity
(XRHannual = 55%–60%). High atmospheric pressure in the winter and fall ensures very stable
weather and persistent thermal inversions that generate a pollutant-heavy layer of air close to the
surface [32]. The city has a typically urban atmosphere, with SO2 levels associated with heating system
emissions [33] and particle matter concentration with traffic intensity [34,35]. A stable atmosphere,
ground warming, scant rainfall and dust from the Sahara Desert are the chief causes of the rise in
particulate concentration in Madrid [33,36,37]. The infrastructure built in the city, especially beginning
in 2000 has also led to a significant rise in particle emissions [38]. In the early twentieth century, the site
chosen to build the hospital was on the outskirts of the city, characterized by cold, healthful winters
with good air quality. The area’s headlong growth beginning in the 1940s prompted a steep rise in
airborne pollutants, and from the 1960s, alarming concentrations of SO2. In January 1969, for instance,
SO2 levels were upward of 200 µg/m3 nearly every day, reaching 800 µg/m3 on some days [39].
The use of coal as the main fuel for domestic heating and hot water until the early 1980s and the
proliferation of diesel engines in the city, particularly from the 1990s onward, were the main causes of
high SO2 and particulate matter levels in the area surrounding the former hospital in 1978/1979–2006.
Figure 3 shows SO2 and PM concentrations and the mean temperature and relative humidity recorded
in the environs in that same period. These data were logged at the air pollution and weather stations
nearest the building, whose records date from 1978 and 1979, respectively.
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Figure 3. Yearly SO2 and particulate matter (PM) concentration, temperature (T) and relative humidity
(%) in 1978/79–2006, measured at the air pollution and weather stations nearest the former hospital
(dashed lines = no data available) (sources: Madrid Municipal Air Protection Service’s environmental
information system and Spanish Meteorological Agency’s Weather Information Unit).

SO2 concentrations climbed steadily in the first 10 years (from 34 µg/m3 in 1978 to 94 µg/m3

in 1987), declining gradually until 2002 (18 µg/m3) and flattening thereafter (14 µg/m3 in 2006).
The progressive decrease recorded since 1987 was essentially the result of the limits laid down in
European directives beginning in 1986, which have secured a substantial improvement in air quality.
In Madrid these improvements translated primarily into the progressive use of low-sulfur gasoline
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and the replacement of coal with gas oil boilers for domestic heating and hot water in the 1980s
and nineties [33,34,40]. Although unevenly and with values that promptly are close to 80 mg/m3,
PM concentration has declined overall (from 73 µg/m3 in 1978 to 42 µg/m3 in 2006). In the period
1999–2003, the mean values remain near to 35 µg/m3 and from 2003 PM concentration has increased,
largely because the new arrangement of traffic in the area mentioned above. The construction of
the underpass has changed the impact of airborne pollution on façades, but particle emissions have
been risen during its construction. Irregular behavior of PM concentration is attributable primarily
to the area’s constant busy traffic, being vehicle exhaust quite difficult to control, in addition to the
aforementioned factors that contribute to the city’s particle concentrations. The variations in Madrid’s
climate, chiefly rising temperatures (from 13 ˝C in 1978 to nearly 17 ˝C in 2006) and declining relative
humidity (from 70% in 1978 to nearly 58% in 2006), are largely due to global climate change and the
observed decrease in the concentration of PM may be related with declining humidity [11,41,42]. As the
prevailing wind in the surroundings blows from S-SW, the façades exposed to that direction are the
ones most affected by airborne pollutants, although the maximum gust speed has tended downward.

2.2. Layers of Black Decay

Prior to the most recent façade cleaning operation in 2006, the limestone surfaces were covered
with black crust and settled dust that marred building aesthetics and damaged the substrate [30].
Both constitute layers of black decay formed or built up in the 20 years that had lapsed since the
preceding operation. The location and labeling of the layers of black decay sampled for the study are
shown in Figure 4 and Table 1.
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Figure 4. Plan view of the building showing sampling points to characterize the layers of black decay
and in situ appearance of some of the surfaces sampled (BC: samples taken to study black crust;
PM: settled dust sampled to determine the composition of the particulate matter; SP: samples taken to
analyze air pollution-related spheres).

Black crust was sampled by removing fragments or surface flakes from the limestone on protected
areas of the surrounding wall, where such soiling was particularly visible (Figure 4). The samples were
viewed under a transmitted light, polarizing Olympus BX51 optical microscope fitted with an Olympus
DP12 digital camera. Thin (30 µm) sections were prepared and, due to their small size, samples had to
be packed in resin for handling. The sections were partially stained with alizarin red [43] to identify
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carbonated minerals. These crusts were also analyzed under a 0.2–0.4 kV, 6 ˆ 10´10 Å Jeol JSM 6400
scanning electron microscope operating at a vacuum of 10´5 Torr, a resolution of 35 Å and a 35 kV,
8 mm operating distance. The images were recorded at an accelerating voltage of 20 kV. An Oxford
Inca energy dispersive X-ray (EDS) microanalyzer with a rated resolution of 133 eV at 5.39 kV and
a 1.5 min run time was coupled to the microscope to establish the qualitative and semi-quantitative
elemental composition of the crusts. The samples were sputter-coated with a Balzers Med 010 coater,
using graphite as the conducting material.

Table 1. Sample type and location and mean luminosity (XL*) measured on the surfaces sampled
particulate matter; SP: samples taken to analyze air pollution-related spheres.

Sample Type N˝ XL* Location

Black crust
BC1 45 Façade: church (North)
BC2 46 Wall: facing west

Particulate matter
PM1 - Façade: NW main entrance
PM2 - Wall: facing north

Layers of black decay
(spherical particle analysis)

SP1 46 Wall: facing north
SP2 57 Wall: facing north
SP3 57 Wall: facing north
SP4 46 Wall: facing north
SP5 55 Façade: main entrance (South)
SP6 57 Façade: main entrance (South)
SP7 57 Façade: main entrance (South)
SP8 55 Façade: main entrance (South)
SP9 63 Façade: NW wing
SP10 62 Façade: NW wing
SP11 64 Façade: NW wing
SP12 59 Façade: NW wing

The pollutant spheres detected in the layers of dark decay were studied by taking limestone flakes
from heavily soiled stone on the lower part of several of the façades (Figure 4). The morphology and
chemical composition of the spherical particles identified were determined with SEM-EDS [4,44,45].

Lastly, particulate matter in the dust settled on horizontal surfaces was sampled from the stone
masonry on the surrounding wall facing the busiest street and from the northwest façade on the main
entrance building (Figure 4). PM mineralogical composition was analyzed on a copper anode Philips
PW-1752 X-ray diffractometer fitted with a graphite monochromator, operating at 40 kV and 30 mÅ
and running on PC-APD (Q1) (automated power diffraction) software. The measuring range was
2–68 θ, the recording rate 2˝/min and the mode continuous. Diffract AT (version EVA V) analytical
software was used to identify the mineral phases. The soluble ion content in the PM from the settled
dust was found with ionic chromatography conducted on a Metrohm 761 Compact IC, with which
chlorides, nitrates, sulfates, sodium, magnesium and calcium were identified and quantified.

2.3. Comparison of Color Patterns

Figure 5 illustrates the aesthetic decay on the main façade of the church, facing the busiest street,
in/around the 1970s and in 2006. The source of the photographs was the Chartered Institute of
Architects of Madrid’s historic archives. In 2006, the limestone was measured in situ for luminosity
(L*), one of the chromatic parameters in the CIELAB color space [46], with a MINOLTA CM-2002
spectrophotometer using Color Data CM-1 software and 169 measurements on limestone surface were
performed on the main façade of the church. The measuring conditions were CIE standard light source
(D65), view angle (10˝) and reference white tile. In the surfaces sampled in order to characterize black
crusts on limestone and to identify spherical particles, BC and SP samples, respectively, five measures
of luminosity were carried out (Table 1).
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Figure 5. Soiling intensity causing aesthetic decay on the church portal (a) in/around the
1970s (courtesy of the Chartered Institute of Architects of Madrid’s Historic Archives Division);
and (b) in 2006.

Further to the distribution of the dark areas in the color patterns, in the 1970s, the surfaces
showed an intense dark soiling, while in 2006 they exhibited a smaller build-up of brownish deposits.
Nonetheless, as noted earlier, dark soiling was also observed in the latter year in protected areas and
on the surrounding wall (Figure 4). In both the 1970s and in 2006, the center parts of the walls, where
rainfall and wind action are less severe, were intensely and evenly soiled. Areas that in the 1970s
were very dark, particularly near the top of the church towers, were less affected in 2006 (compare
Figure 5a,b).

3. Results and Discussion

3.1. Characterisation of Layers of Black Decay

3.1.1. Black Crust and Spherical Particles

Polarizing optical microscopy revealed a variable degree of black crust development and
widespread, microcrystalline gypsum-filled cracking. The crust had a dark outer layer with opaque
particles and a lighter toned inner layer consisting primarily in microcrystalline gypsum (Figure 6a,b).
By means of SEM-EDS (Figure 6c), it can be observed that sulfation crust in contact with the limestone
was made up of crystals with clearly defined (mostly lance-shaped) morphologies and significant
calcium (Ca) and sulfur (S) contents (sulfation crust). The crust surface was observed to be lumpy
and have high silicon (Si) and aluminum (Al) contents. With their lance-like morphology, the gypsum
crystals rendered the sulfation layer porous and rough, favoring the retention of the particulate matter
that afforded the outer crust its dark color.

Given the high SO2 levels in the city starting in the 1960s and their steady reduction after 1987,
the effect of sulfur on limestone decay was less significant in the 20 years between the two cleaning
operations than it must have been prior to the first. Nonetheless, lanceolate morphology in gypsum
crystals denotes intense sulfation [7,47]. The explanation may lie in the cumulative nature of the
pollutants and the fact that SO2 levels continued to be high in the building surrounds until 1995
(Figure 3), so the decay observed in 2006 may have been due to deposition in the past [48].
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Therefore, the 1980s cleaning may not have eliminated all the SO2, which would have acted
as a precursor to stone sulfation after that operation. Another factor to be borne in mind is the
exposure of the limestone surfaces sampled to traffic exhaust, which carries other pollutants such as
nitrogen compounds and particulate matter that would favor sulfation reactions [4,7,17]. While the
sulfur in airborne pollution would suffice for sulfation [49], the crust itself is a source of abundant
sulfur and consequently contributes to its own internal and external development through a sulfation
feedback loop.

The SEM-EDS findings for the spherical particles (Figure 7 and Table 2) revealed the existence of
hosts of smooth, compact spheres with high silicon (Si) and aluminum (Al) contents (Figure 7a,d(A)),
sourced primarily from coal and gas oil combustion [50,51]. This technique also identified very
high carbon (C) porous spheres with rough surfaces (Figure 7b) and variable concentrations of
sulfur (S), silicon (Si), aluminum (Al) and iron (Fe). Further to this composition, diesel exhaust was
identified as the chief origin [44,52] of these spheres, which are closely related to façade soiling in urban
environments [53]. The same origin was determined for spherical particles that in addition to carbon
(C) contained substantial proportions of calcium (Ca) and sulfur (S) (Figure 7d(B)) [54] and served as
gypsum crystallization nuclei [55]. The smooth-surface, compact, iron (Fe)-containing spheres detected
were essentially generated by coal and gas oil combustion [56]. Size, shape and composition of the
spherical particles identified are displayed on the left side of Table 2(a).The second-last column on
the right in Table 2(b) lists these same spherical particles in ascending order by size, along with their
majority elements. Sphere diameters ranged from 4 to 56 µm, with many values lying between 4 and
24 µm. Five size intervals were established (from 0 to 25 µm). Nearly 60% of the spherical particles
identified were found in the range with the heaviest impact on stone material decay, 0.1 to 10 µm [57].
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Table 2. Size, shape and composition of the spherical particles identified (a) and its ordering in
accordance their size, along with their majority elements (b).

Location
(a) (b)

Type Ø
(µm) Surface Major

Elements Shape Ø (µm) Major
Elements

Church Metallic

4,0 Smooth Si, Al Spherical (dense) 4,0 Si, Al
14,3 Smooth Si, Al Spherical (dense) 4,3 Ca, Ti
21,9 Smooth Si, Al Spherical (dense) 4,6 Ti
4,3 Rough Ca, Ti Hemispherical (rather dense) 4,6 Ca, Fe

15,2 Smooth Si, Al Spherical (dense) 4,7 Fe
24,2 Smooth C, Si, Al Spherical (dense) 5,0 C, Si
20,8 Smooth Si, Al Spherical (dense) 5,1 Si
5,0 Smooth C, Si Spherical (dense) 5,6 C
7,3 Smooth Si, Al Spherical (dense) 6,0 Si, Al, Fe

13,7 Smooth C, Si, Al Spherical (dense) 6,0 Fe

Main entrance

Metallic

8,0 Smooth Si, Al Spherical (dense) 6,0 Si, Al
7,6 Rough Fe Spherical (dense) 6,4 Si, Al

18,0 Rough Fe, Ca Spherical (dense) 6,9 Si, Ca, Fe
4,6 Rough Ti Hemispherical (rather dense) 7,0 Si, Al
4,6 Rough Ca, Fe Spherical (dense) 7,3 Si, Al

18,0 Smooth Si, Al Spherical (dense) 7,4 Fe
4,7 Smooth Fe Spherical (dense) 7,6 Fe

19,0 Smooth Si, Al Spherical (dense) 7,6 Ca, Si
7,4 Smooth Fe Spherical (dense) 7,9 Fe
6,4 Smooth Si, Al Spherical (dense) 7,9 Fe

Carbonaceous 13,2 Smooth C Hemispherical (rather dense) 8,0 Si, Al

Metallic (A) 7,0 Rather
rough Si, Al Spherical (dense) 8,3 C

Carbonaceous (B) 5,6 Rough C Hemispherical (porous) 8,3 Fe, Si, Mg

Metallic (A) 10,2 Rough Ca, S Spherical (dense) 8,9 Fe

Metallic (B) 7,6 Rather
rough Ca, Si Spherical (dense) 9,2 Ca, Fe, S

Metallic (C) 22,9 Smooth Si, Al Spherical (dense) 10,2 Ca, S

Metallic (D) 9,2 Rather
rough Ca, Fe, S Spherical (dense) 10,4 Fe

Metallic 6,0 Smooth Si, Al, Fe Spherical (dense) 13,2 C

Naves

NW
(N) Metallic

6,0 Rough Fe Spherical (dense) 13,3 Si, Al
10,4 Rough Fe Spherical (dense) 13,7 C, Si, Al
6,9 Rough Si, Ca, Fe Spherical (dense) 14,3 Si, Al

NE
(N)

Carbonaceous
56,3 Rough C Hemispherical (porous) 15,0 C
24,6 Rough C Hemispherical (porous) 15,2 Si, Al

Metallic
15,4 Rough Fe Spherical (dense) 15,4 Fe
6,00 Smooth Si, Al Spherical (dense) 18,0 Fe, Ca

NE
(S) Metallic

8,9 Rough Fe Spherical (dense) 18,0 Si, Al
5,1 Smooth Si Spherical (dense) 19,0 Si, Al
7,9 Rough Fe Spherical (dense) 20,8 Si, Al

SE
(N)

Metallic
7,9 Rough Fe Spherical (dense) 21,9 Si, Al

13,3 Smooth Si, Al Spherical (dense) 22,9 Si, Al

Carbonaceous
8,3 Smooth C Hemispherical (rather dense) 24,2 C, Si, Al

15,0 Smooth C Hemispherical (rather dense) 24,6 C

Metallic 8,3 Rough Fe, Si, Mg Spherical (dense) 56,3 C

Inasmuch as they were deposited essentially in the 20 years lapsing between the two façade
cleaning operations, the spheres identified furnish information on the source of the respective emissions
as well as on the change in the type of fuel used. In the period 1986–2006, domestic heating systems
and vehicles with diesel engines proved to be the main sources of airborne pollutants in the building
environs. The significant presence of aluminum-silicon- and iron-high spheres attested to the gradual
replacement of coal with gas oil in domestic boilers. Since gas oil is also used in diesel engines,
the iron-high spheres identified may have been generated by combustion in these engines as well.
Much the same may be said of the carbonaceous and calcium- and sulfur-rich spheres detected findings
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that are largely consistent with the proliferation of diesel engine vehicles in the city, particularly after
the 1990s.
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3.1.2. Settled Dust

XRD identified gypsum, calcite and silicate minerals as the main phases in the settled dust
(Figure 8). Limestone is a substantial source of calcite, and the sulfation crusts of gypsum [58],
while calcium and sulfur are common constituents of particulate matter [52]. Gypsum may
also be present in atmospheric aerosols [59] and, as noted earlier, in diesel engine exhaust [54].
Aluminosilicates are characteristic of urban environments [60]. In Madrid, in addition to dust from the
Sahara Desert and infrastructures under construction, erosion in the region’s northern Guadarrama
Mountains and southeastern Tertiary continental basin contribute to the aluminum and silicon present
in its aerosols. Besides, some mineralogical phases detected by XRD reveal typical minerals present in
the granite (quartz, microcline, k-feldspar, albite and biotite). Although the representativity of this
stone in façades of the building is scarce, its use in the nearby buildings and pavement of the sampling
area must be taken into account.

The high sulfate and calcium content in settled dust determined by ionic chromatography (Table 3)
was an indication that sulfur primarily adopted the form of calcium sulfates. The considerable amounts
of sulfur supplied by such particulate matter would favor limestone sulfation. The high sulfate
content detected in the settled dust removed from the façade was in all likelihood the result of its
direct exposure to diesel engine exhaust, for the area sampled is located in one of the building’s car
parks (Figure 4). Chloride and nitrate concentrations, which were higher in the dust settled on the
surrounding wall, might have been due to this area’s more direct exposure to bird droppings and
dog and/or human excrements [61–63] but may have also been the result of grounds watering and
fertilizing. The sodium (Na), chlorine (Cl), magnesium (Mg) and potassium (K) detected may have
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formed part of other salts that besides gypsum are likewise present on the stone surfaces sampled,
which are very directly exposed to intense pollution.
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and surrounding wall (PM2), showing the main constituent minerals.

Table 3. Soluble ionic content in the particulate matter.

- Anion (mg/L) Cation (mg/L)

Chlorides Nitrates Sulfates Sodium Magnesium Calcium

PM1 (façade) 20.5 73.7 1152 22.5 - 563
PM2 (wall) 55.9 107.9 940 27.5 11.4 442

3.2. Climate Change in the Environs and Its Effect on Color Patterns

Judging from the rise in SO2 in the city beginning in the 1960s and in particular from the spike in
concentration around the former hospital between 1978 and 1984 (Figure 3), the build-up of sulfation
crusts on the limestone surface between the 1960s and 1980s must have been particularly significant.
Such heavy blackish soiling visible on the façades in the 1970s, considered in conjunction with the
date of the onset of intense environmental pollution from 1960s, suggest that the surfaces must
have darkened over very few years. The color of the soiling was related essentially to the coal used
in domestic heating systems, which emitted thick and very black carbonaceous particles. In fact,
the hospital’s own coal boilers were in operation until 1970.

The mean luminosity (L*) value measured in situ on the main façade of the church limestone in
2006 came to XL* « 56, while in the darkest areas (near the ground, protected from rainfall and close
to vehicle exhaust) values of under 35 were logged. Air quality improved considerably in the 20 years
between the two cleaning operations, largely thanks to the elimination of coal boilers in the 1980s.
Traffic, however, has continued to be very heavy, with high concentrations of finer and lighter-colored
carbonaceous particulates emitted primarily by diesel engines [25]. That would largely explain the
yellowish-brown tones observed on the surface deposits in 2006.
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Largely as a result of global change, the climate in the area surrounding the former hospital is
growing warmer and dryer, with scant and irregular rainfall. Temperatures were observed to rise and
maximum gust speed and relative humidity to decline in the period 1979–2009. Downward relative
humidity will primarily affect pollution deposition mechanisms, with a decline in sulfation intensity on
the limestone surface [64,65], while PM will be carried over shorter distances if wind speed continues
to slump.

4. Conclusions

Domestic heating systems, diesel-fuelled vehicles, sulfation crusts and urban aerosols are the main
sources of sulfur emissions and particulate matter in the immediate vicinity of the former hospital.

The black crusts analyzed were found to display textural and compositional differences; in contact
with the limestone comprises gypsum crystals with a very clearly defined morphology and its surface
is less crystalline, containing primarily aluminum and silicon particles.

Most of the pollution spheres identified fell into one of three categories: compact and smooth with
high silicon and aluminum contents; carbon-rich porous spheres with rough surfaces (also containing
sulfur and calcium in some cases); and another group of smooth and compact spheres with iron (Fe) as
the majority phase.

The color of façade soiling was found to be conditioned mainly by the typology of the particles
deposited on the limestone surface, declining humidity and the passage of time.

The substantial reduction in traffic since the 2005 completion of the underpass on the busiest
street bordering the building will lessen the intensity of the soiling on the façades facing that street in
coming years. Tunnel construction, moreover, must have modified the distribution and deposition of
pollutants on the façades in question, last cleaned in 2006–2008.

The composition of the layers of black decay and the color of façade soiling are markers for trends
in air quality, insofar as these factors are directly associated with the surrounding environment and the
changes taking place in the sources of air pollution.

Along with the gradual improvement in air quality, recent façade cleaning and urban remodeling
in the immediate vicinity, environmental condition monitoring will be essential to conserving the
former hospital.
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