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Abstract: The present work, derived from a full global geodynamic reconstruction model 

over 600 Ma and based on a large database, focuses herein on the interaction between the 

Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for 

a coherent, physically consistent scenario. The evolution of the Australia–Antarctica–West 

Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our 

fit, as defined for the latest Triassic, implies an original scenario for the evolution of the 

region, in particular for the “early” opening history of the Tasman Sea. The interaction with 

the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, 

which are stopped by arc–arc collision, arc–spreading axis collision, or arc–oceanic plateau 

collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are 

much wider than they are on present-day maps, and although they were subducted to a 

large extent, they were able to stop subduction. We also suggest that adduction processes 

(i.e., re-emergence of subducted material) may have played an important role, in particular 

along the plate limit now represented by the Alpine Fault in New Zealand. 

Keywords: Australia; Antarctica; Tasmania; New Zealand; Lord Howe Rise; Tasman Sea; 
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1. Introduction and Method 

Reconstructions for East Gondwana since the latest Triassic (ca. 200 Ma) are usually presented 

without their interaction with the West Pacific (e.g., [1–4] among others). However, questions 

regarding the Gondwana–Pacific margin include: what was the Gondwana fit (i.e., the fit of 

Gondwana’s numerous pieces) at ca. 200 Ma, in particular concerning Tasmania, New Zealand, the 

Challenger and Campbell plateaus, and all “pieces” east of Lord Howe Rise; why and how did the 

Tasman Sea open, and perhaps more interestingly, why did the Tasman Sea stop opening; how does 

the “Australian” tectonic pattern extend into Antarctica? 

In this paper, we develop solutions to these and other questions derived from a full global 

reconstruction model centred in the Australia–Antarctica–West Pacific (AUS–ANT–W.PAC) area, 

reconstructing not only continental zones but also the oceanic realm. These solutions might not be 

unique, but better match the geological data, are physically coherent, and follow strict plate tectonic 

rules at global scale (spherical geometry). The starting reconstruction in the latest Triassic corresponds 

to the geodynamic scenario for the evolution of the Australides (termed after [5]) as proposed for the 

Palaeozoic in a companion paper [6]. The techniques and definitions used to create the model were 

partly presented in [7,8] and [9,10]. However, key criteria are summarised in the companion paper [6]. 

The notion of a GeoDynamic Unit (GDU), in particular, defines any area with its present-day geometry 

that underwent the same geodynamic history since 600 Ma. GDUs are shown as non-deformable 

elements in order to enable geological information to be transferred back in the past, but tight (untight) 

fits are used not to underestimate crustal extension (shortening). All geodynamic information compiled 

in the PaleoDyn Database [9] is attached to every GDU. The term “terrane” is given to one or a series 

of GDUs having a common history for a certain period of time. The model comprises 48 reconstructions 

over 600 Ma every 5 to 20 Ma, made on the sphere in Europe fixed reference frame, and the  

“pseudo-absolute” position (“pseudo-” because not constrained by palaeo-longitude) is shown with a 

palaeomagnetic grid using the apparent polar wander path (APWP) modified after [11]. 

2. Gondwana Fit 

A “good” fit for Gondwana in the latest Triassic is a key feature for understanding both the Palaeozoic 

and Mesozoic-Cainozoic evolution of the AUS–ANT–W.PAC realm. The retained solutions are presented 

in Figure 1b (which link the two companion papers), and are based on the following justifications: 

(1) Present-day continent-ocean boundaries (COB; Figure 1a) are defined on the combined analysis 

of gravity (GRACE; [12]), magnetic (EMAG2; [13]), and topographic/bathymetric (ETOPO1; [14]) data. 

The COB is drawn at the base of the continental slopes (maximum concave curvatures, id est maximum 

second derivative), where the gravity gradient is maximum (maximum first derivative) and the magnetic 

pattern of ocean crust are not yet present. Such a definition corresponds well, at the scale of our 

reconstruction, with the COB as defined by existing seismic transects (e.g., [15–19]) and can be applied 

continuously all along the COB. Note, however, that our COB definition corresponds to the boundary of 

the “main” continental crust, and that potential denuded mantle is included in the oceanic part. Potential 

left-over continental slices abandoned on denuded mantle, therefore, cannot be taken into account at the 

scale of the reconstructions (see [20] and subsequent discussion in [21] and references therein; [22]). 



Geosciences 2013, 3 333 
 

 

(2) Australia and Antarctica are fitted geometrically, being careful to fit in particular the Naturaliste 

Plateau (AUS) and Bruce Spur (or Bruce Rise; ANT). Consequently, the space left between Victoria 

(AUS) and Northern Victoria Land (ANT) can be well fitted by Tasmania, if the Bass Strait is assumed 

to be a rift that underwent a strike-slip displacement. Although the strike-slip movement of Tasmania 

has been questioned (e.g., [23] and see debate in [24–26]), it has previously been put forward by many 

authors, because it allows for the fitting of Palaeozoic geological features of AUS and ANT (see in 

particular, [27–30]). 

(3) Contrary to the model proposed by [1], we do not break the Lord Howe Rise in two, but in three, 

(Figure 1b) in order to avoid gaps generated during the closure of the Tasman Sea. The two fractures 

chosen within the Lord Howe Rise follow lineaments observed on the bathymetric, gravimetric and 

magnetic maps (the position of the northern fault corresponds to the fault suggested by [1]). The fit 

also tracks back the flow lines defined by magnetic anomalies [1,31–34] and is guided by imprints of 

transform faults. 

Figure 1. (a) Present-day configuration (000 Ma) showing GDUs with ETOPO1 as 

background (topography/bathymetry of the bedrock (ice removed); [14]). Abbreviations 

are as in (b), except for: AS, Auckland Spur; Fio. and Rise, Campbell Fiordland and 

Campbell Rise; N, Norfolk Ridge; N.-Z., New Zealand; NC, New Caledonia Ridge; NEO, 

New England Orogen; NVL, Northern Victoria Land. In Green are names of Australian 

cratons, with Yilgarn, Pilbara, Grawler, Curnamona-Broken Hill [C.-BH] and the North 

Australian [N.Aus] cratons (comprising Kimberley, Tanami, Mount Isa, Tennant Creek 

[TC], and Pine Creek cratons). (b) Reconstruction in the latest Triassic (ca. 200 Ma; 

“Gondwana Fit”). In grey are names of GDUs not directly intervening in the present paper, 

and in black, more directly intervening GDUs. Abbreviations are provided in the figure 

note. Orthographic projections; this figure is in part derivative from the Neftex 

Geodynamic Earth Model, © Neftex Petroleum Consultants Ltd. 2011. 
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Figure 1. Cont. 

 
Notes: Ant-Pen, Antarctic Peninsula; Auck.Sp, Auckland Spur; BB, Bendigo-Ballarat; BC, Bass Canyon; 

Bel, Bellona Plateau; Blg, Belgrano; Berk, Berkner Island; BHd, Bird’s Head; BM, Barnard Metamorphics; 

BW, Bencannia-Wertago; Bw, Bowers; Byg, Bygrave; C.Aus, Central Australia; C.LHR, Central Lord Howe 

Rise; CamFio, Campbell Fiordland; CamR, Campbell Rise; CH, Coffs-Harbour; Chal, Challenger Plateau; 

Ches, Chesterfield Plateau; Cun, Cunnamulla; Dol, Dolleman; DS, Dolphin Spur; Ell, Ellsworth Mountains; 

ETR, East Tasman Rise; Fio.-NZ, Fiordland province of New Zealand, comprising South Buller terrane, 

South Takaka terrane, and the future South Median Tectonic Zone (MTZ); GgL, Garnpung Lake; Gi, Gilbert 

Seamount Complex; GRC, Glenelg River Complex; H, Howqua; HB, Hogdkinson-Broken Ridge;  

HE, Hill-End; Is, Iselin Bank; J, Mount Jack; K, Kayrunnera; Kan, Kanmantoo; Kg, King Island; LW, Lake 

Wintlow; M, Melbourne; Md, Menindee; Mel, Mellish Rise; Mo, Molong; MtE, Mount Erebus; Na, 

Narooma; N.Aus, Northern Australia; N.LHR, North Lord Howe Rise; Nb, Nambucca; Ne.-NZ, Nelson 

province of New Zealand, comprising North Buller terrane, and North Takaka terrane; Pat, Patuxent; PTk, 

Paka Tank; PTu, Parkes-Tumut; RB, Robertson Bay; RG, Rockeley-Gulgong; S.Aus, Southern Australia; 

S.LHR, South Lord Howe Rise; Sand, Sandy Island; SBG, Sydney-Bowen-Gunnedah Basin System; SBo, 

South Bounty Plateau; SBS, South Bollons Seamount; SC, Schlossbach Cape; Sim, Simpson; STR, South 

Tasman Rise; Stv, Stavely; Stw, Stawell; SW, Shoal Water; Tab, Tabberbbera; Tas., Tasmania, comprising 

NW-, north-western Tasmania, SW-, south-western Tasmania, C-, central Tasmania, E-, eastern Tasmania; 

Tex, Texas; Thu, Thurston Island; Trans.Mtns, Transantarctic Mountains; W.Aus, Western Australia;  

W.NC, Western New-Caledonia Ridge; Wen, Wentworth; WO, Wagga-Omeo; WT, Wandilla-Tablelands; 

YT, Yarrol-Tamworth. 

(4) Following [1] (and references therein), we assume that the East Tasman Rise, part of the South 

Tasman Rise and Gilbert Seamount Complex mask continental basements. However, bathymetric data 

indicates a north-south transform fault west of the East Tasman Rise, indicating southward 

displacement of the latter. Similarly, we regard Bellona Valley (between Dolphin Spur and Challenger 

Plateau) as a rift resulting from a north-south extension, prior to the Tasman Sea opening (see below). 

Such north-south movement was possible if a transform fault separated the Dolphin Spur and 
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Challenger Plateau from the South Lord Howe Rise. Gravimetric, magnetic and bathymetric 

lineaments were used to draw the GDU limits. Doing so, and contrary to previous interpretations  

(e.g., [1,35] among others), the Dolphin Spur and Challenger Plateau GDUs can fit against the Bass 

Canyon between Tasmania and Lord Howe Rise. 

(5) With the latter fit, there is enough space to place New Zealand and Campbell Plateau in the Ross 

Sea embayment. In terms of geometry, there is no reason to disconnect the Challenger Plateau from the 

Nelson province (i.e., south-west) of New Zealand. Moreover, we consider it reasonable to align the 

Anatoki Fault (Nelson province of New Zealand) with the boundary between the Buller and Takaka 

Terranes in Fiordland province (south New Zealand) prior to the Alpine Fault strike-slip movement 

(e.g., [27–29,36–38] among others). However, in such configuration, the Campbell Plateau overlies to 

a large extent (ca. 550 km) not only the Ross Sea but also the Transantarctic Mountains of Antarctica. 

Again, the bathymetric, gravimetric and in particular the magnetic maps show a lineament, which runs 

through the Campbell Plateau. Hence, we split this area in two, and the southern part (namely the 

South Campbell plateau, South Bounty plateaus and the South Bollons seamount) are placed against 

the Amundsen and Marie Byrd GDUs, following the Southern Ocean flow lines deduced from magnetic 

anomalies [34]. Splitting the Campbell Plateau in two is not a new hypothesis; [39] reached the same 

conclusion. Note, however, that large intra-continental extension (i.e., non-rigid deformation >250 km) 

as proposed, for instance by [40,41], is still necessary to account for the current geometry between the 

Ross Sea and Campbell Plateau. 

(6) The Wanganella-Reinga, Norfolk and West New Caledonia GDUs are placed against the Lord 

Howe Rise in order to close the New Caledonia Basin. Seismic profiles ([19,33]; augmented by 

Stampfli, unpublished data from SHELL) suggest the New Caledonia Basin is an abandoned rift (i.e., 

no oceanic crust, but see [42] for different interpretations), with Cretaceous sediment infill. 

(7) The position of the Sepik and Java GDUs, together with the reconstruction of the northern 

Australia and Indonesia realm, will be discussed elsewhere. However, the main observations in support 

of placing the Sepik and Java GDUs against the eastern margin of Australia are: the GDUs have Australian 

affinities; the central ophiolites in the Sepik GDU suggest the presence of a subduction zone in the 

Jurassic and obduction in the Cretaceous (see [43–46]); and the Java GDU comprises also high-pressure 

rocks with K-Ar ages of 124–119 Ma [47]. Therefore both GDUs display subduction related sequences 

that are present on the eastern margin, but not in the northern margin of Australia, where these GDUs 

are currently located. Subsidence curves, in particular, attest to the existence of a passive margin on the 

northern margin of Australia where the aforementioned rocks cannot have formed. 

(8) All GDUs of New Zealand north and west of the Median Tectonic Zone (MTZ; or “Median 

Batholith” after [48]) are considered allochthonous (namely Brook-Murihiku, Maitai-Dun Mountain, 

Caples-Haast-Torlesse, Esk Head-Pahau GDUs, and Northland Ophiolite, Waipapa, Rakaia, and 

Whakatane-Pahau-Waioeka GDUs; see [38] for a recent synthesis). The former plate boundary 

represented by the MTZ must continue off shore to the east of South New Zealand. The magnetic map 

indicates two domains separated by a lineament that runs in the Campbell Plateau, and then along the 

Bounty Plateau and the Bollons seamount. We regard, therefore, the North Bounty Plateau, North 

Bollons seamount as well as the Chatham Rise as equally allochthonous. Finally, although geological 

data are lacking (except for New-Caledonia; see below), we place also East New-Caledonia, Loyalty 
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Ridge, Three Kings, among the allochthonous GDUs as shown below (Lau Ridge, and Tonga-Kermadec 

Ridge being recently formed as intra-oceanic arc and remnant arc). 

3. Geodynamic Reconstructions 

3.1. Jurassic Evolution—Passive Margin Setting 

The eastern coast of Gondwana is an active margin in the latest Triassic (Figure 1; see our model 

for the Palaeozoic, [6]). The magmatic arc runs from South America along the Antarctic-Peninsula 

[Ant-Pen], Maher, Amundsen, along the South Bollons Seamount [SBS], South Bounty Plateau [SBo] 

and Campbell Rise [Camp], which correspond to the continuation of the future MTZ in New Zealand, 

and along the Wanganella-Reinga [WR], Norfolk [N], Sepik and Java GDUs. 

North of Australia (along the Moresby and North Australia GDUs), seismic data and subsidence 

curves indicate the existence of a passive margin. It is beyond the scope of the present paper to detail 

the geodynamic evolution of North Australia and South-East Asia (for that region, see [49,50]). 

The Karoo Trapps erupt in South Africa (~183 Ma; e.g., [51–56]) together with the Ferrar 

Volcanics in Antarctica. The latter were presumably emplaced in a rift setting along the Transantarctic 

Mountains ([50,57,58] and references therein). 

In our model, the Sepik and Java GDUs rift off in the Toarcian (Figure 2a) based on seismic and 

stratigraphic data from the Lord Howe Trough [LHT] (Stampfli, unpublished data from SHELL), which 

suggest that a passive margin developed in the middle Jurassic. Accordingly, the model shows an 

oceanic crust in the Elise Sea, and the Sepik–Java as well as the Norfolk [N], West New-Caledonia 

[WNC], Sandy Island [Sand], Mellish Rise [Mel] GDU margins are passive in the Callovian (Figure 2b). 

Meanwhile, continental break-up initiates in the present-day Ross Sea, while Gondwana starts 

splitting in two. Although not constrained for that age, hot spot activity is tentatively represented in the 

area covered by the South Tasman Rise [STR], Iselin Bank [Is], and the edge of the Auckland Spur 

[Auck.Sp] (close to the present-day Mount Erebus area). Such activity might have played a role in the 

extensive rifting processes. Subduction propagates north of Bird’s Head [BHd] and Sula, which begin 

to rift off. 

In the Kimmeridgian (Figure 2c), rifting creates the Victoria Land Basin, Central and Eastern Basin 

of the Ross Sea [59–62], bounded by what we name the Ellsworth Fault on one side, and the David 

Glacier Fault and Alpine Fault on the other side. Bird’s Head and Sula slide along the northern margin 

of Australia, driven by slab roll-back processes. 
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Figure 2. Geodynamic reconstructions from (a)–(d) Lower Jurassic to Lower Cretaceous; (e)–(h) Lower Cretaceous to mid Cretaceous;  

(i)–(l) Upper Cretaceous to latest Palaeocene; (m)–(p) Early Eocene to Early Miocene; (q) and (r) mid Miocene to Present-day. Same legend 

as per Figure 1. Views, centred on the Tasman region, with palaeomagnetic grid (grey dashed line, 10° spacing, after [11] Orthographic 

projections; this figure is in part derivative from the Neftex Geodynamic Earth Model, © Neftex Petroleum Consultants Ltd. 2011. 
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3.2. Early Cretaceous Evolution—Passive Margin Inversion 

The East ANT GDUs (namely the Antarctic-Peninsula [Ant-Pen], Thurston Island [Thu], Amundsen, 

South Bollons Seamount [SBS], and South Bounty [SBo] GDUs) are detached (Figure 2d), while 

abandonment of the other rifts explains the Ross Sea sedimentary basins. The Antarctic branch of the 

Rocas Verdes Ocean is created [63–67]. Subduction roll-back, potentially assisted by hot-spot 

volcanism in the South Tasman Rise area, favoured rifting around the Campbell Plateau (now 

comprising the Campbell Rise and Auckland Spur GDUs) and Fiordland province of New Zealand 

[Fio.-NZ]. The latter, bounded by the Alpine and Campbell Faults, migrates faster to the “south” than 

the Campbell Plateau, which rotates about a pole of rotation located on the plateau. 

Meanwhile, an intra-oceanic island arc originating from the Triangular Zone of the Pacific (i.e., the 

magnetic anomalies forming a triangle east of the Mariana Islands and north of Micronesia; see [34]) 

migrates towards the south (see also [66]). The island arc (thus, considered as having no continental 

basement) consists of the “North-East New Zealand GDUs” (Figure 2e); namely the West New-Caledonia 

[WNC], Loyalty, Three Kings [3K], North New Zealand [N.NZ] (comprising the Northern Ophiolite, 

Rakaia, North Maitai-Dun Mountain, Waipapa, and Pahau terranes), South New Zealand [S.NZ] 

(comprising Brook-Murihiku, South Maitai-Dun Mountain, Caples-Haast-Torlesse, and Esk Head-Pahau 
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terranes), North Bounty [NBo], North Bollons Seamount [NBS], Chatham Rise, Maher, Bellinghausen, 

Alexander Island, and Smith Elephant GDUs. A transpressive arc-arc collision occurs in our Hauterivian 

reconstruction (Figure 2e) in the Pacific between the tails of the “North-East New Zealand” island arc 

which moves south and the Sepik arc which moves north. 

Soon after collision, large intra-Pacific plume heads reach the surface close or directly on the  

mid-Pacific oceanic spreading ridge (e.g., 119–125 Ma after [68]; see also [69]; 120–115 Ma after [70]; 

ca. 120 Ma after [71]; 119–126 after [72] and references therein; 124.6 ± 1.6 Ma after [73]). The 

resulting plateaus subsequently become of great importance in preventing arc migration (see below). 

Magnetic anomalies in the Indian Ocean (modified relative to [34]) require transtensive movement 

between ANT and AUS on the Aptian reconstruction (Figure 2f). The Bass Fault creates and decouples 

Tasmania from main land Australia, and South Lord Howe Rise [S.LHR] from Central and North Lord 

Howe Rise [C. & N.LHR]. This continental break-up might have been facilitated by the formation of 

the Naturaliste Plateau (AUS) and Bruce Spur (ANT), during or after the break-off of India from 

Antarctica (Figure 2g, left). 

A fault, that we name the Visscher Fault (Figure 2f–h), is also inferred to form between S.LHR and 

the Challenger Plateau [Chal], and is parallel to the Campbell Fault. Such configuration allows not 

only Fio.-NZ to keep on moving southwards, but also the north-south extension creating the Bellona 

Valley between Dolphin Spur [DS] and S.LHR together with the transfer of the East Tasman Rise 

[ETR] along Tasmania [Tas.]. 

Arc–arc collision, diachronous from “north” to “south”, occurs between the “North-East New Zealand” 

GDUs and the East ANT GDUs (explaining the high pressure rocks on Smith Island and Elephant 

Island; [74,75]). Contrary to other models (e.g., [35,76] among others), we only permit a passive 

margin to turn into an active margin when there is a “good reason”, the collision of an arc being in 

general the most reliable associated event (see, for instance, numerical modelling on passive margin 

inversion by [77]). 

The arc–arc collision is complete on the Albian reconstruction (Figure 2g) from the Antarctic 

Peninsula to the North Lord Howe Rise area. Subduction has inverted along the East ANT GDUs, 

closing the Rocas Verdes Ocean. Subduction reversal also explains why the Jurassic magmatic arc lies 

predominantly to the west of the Cretaceous arc in the Antarctic Peninsula [78]. Since the ocean is not 

closed in front of the Fio.-NZ GDU, the north-south extension south-east of Tasmania continues, 

concurrently with the ongoing rifting between ANT and AUS, the setting-up of Naturaliste Plateau and 

Bruce Spur, and the first effusion bringing about the Kerguelen Plateau (e.g., ~110 Ma after [79];  

118–119 Ma in the Southern Kerguelen after [80]; see also [81,82]). 

Seismic profiles in the New Caledonia basin indicate basin infill of probable mid-Cretaceous age 

(e.g., [19,42]). Those data are interpreted as recording rifting away of the GDUs lying east of Lord 

Howe Rise. Rifting, however, stopped and the basin was moderately inverted, an event we relate to the 

arc–continent collision. Furthermore, the driving forces are considered large enough for the subduction 

to invert immediately after collision, and the passive margin of North New Zealand [N.NZ], Three 

Kings [3K], East NewCaledonia [ENC] and Loyalty ridges to turn into an active margin (therefore 

now regarded as a continental crust). 

In the Pacific, the main part of the Hikurangi and Bayonnaise (also named North Melanesian or 

Melanesian Border) plateaus form in turn on the spreading ridge (e.g., 118–96 Ma after [71]). As 
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partly proposed by [68], these locations and correlation are required for the plateaus to end up in their 

present-day position. 

3.3. Late Cretaceous Evolution—Re-Opening 

All GDUs on the east side of Antarctica collide (Figure 2h), and subduction inversion occurs 

equally along the South New Zealand [S.NZ], Chatham Rise, Maher, Bellinghausen, and Alexander 

island GDUs. Associated fault reactivation is tentatively proposed to justify, in part, the high altitude 

of the Vinson Massif (~5 km) in the Ellsworth mountain ranges (although differential erosion due to 

glaciation may play an important role; see also interpretations and discussion in [83]). 

The N.NZ–Loyalty arc detaches and move “eastwards” creating the New Caledonia Ocean, while 

the Pacific LIPs migrate “westwards”. The creation of an ocean is required since seismic profiles and 

subsidence curves indicate the existence of a passive margin with no evidence of magmatic arc 

remnants prior to the Oligocene [19,84]. The arc, off N.NZ, is shifted from the 3K–Loyalty arc by a 

transform fault (corresponding to the current Vening-Meinesz Fracture Zone). 

Stretching between Dolphin Spur and Tasmania-Bass Canyon is large enough (about 300 km) for 

oceanic lithosphere creation to occur. Unlike [1] for instance, the model suggests, that oceanic crust 

generation is much older in the area (Albian–Cenomanian herein instead of Santonian for [1]). 

The Naturaliste Plateau and Bruce Spur separate on the Cenomanian reconstruction due to 

diachronous (i.e., “west” to “east”) oceanic accretion between AUS and ANT (Figure 2i). Very slow 

spreading is implied and may have led to mantle denudation, with crustal production—and magnetic 

anomalies—occurring later on; this potentially reconciles the different points of view concerning the 

debate on the exact timing of rift to drift transition (see [21] and numerous references therein). The 

hot-spot magmatic activity now focuses on the present-day middle Kerguelen Plateau and Broken Ridge. 

Transtensive movement between Tas. and ANT, and Tas. and AUS triggers rotation of the King Island 

[Kg] GDUs and rifting in the Bass Strait. The implied extension rate and the present-day magnetic 

pattern (EMAG2; [13]) suggests that oceanic crust in the Tasman Sea propagates east of the Gilbert 

Seamount Complex [Gi]. Extension also creates a rift zone northwards, east of the Dampier Ridge. 

Northern and southern parts of the Campbell Plateau, Bounty Plateau and Bollons Seamount are in 

place (marked by a suture zone in Figure 2i) together with Fio.-NZ and South New Zealand. The 

Chatham Rise, however, detaches again, with nascent sea-floor spreading [85]. Although not 

constrained by data, oceanic accretion is represented along the future Alpine Fault, between Ne.-NZ 

and Fio.-NZ, because of the requirement of over 250 km of extension. 

In the Pacific, the Hikurangi Plateau is still considered to be active and much wider than visible on 

present-day map (see below). The southern part of the Hikurangi Plateau collides with the arc detached 

from N.NZ. Meanwhile, the Loyalty arc also “collides with” the Pacific oceanic spreading axis. 

As a consequence of the collision with the spreading axis and the Hikurangi Plateau, subduction 

inverts (Figure 2j), and the back-arc basin (i.e., the New Caledonia Ocean) starts to close in the 

Santonian. The former accretionary ridge ceases, and the ridge jumps south of the Chatham Rise, as 

shown by magnetic anomalies [34]. Subsequently, the oceanic accretionary system ceases between the 

Chatham Rise and the “Campbell–South New Zealand (Cam-S.NZ) block”, as the Hikurangi Plateau 

equally collides with the Chatham Rise. The latter two GDUs (namely Hikurangi and Chatham), as 
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well as all previously mentioned LIPs now reside on the Pacific plate. Note that the ridge jump, south 

of the Chatham Rise, might have been favoured by hot-spot magmatism in the Bollons Seamount [86]. 

The “Cam-S.NZ block” breaks off and drifts away from Antarctica. The spreading axis, south of the 

Chatham Rise, connects the Tasman sea, where a ridge jumps also occurs. The oceanic spreading axis 

now lies between the Gilbert Seamount Complex [Gi] and the Eastern and Southern Tasman rises 

[ETR & STR], as shown by magnetic anomalies [1,31–34,87]. 

Magmatic activity (LIPs) near the Hikurangi Plateau stops and hot-spot magmatism initiates the 

Louisville Seamount Chain (Figure 2k). Subduction propagation north of the Mellish Rise [Mel], Coral 

Sea, and Moresby area, initiated on the Santonian reconstruction, creates rifting west of the Dampier 

Ridge, along the Bellona [Bel] and Chesterfield [Ches] plateaus, and forms the Queensland Trough, 

south of the Coral Sea GDUs (comprising the Queensland Plateau and Marion Plateau GDUs). 

Present-day magnetic anomalies in the Tasman Sea, South-East Indian Ocean and Pacific Ocean [34] 

imply that the “Cam-S.NZ block” undergoes compression in the Maastrichtian. Accordingly, subduction 

initiates on both the eastern and western sides of the latter block. 

3.4. Tasman Sea Main Opening Phase 

With shortening (Figure 2l), the “Campbell–South New Zealand block” collides with Chatham Rise 

on the western side and Ne.-NZ on the eastern side. The Tasman Sea opens further north between AUS 

and Dampier Ridge, but there is still no connection with the South-East Indian Ocean to the south. 

Magmatism, corresponding nowadays to the Umitaka Bank [U] and Scott Island Bank, is presumably 

active in the transtensive rift limiting the STR from ANT. 

Magnetic anomalies (e.g., [88,89]) suggest that the Papua and Moresby GDUs break off to open the 

Papua Basin, but collide with a series of GDUs that now form the Woodlark area, and the Papua 

(Milne) Ophiolites are obducted (e.g., [90]). Only the Torres GDU can migrate further south, whereas 

the Louisiade Plateau is set up. The extension that led to the opening of the Papua Basin, also 

displaced the Mellish Rise GDU [Mel], creating the Marosszeky Gap, a rift basin between Mel and 

Ches, and the Cato Trough between Mel and the Coral Sea and Gympie GDUs. As in [36] for instance, 

the Cato Trough is shown with sea-floor spreading because of the extension rate and patterns of the 

bathymetric/gravimetric/magnetic maps (cf. COB definition, above), although no direct evidence has 

been found for it. 

Torres and Sandy Island [Sand] GDUs collide on the reconstruction at the turn of Ypresian–Lutetian 

(Figure 2m). The Tasman Sea spreading axis stops, and the accretionary ridge, south of the Campbell 

Plateau, connects the accretionary system of the South-East Indian Ocean (between AUS and ANT) 

through the transtensive rift between STR and ANT. The connection is indicated by magnetic 

anomalies, south of the STR (e.g., [31]), and probably fostered by hot-spot magmatism of the Umitaka [U] 

and Scott Island Banks. 
The boundary between Ne.-NZ and the “Cam-S.NZ block” turns to be transtensive, and is 

represented by an inversion zone in Figure 2m. The material subducted during the transpressional 
phase might then re-emerge. Such phenomenon is termed “adduction”, and has already been 
theoretically explored using analogue modelling [91]. 

Magnetic anomalies (as provided by [34]) overlap continental area and are non-symmetric, although 
the Hellinger’s code [92] used to define them should create symmetrical features. Using modified 
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magnetic anomalies, however, we follow [34] in connecting the South-East Indian with the Antarctic 
oceanic spreading ridges on our Bartonian reconstruction (Figure 2n), yielding passive margins along 
AUS and ANT. 

Meanwhile, the N.NZ–Loyalty magmatic arc collides with N.NZ (Pahau GDU) to the south, and 

Torres and WNC to the north. The area in between is not yet closed. 

3.5. New-Caledonia Obduction and Final Evolution 

The back-arc closure eventually leads to the New-Caledonia obduction (e.g., [93,94]; and [76,95]) 

on our reconstruction of the Early Rupelian (Figure 2o). The event gives a solution to trigger 

subduction inversion (usually not mentioned in other studies), generating an active margin along North 

New Zealand [N.NZ], Three Kings [3K], Fiji, North and South New-Hebrides [N.NH & S.NH], and 

Torres. The latter moves around the New Caledonia and Loyalty Ridges, as implied by magnetic 

anomalies and transform fault imprints, while 3K, Fiji, N.NH and S.NH rift off. 

The “Cam-S.NZ block”, belonging to the Pacific plate, rotates counter-clockwise relative to the 

Australian plate to which belongs Ne.-NZ. Note that the plate limit in this area is the future Alpine 

Fault. The northern part of the plate limit is, therefore, a transpressive collision, whereas the southern 

part is a transtensive plate limit, represented by an oceanic spreading axis in Figure 2o, although 

adduction processes may still occur. 

The movement, described for the Early Rupelian along the future Alpine Fault, develops further on 

the reconstruction in the Early Burdigalian (Figure 2p), so that the transpressive collision in the northern 

area is longer, and the spreading axis in the southern area propagates to the north. The area in between, 

along the Campbell Plateau (Auck.Sp and CamFio GDUs), should undergo adduction processes. 

The Torres GDU has stopped moving eastwards, when the oceanic ridge jumped in the magmatic 

arc (according to magnetic anomalies; [96]). The arc collapses and splits, creating the South Fiji Basin 

and the Lau–Tonga–Kermadec magmatic arc. The latter is represented as an oceanic arc, although it 

would not be surprising, according to the present model, to find remnants of Torres, Loyalty,  

New Caledonia and Three Kings in the basement of the arc (i.e., fragments with basement of 

continental nature). We regard the Gazelle Basin (or Norfolk Basin, between 3K and N) as being 

formed of oceanic crust, although we have no constraint except our COB definition (see above). Given 

this uncertainty, it cannot be decided whether the southern South Fiji Basin spreading axis acted after, 

or simultaneously, with the Gazelle Basin spreading axis. However, magnetic anomalies in the north of 

the South Fiji Basin indicate that the spreading axis ceased after anomaly C7 (~24 Ma; [97–99]), and 

jumped again in the Lau–Tonga–Kermadec magmatic arc. 

On the Tortonian reconstruction (Figure 2q), the Alpine fault has become a clear transpressive plate 

boundary. The southward movement of the Pacific plate relative to the Australian plate triggers the 

resumption of a subduction zone: the Macquarie Ridge. The New-Hebrides GDUs [N.NH & S.NH] 

collide with the Ontong-Java and Bayonnaise Plateaus, inducing again subduction reversal. The 

Tonga–Kermadec arc, on the contrary, is relatively free to migrate eastwards, and the Lau Ridge is 

abandoned as the arc collapses and splits. 

The Lau Ridge is an abandoned arc (Figure 2r), separated from the Kermadec magmatic arc by the 

Havre Trough and from the Tonga magmatic arc by the Lau back-arc basin (e.g., [100]). We speculate 
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that the Louisville Seamount chain somewhat hampers the migration of the Kermadec arc (southern 

part), whereas the Tonga arc (northern part) opens at fast rate; the discrepancy is observable in  

present-day GPS measurements (e.g., [101]). The New-Hebrides–Fiji magmatic arc migrates  

south-westwards, opening the North Fiji Basin ([102]; see details of the North Fiji Basin opening in [103]). 

However, the Pacific plate keeps on moving southwards relative to the Australian plate, subducting 

most of the Bayonnaise and Hikurangi Plateaus. 

4. Conclusions 

The present work re-appraises the Mesozoic-Cainozoic evolution of the Australia–Antarctica–West 

Pacific system. The model shows a series of tectonics events that can be related to geodynamic causes, 

such as, for example, inversion of subduction due to arc–continent collision or magmatic arc–oceanic 

spreading ridge collision. Such relationships are usually lacking in other studies. The model is coherent 

with all data compiled in the PaleoDyn global database [9], and proposes an integrated scenario for the 

evolution of the Antarctic–Australian system, coupled with the West Pacific system. 

According to the model, the “North-East New Zealand GDUs” are exotic and stop, by collision, the 

movement of the “East ANT GDUs” and the development of the New-Caledonia Rift Basin. Subduction 

reverses, and slab-roll back opens the New Caledonia Ocean since the mid-Cretaceous. Meanwhile, the 

Tasman Sea starts its sea-floor spreading consecutive to a North–South movement, which is not 

mentioned in other studies (e.g., [1,36]). The New Caledonia Ocean opens, but stops because of the  

arc–plateau and arc–spreading axis collisions, which inverse again the sense of subduction. The 

Tasman Sea spreading axis ceases, because of the following coeval events: the formation of the Papua 

(Milne) Ophiolites and Torres collision to the north, the closure of the New-Caledonia with collision 

along N.NZ to the east, and the spreading ridge connection of the South-Pacific Ocean with the  

South-East Indian Ocean through a transform fault along STR to the south. 

We note that oceanic plateaus created in the model are much wider than what can be seen on 

present-day topographic maps. It implies plateaus can be subducted to large extent, although they also 

lead to arc–plateau collision and subduction reversal. We also believe that adduction processes should 

be considered in geodynamic or tectonic models, since they could play an important role, in particular 

where tectonic plates undergo large strike-slip movements. 

Moreover, the model has implications on oceanic palaeo-current circulation and palaeo-climatic 

reconstructions, and suggests that the opening of the “Tasman Gateway” is not really effective prior to 

the Rupelian, which is consistent with other works (e.g., [104] among others). 

However, we stress that a model is a model, and a number of choices were made with few data. We 

hope, therefore, future field works will soon challenge our model. In particular, it would be 

fundamental to prove the existence of the Campbell Fault, to date the different hot-spot volcanisms 

mentioned above and to check their relationship with rifting processes, to precisely locate COBs and 

date sea-floor formation, and to supplement the magnetic anomaly database in many basins of this 

fascinating and challenging region. 
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