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Abstract: Technological advancements have made rock engineering more data-driven, leading to
increased use of machine learning (ML). While the use of ML in rock engineering has the potential to
transform the industry, several methodological issues should first be addressed: (i) rock engineer-
ing’s use of biased (poor quality) data, resulting in biased ML models and (ii) limited rock mass
classification and characterization data. If these issues are not addressed, rock engineering risks
using unreliable ML models that can have potential real-life adverse impacts. This paper aims to
provide an overview of these methodological issues and demonstrate their impact on the reliability
of ML models using surrogate models. To take full advantage of the benefits of ML, rock engineers
should make sure that their ML models are reliable by ensuring that there are sufficient unbiased
data to develop reliable ML models. In the context of this paper, the term sufficient retains a relative
meaning since the amount of data that is sufficient to develop reliable a ML models depends on the
problem under consideration and the application of the ML model (e.g., pre-feasibility, feasibility,
design stage).

Keywords: rock engineering; machine learning; rock mass characterization; rock mass classification

1. Introduction

Machine learning (ML) has become unavoidable in rock engineering, with academics
and industry professionals increasingly incorporating ML into their projects. As with
any new tool, its increasing popularity has increased ML methodological issues, such
as failing to split the data into a train and test split, using subjective data, and working
with extremely limited datasets. A summary of recent ML applications to rock mass
characterization and classification data, including concerns with their methodology, is
provided in Appendix A and demonstrates the need for a critical discussion on the topic of
ML in rock engineering. While other industries have similar problems, they are working
towards bringing awareness and finding solutions. Rock engineering, on the other hand,
continues to overlook these problems, which has the potential to result in unreliable ML
models. In this context, reliable is defined as providing consistently good quality results;
therefore, a reliable ML model is an ML model that provides consistently good quality
results. A reliable ML model requires high quality (unbiased) data to develop a model that
offers accurate predictions, as compared to the “ground truth” or targets, and a sufficient
quantity of this high-quality data in order to provide consistent results as measured by
an appropriate performance metric [1]. To date, there has been limited discussion on the
impacts of poor quality, biased data in insufficient quantities for the development of ML
models in rock engineering. The resulting unexplainable or even poor model performances
have the potential to hinder the adoption of ML in rock engineering. This paper aims to
provide an overview of these methodological issues and, using synthetic data and surrogate
modeling, demonstrate their impact on the reliability of ML models. The code and data
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used in this paper can be found at the following link: https://github.com/beverlyyang/
geosciences-machine-learning-in-engineering-geology.

Key Definitions

Before proceeding with the discussion, terminology used in ML and statistics is clari-
fied, as common usage in rock engineering sometimes deviates from the precise definitions:

• Imbalanced data: the distribution of classes or bins is not equal [2]. Note that if a
continuous variable is binned, the resulting distribution can be imbalanced, although
the severity of the imbalance would depend on the bin width chosen.

• Skewed data or distribution: a distribution of data points in a dataset that is not
symmetric around the dataset’s mean [3].

• Outliers: broadly defined as data points that differ significantly from other observa-
tions (e.g., data points found in the tail of a distribution). However, there is no set
mathematical or statistical definition of what constitutes an outlier [4].

• Training and test data: as part of the machine learning workflow, the dataset is split
into its training and test data (referred to as the train/test split in this paper). The
ML model is first trained on the training data, then the trained model is evaluated on
the test data to better understand how well the model will perform on data it has not
seen before. The dataset is often randomly shuffled before its train/test split to ensure
that the training and test data have the same distribution. The train/test split serves
to evaluate the ability of a machine learning model to perform effectively on new
and unseen data. Additionally, this practice helps us to identify and reduce the risk
of overfitting, a scenario in which a model excels in accurately predicting outcomes
based on the training data but struggles to generalize its predictions to new instances
(see below).

• Validation data: the training dataset is split into training and validation data. The
model is trained on the training data and then refined or tuned on the validation data
before being evaluated on the test data. Including a validation dataset provides a more
robust method of evaluating the model performance. When working with smaller
datasets, a single train/validation split may misrepresent the test data, so it is often
recommended that cross-validation be performed. In cross-validation, the training
set is divided into k number of folds (five and ten folds are commonly used) and
each fold takes a turn at being the validation set. A validation score is determined
for each fold, and the scores for all folds are then averaged to determine an average
validation score [1].

• Overfitting: the ML model cannot generalize well as it is too complex and fits to
the noise in the data. Overfitting can be identified when the model performs sig-
nificantly better on the training data than the test data and commonly occurs in
smaller datasets [5].

While the terms imbalanced and skewed data are often used interchangeably, it
is important to differentiate between them as different techniques are used to handle
them. Figure 1 depicts a uniform, normal, and lognormal distribution and describes their
distribution characteristics.
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2. Data Quality Issues

In machine learning and numerical modeling, incorrect or poor-quality input will
result in a misleading output. Likewise, if the data used to develop the model are biased,
then the model’s results will be biased [6]. Examples of this include Amazon’s ML recruit-
ment algorithm, which was trained on resumes submitted mostly by men, leading to a
gender bias in its predictions, as well as the Correctional Offender Management Profiling
for Alternative Sanctions, which was an algorithm used in criminal sentencing to predict
which people are most likely to re-offend, that was trained on incomplete data with race
as an input, resulting in a racial bias in its predictions [6,7]. Contrary to popular belief,
rock engineering also suffers from biased and subjective data; many of the rock mass
characterization and classification parameters collected during a site investigation (e.g.,
rock quality designation, rock mass rating, Q-system, and geological strength index) are
subjective and imprecise [8–11].

These subjective rock mass characterization and classification parameters are common
input features and target variables in rock engineering ML applications (e.g., [12–15], etc.)
and their continued inclusion in ML models, as well as the propensity of (often more senior)
rock engineering practitioners to blindly and incorrectly believe in their objectivity, pose an
obstacle in the development of reliable rock engineering ML models. Additional obstacles
to using these parameters in ML include a lack of standardization in collecting them (as
each mining and consulting company has its own confidential guidelines), practitioners
using them incorrectly, and a general tendency among practitioners to ignore the parameter
limitations. The development of reliable ML models in rock engineering requires that rock
engineers first acknowledge the subjective and imprecise nature of rock mass characteriza-
tion and classification parameters, followed by developing more objective parameters that
can reliably be used with ML.

3. Data Quantity Issues

The data collection process in rock engineering is often time and cost-intensive and
prone to human error due to the nature of the parameters we collect. This can make
acquiring good quality data for ML challenging, resulting in smaller datasets relative to
other industries. Recent examples of rock engineering ML models have been trained on
only a few hundred data points (e.g., [12,13,16–19], etc.), with some on as few as 80 data
points [20]. This starkly contrasts ML models in other industries that have been trained
on hundreds of thousands of data and are constantly updating (e.g., NASA’s Prediction of
Worldwide Energy Resources). One study, [1], investigated the impacts of data quantity on
the performance and reliability of ML models using a synthetic dataset for a slope stability
problem. This study demonstrated that ML models trained on smaller datasets can lead
to unreliable ML models. More specifically, ML models trained on smaller datasets (i.e., a
few hundred data points) are sensitive to how the data was randomly shuffled before its
train/test split (controlled by the random_state parameter in scikit-learn’s train_test_split
function), resulting in significant variation in both the test R2 and root mean square error
(RMSE) for each random shuffling (or random_state value). In other words, how the data
were randomly shuffled prior to train/test splitting will have a variable and somewhat
random impact on the ML performance.

An example of this variation is shown in Table 1 for a dataset of 250 data points
from [1]. A total of 80% of the data was used for training (200 data points), while the
remaining 20% was used as the test dataset (50 data points).

Table 1. Test R2 and RMSE for different random shufflings of a dataset of 250 data points from [1].

Performance Metric Random_State 1 = 0 Random_State = 1 Random_State = 42 Random_State = 123

Test R2 0.33 0.49 0.54 −4.26
Test RMSE 1.35 0.33 0.23 1.00

1 Note that random_state is a parameter in scikit-learn’s train_test_function that controls how the data is randomly
shuffled prior to splitting the data into training and test data.
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This unreliability can also be found using real-world data in rock engineering ML
applications. Using the dataset from [12], we developed random forest models with
four different random_state values without hyperparameter tuning, with hyperparameter
tuning and 10-fold cross-validation via scikit-learn’s RandomizedSearchCV, and with
hyperparameter tuning and 10-fold cross-validation via scikit-optimize’s BayesSearchCV.
The dataset consists of 138 data points, with 80% used to train the model and the remaining
20% used to test the model. The results in Table 2 demonstrate the variability of the model
results depending on how the data were randomly shuffled before the train/test split (i.e.,
the random_state value).

Table 2. Variation in test performance metrics for four different random shufflings of the dataset in [12].

Hyperparameter
Tuning

Performance
Metric Random_State = 0 Random_State = 1 Random_State = 42 Random_State = 123

None
Test R2 0.19 0.39 0.55 0.50

Test RMSE 1.97 2.02 2.34 2.35

RandomizedSearchCV
Test R2 0.35 0.39 0.44 0.5

Test RMSE 1.77 2.02 2.61 2.34

BayesSearchCV Test R2 0.35 0.40 0.49 0.59
Test RMSE 1.77 2.01 2.49 2.13

In previous work by some of the current authors, [1] also noted that ML models
developed on smaller datasets can result in overfitting and instances where the model
performs better on the test data than the training data, depending on how the data were
shuffled before the train/test split (i.e., the random_state value). This study demonstrated
that a dataset of 250 data points resulted in overfitting for a random_state of 0, but the model
performed better on the test data for a random_state of 42. The ML model performing
better on the test data is also found in real-world data such as [12]. The consequence of the
model performing better on the test data in datasets with only a few hundred data points is
that it can lead to some rock engineers thinking that their model is able to generalize well,
when in reality it is most likely an artefact of how the data were shuffled before they were
split, and the model is both unable to generalize well and is unreliable.

Of note is that the example in [1] demonstrates more extreme unreliability compared
to the results in Table 2. This can be attributed to more extreme outliers in the dataset
in [1]; the effect of extreme outliers and skewed data will be discussed in greater detail in
Sections 3.3 and 3.4.

3.1. Methodology

The analysis performed by [1] was expanded to investigate how data preparation
and different machine learning algorithms, in conjunction with data quantity, impact the
performance and reliability of ML models. The subsequent ML modeling used the same
synthetic dataset generated from a SWedge probabilistic analysis [21]. Five thousand data
points were generated in SWedge from a Latin Hypercube sampling method with a pseudo-
random number generator (using a seed of 1). Any data points where the safety factor
was not applicable were removed (8 data points). As noted in [1], surrogate modeling
was employed, where the inputs of the SWedge model (the dip and dip direction of the
two joints, the friction angle of the two joints, and the dip and dip direction of the slope
face) became the input features of the ML model and the target (safety factor) became the
target variable of the ML model. Table 3 and Figure 2, taken from [1], show the ranges and
distributions of the input parameters of the SWedge and ML model and the stereonet of the
two joints and slope faces.
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Table 3. Distribution of input parameters into SWedge to generate synthetic data [1].

Input Parameter Mean Min Max Standard Deviation Distribution

Slope Dip (◦) 60 50 70 2 Normal
Dip direction (◦) 180 170 190 2 Normal

Joint 1
Dip (◦) 40 - - - Fisher K = 40

Dip direction (◦) 130 - - -

Joint 2
Dip (◦) 55 - - - Fisher K = 40

Dip direction (◦) 230 - - -

Joint 1
Cohesion (MPa) 0 - - - -
Friction angle (◦) 30 20 40 2 Normal

Joint 2 Cohesion (MPa) 0 - - - -
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Using the synthetic data, various supervised ML models with different pre-processing
steps were developed for varying dataset sizes, ranging from 100 to 4950 data points with
a step of 50. Like the methodology outlined in [1], 80% of each dataset was used for
training, the remaining 20% was used for testing, and the subsequent training and test
scores were determined for each dataset. A 5-fold cross-validation was performed for some
of the models with hyperparameter tuning (using scikit-learn’s RandomizedSearchCV and
GridSearchCV functions). Four different random_state values (0, 1, 42, and 123) in the
train_test_split function in scikit-learn were examined for each model. A learning curve
(i.e., dataset size vs. test score) for each random_state value was plotted to examine the
impact of the random_state value on the model results and reliability.

The amount of data needed to develop reliable ML models is also dependent on the
complexity of the algorithm chosen; more complex algorithms (such as neural networks)
will require more data than simpler algorithms (such as linear regression or k-nearest
neighbors). As a result, two ML algorithms with varying complexities were examined in the
ML modeling: k-nearest neighbors (kNN—a simple, computationally efficient, and easily
interpretable algorithm) and multilayer perceptron (MLP—a basic neural network that
is better able to identify complex relationships among data compared to kNN). Principal
component analysis (PCA) and hyperparameter tuning with 5-fold cross-validation were
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also performed; hyperparameter tuning for the kNN models was performed with scikit-
learn’s GridSearchCV function, while hyperparameter tuning for the MLP models was
performed with scikit-learn’s RandomizedSearchCV function. Note that hyperparameter
tuning for the MLP models was only performed on dataset sizes of 100, 150, 200, 250, 750,
and 2000 for computational efficiency.

The ML modeling consisted of generating regression, classification, and pseudo-
regression models. While the target data in this example are numeric and thus appropriate
for regression models, the data can be binned into classes for classification models. The
data were binned according to the target variable (safety factor) into bins of 0.3 up to a
safety factor of 3, and any safety factors greater than 3 were grouped into one bin. Pseudo-
regression models can also be developed from the classification models, where the mean of
the predicted class is compared with the actual numeric value, and R2 and RMSE can be
determined and compared with the R2 and RMSE values from the traditional regression
models. Performing classification may reduce the impact of extreme outliers in the target
variable, especially in skewed data.

Different methods to handle the imbalanced nature of the target variable were also
examined: stratified sampling was performed in the regression and classification models,
and data balancing techniques (oversampling and synthetic minority oversampling tech-
nique (SMOTE) [22]) were performed in the classification models. Note that oversampling
and SMOTE are primarily used in classification problems (such as in the classification
models in this paper), however, they have recently been applied to regression problems as
well (although they are not as well developed as their classification counterparts). Due to
the right skewed lognormal distribution of the target variable, an ln transformation was
performed on the target variable for the regression models. This ln transformation was
only performed with the kNN algorithm for computational efficiency.

An important aspect to note about ML modeling is the performance metrics used to
evaluate the performance and reliability of the models. There are several performance
metrics to evaluate regression (as well as pseudo-regression) and classification models,
and they may lead to different interpretations regarding the performance and reliability of
the models. Common performance metrics for regression and pseudo-regression models
are the coefficient of determination R2 and RMSE; while RMSE is more robust than R2,
the latter is more commonly used and better understood among rock engineers. Similarly,
while the F1-score and AUC (the area under the receiver operating characteristic curve) are
more robust performance metrics for classification models (especially for imbalanced data),
accuracy is better understood among rock engineers. As a result of this dichotomy between
performance metrics, the ML modeling in this paper uses one rock engineering-friendly
metric and one robust metric when evaluating the models: R2 and RMSE were used for
the regression and pseudo-regression models, while accuracy and F1-score were used for
the classification models. To better assess overfitting and the model performing better
on the test data, the difference between the train and test accuracy and F1-scores were
determined for each dataset size in the classification models. In contrast, only the difference
between the test and train RMSE was determined for each dataset size in the regression and
pseudo-regression models. The R2 difference was not examined due to the large negative
R2 values. The thresholds used to define overfitting in this paper are train–test accuracy
≥ 0.25, train–test F1-score ≥ 0.25, and test–train RMSE ≥ 0.75. Note that these thresholds
were arbitrarily chosen for this specific problem.

Figure 3 shows the general methodology of the ML modeling, and Tables 4 and 5 show
a list of the ML models that were developed.
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Table 4. Regression ML models developed and examined.

kNNRegressor MLPRegressor

Model 1a Standardization Model 1b Standardization
Model 2a Standardization, PCA Model 2b Standardization, PCA

Model 3a Standardization, hyperparameter
tuning with 5-fold cross-validation Model 3b Standardization, hyperparameter

tuning with 5-fold cross-validation
Model 4a Standardization, stratified sampling Model 4b Standardization, stratified sampling
Model 5 Standardization, ln transformation

Table 5. Classification (and subsequently pseudo-regression) ML models developed and examined.

kNNClassifier MLPClassifier

Model 6a Standardization Model 6b Standardization
Model 7a Standardization, PCA Model 7b Standardization, PCA

Model 8a Standardization, hyperparameter
tuning with 5-fold cross-validation Model 8b Standardization, hyperparameter

tuning with 5-fold cross-validation
Model 9a Standardization, stratified sampling Model 9b Standardization, stratified sampling
Model 10a Standardization, oversampling Model 10b Standardization, oversampling
Model 11a Standardization, SMOTE Model 11b Standardization, SMOTE

3.2. Data Visualization

Before implementing machine learning, exploratory data analysis and data visualiza-
tion should be performed to better understand the data and help guide some pre-processing
decisions. The histogram and probability density function of the target variable (safety
factor) are shown in Figure 4.

The target variable (safety factor) is both imbalanced and positively skewed. It roughly
follows a right-skewed log-normal distribution, which is to be expected for a safety factor
distribution for a slope stability problem as the lowest safety factor value is always zero,
and its highest value has no limit.
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The mean, median, minimum, maximum, and standard deviation of the input features
and target variable in the dataset are summarized in Table 6, while the correlation matrix is
shown in Figure 5.
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Table 6. Basic statistics of the input features and target variable.

Parameter Mean Median Min Max Standard Deviation

Input features

Dip of joint 1 (◦) 41 41 10 76 9
Dip direction of joint 1 (◦) 130 130 77 186 14

Dip of joint 2 (◦) 55 55 18 86 9
Dip direction of joint 2 (◦) 230 230 184 272 11

Dip of slope (◦) 60 60 52 67 2
Dip direction of slope (◦) 180 180 173 187 2

Friction angle of joint 1 (◦) 30 30 22 37 2
Friction angle of joint 2 (◦) 30 30 23 38 2

Target Safety factor 1.16 1.06 0.38 12.56 0.52
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Figure 5. Correlation matrix for the dataset examined. Cells highlighted in blue indicate that there is
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The correlation matrix shows that none of the input features are strongly correlated with
the safety factor, however, the dip and dip direction of joint 1 show a weak negative correlation
to the safety factor, while the dip direction of joint 2 shows a weak positive correlation.

3.3. Results

The learning curves for the base models (Models 1a, 1b, 6a, and 6b) are found in
Appendix B (Figures A1–A6), while the learning curves for the other ML models can be
found in the Github link (Section 1). The R2, RMSE, and accuracy learning curves for
the base models demonstrate that the models are unreliable at smaller dataset sizes (a
few hundred data points) due to their variation depending on the random_state value
(i.e., how the data were randomly shuffled before the train/test split). There is less varia-
tion between these learning curves for different random_state values after approximately
1500 data points, indicating that there are enough data such that how the data are randomly
shuffled prior to data splitting does not significantly impact ML model results. Similar to
the other learning curves, the F1-score learning curves also demonstrate that the models
are unreliable at smaller dataset sizes, however, the variation between the learning curves
for different random_state values is generally smaller than the variation in the accuracy
learning curves and remains constant throughout the entire dataset range. The difference
between the accuracy and F1-score learning curves demonstrates the importance of the
performance metric used in evaluating the model; at smaller dataset sizes (in the order of
a few hundred data points), the accuracy learning curves show a more unreliable model
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compared to the F1-score learning curves, but at larger dataset sizes, the accuracy learning
curves show a more reliable model that plateaus at a higher value than the F1-score learning
curves. This trend can be seen in the learning curves for the other classification models
with different pre-processing techniques and reinforces the importance of choosing an
appropriate performance metric.

The base model learning curves in Figures A1, A2, A5 and A6 also demonstrate that the
unreliability (i.e., variation between learning curves for different random_state values) is
more pronounced in regression and pseudo-regression models and can also occur at larger
dataset sizes (e.g., at a dataset size of 2000 in Figures A1a, A2a, A5a, and A6a), resulting in
the “spikiness” in the learning curves. This spikiness can be attributed to extreme outliers
in the dataset and is present in the learning curves for the other regression and pseudo-
regression models with different data preprocessing steps. Similarly, overfitting is also
generally found in smaller datasets (a few hundred data points) and is more pronounced
in the regression and pseudo-regression models. The regression and pseudo-regression
models also have more instances of the model performing better on the test data than the
training data, compared to the classification models.

Incorporating PCA into the modeling workflow did not improve the reliability of the
models compared to their base model counterparts. It had a minimal impact on overfitting
and the model performing better on the test data. Hyperparameter tuning with cross-
validation also did not improve the reliability of the models (as there is still variation
between the learning curves for different random_state values), however, it did reduce
the difference between the train and test scores and subsequently overfitting in the MLP
classification. Performing hyperparameter tuning in the kNN classification and pseudo-
regression models did not impact overfitting. While cross-validation generally provides
a more robust evaluation of the ML model than a traditional single train/test split, it is
not immune to any extreme values found in the test dataset that are not captured in the
training and validation data that lead to unreliable models.

The literature on ML applications in rock engineering tends to focus on neural net-
works, even when the dataset is small (e.g., [18,23,24]). While neural networks are powerful
algorithms that can better identify complex relationships between data than other ML
algorithms, they are computationally intensive and require significantly more data than
other, simpler algorithms [25]. Due to their data quantity requirements, MLPs and other
neural networks may not be the most appropriate algorithm when working with the
smaller datasets encountered in rock engineering. This is demonstrated in the learning
curves in Figures A2, A4, and A6, as well as the learning curves for the other models;
the learning curves for the MLP models are just as unreliable as their kNN counterparts
for smaller datasets (less than 750 data points for this example) despite being more com-
putationally intensive and difficult to interpret. Furthermore, the MLP classification and
pseudo-regression models result in a more significant difference between the training and
test scores in dataset sizes smaller than 250 data points compared to the kNN classifica-
tion and pseudo-regression models, even after hyperparameter tuning. As a result, the
MLP classification and pseudo-regression models developed on dataset sizes smaller than
250 data points exhibit more overfitting than the kNN counterparts. Interestingly, the fre-
quency and magnitude of overfitting are similar for the MLP and kNN regression models,
with overfitting occurring at smaller dataset sizes (less than 500–750 data points).

Similar to overfitting, the frequency of the model performing better on the test data is
similar between the MLP and kNN regression and pseudo-regression models and occurs
across all dataset sizes examined, however, the magnitude of the model performing better
on the test data is smaller in the MLP models. Conversely, the MLP classification models
did not result in the model performing better on the test data, unlike the kNN classification
models that had a few instances occurring in datasets smaller than 1000 data points.

Of note is that the MLP models result in a better performance metric than the kNN
models above a certain dataset size (around 1500 data points in this example), thus demon-
strating that the MLP models perform better than the kNN models if enough data are
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available. This improvement is more prominent in the classification models than the re-
gression models (as an example, the kNN and MLP regression learning curves all show
spikes at larger datasets), which is most likely due to the extreme outliers in the regression
models impacting the MLP and kNN regression models similarly. While the MLP models
result in a better performing model than the kNN models at larger dataset sizes, they do
not improve the model performance or reliability for smaller datasets, and using MLPs can
result in more overfitting in certain scenarios (such as in the classification models in this
example) compared to simpler models like kNN.

Comparing the regression, classification, and pseudo-regression models demonstrates
that they are all unreliable at smaller dataset sizes (generally a few hundred data points
in this example), however, the regression and pseudo-regression models tend to be more
unreliable at these smaller dataset sizes (i.e., they have more variation in their R2 and RMSE
values for different random_state values for the same dataset) and can also be unreliable
at larger dataset sizes (i.e., the spikes in the regression and pseudo-regression learning
curves), both of which can be attributed to the increased sensitivity of regression and
pseudo-regression models to extreme outliers in the dataset. This sensitivity to outliers
in the regression and pseudo-regression models also manifests in increased frequency of
overfitting and the model performing better on the test data for the same dataset compared
to classification. While the regression and pseudo-regression models are susceptible to
outliers in the dataset, the classification models are more susceptible to the choice in the
algorithm. The MLP models resulted in better performance metric values than their kNN
counterparts when enough data was present, and there were fewer instances of the model
performing better on the test dataset than on the training dataset. An important note is that
the results of the classification and pseudo-regression models are sensitive to how the data
was binned; larger bins (i.e., fewer classes) will result in better classification performance
metrics and generally worse pseudo-regression performance metrics, while smaller bins
(i.e., more classes) will result in worse classification performance metrics and generally
better pseudo-regression performance metrics.

The results of the ML models examined demonstrate the importance of data quantity
in developing reliable models. Note that all of the models investigated were supervised
models, and the observations in this paper are not applicable to unsupervised models.
While the reliability and performance of ML models may be improved by performing
classification instead of regression, as well as performing hyperparameter tuning, all of
the ML models examined tended to remain unreliable when developed on smaller dataset
sizes (a few hundred data points in this example) as they are susceptible to how the data
were shuffled before the train/test split (i.e., the random_state value). Overfitting and the
model performing better on the test data are also more commonly found in ML models
trained on smaller dataset sizes, thus reinforcing the importance of data quantity in ML. It
is important to note that the random_state parameter examined in these analyses represents
how the data were randomly shuffled before the train/test split and is not a parameter that
should be optimized to try to achieve a better model. If the results of an ML model vary
significantly depending on the random_state parameter, then that indicates that there is
not enough data to develop a reliable model.

3.4. Skewed and Imbalanced Data

Most real-world data are imbalanced, which can negatively impact the results of ML
models. There are different approaches to handling imbalanced data, such as stratified
sampling—where the class frequencies in the dataset are maintained in the training and
test data—and using balancing techniques. The balancing techniques examined in the
ML modeling are oversampling (where new samples in the underrepresented classes are
generated by randomly sampling from the available data points) and SMOTE (where
synthetic data are generated for the underrepresented classes). An example of the learning
curves for the models with stratified sampling, oversampling, and SMOTE are shown in
Figures A7 and A8.
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Due to the nature of stratified sampling and SMOTE, they require a minimum amount
of data in each class, resulting in a larger minimum dataset size. As a result, these tech-
niques may not apply to rock engineering datasets that are too small and where the class
frequencies are too small. The data balancing techniques (oversampling and SMOTE) did
not improve the reliability of the models compared to the base models, as including them
in the modeling process did not reduce the variation between the learning curves, espe-
cially in smaller datasets. The data balancing techniques slightly increased the difference
between the train and test accuracy, F1-score, and RMSE scores, resulting in marginally
more instances of overfitting compared to the base models. Similarly, stratified sampling
did not significantly impact the models’ reliability, however, unlike the data balancing
techniques, stratified sampling reduced the difference between the train and test accuracy,
F1-score, and RMSE scores and subsequently reduced overfitting. Both stratified sampling
and the data balancing techniques removed the (few) instances of the model performing
better on the test data in the classification models.

Another important feature of the target variable distribution is its skewness. Skewed
distributions are commonly found in rock engineering. They can significantly impact
statistical analyses and machine learning due to the potential for more outliers and more
extreme outliers. The safety factor distribution in Figure 4 is a positively skewed (right-
tailed) lognormal distribution. Its longer tail contains more extreme outlier values, resulting
in spikes in the regression learning curves (Figures A1 and A2). A common method of
handling skewed data in regression models is to transform it into a normal distribution.
Some examples of commonly used transformations include ln and box cox transformations.
However, when evaluating the model, the predicted transformed target variables should
be back transformed into the original scale. For this example, an ln transformation was
performed on the target variable (safety factor) for the kNN regression model, which
had a minimal impact on the learning curves for both the regression and classification
models, as shown in Figures A9–A12. The ln transformation also did not impact the
magnitude and frequency of overfitting or the model performing better on the test data
when compared to not performing an ln transformation. Another method of handling the
extreme outlier values that are commonly found in skewed data is to bin the data and
perform a classification (Models 6–11), which reduced the spikes in the learning curves and
generally resulted in a more reliable model than performing an ln transformation in the
regression model.

3.5. Limitations

Similar to what was noted in [1], the results of the ML modeling performed in this
section demonstrate the issues associated with data quantity are specific to the synthetic
data generated in SWedge and the ML modeling workflow used. The dataset sizes that
result in unreliable ML models in this paper should not be taken as a universal guideline,
as they may change depending on the problem, data, and ML methodology. Furthermore,
it is worth repeating that the random_state value in scikit-learn’s train_test_split function
(i.e., how the data are randomly shuffled before the train/test split) is not a hyperparameter
and should not be optimized to obtain a better model. Suppose the results of the ML model
vary significantly due to how the data were shuffled before the train/test split. In that case,
that indicates that there is not enough data to develop a reliable ML model.

4. Knowledge Issues

A fundamental aspect of developing reliable ML models is ensuring that rock engi-
neers involved in an ML project, from those developing the model to the project managers
and senior engineers overseeing the development, have sufficient knowledge of crucial
ML concepts and methodological issues. Like other industries outside of computer sci-
ence/data science that have begun applying ML to their domain-specific problems, rock
engineering has a limited number of practitioners who understand ML. This is especially
apparent in rock engineering academic publishing; since ML is so new in rock engineering,
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there are a limited number of experts, making it difficult to find reviewers who are knowl-
edgeable about the topic and leading to flawed methodologies and/or overly complex
models developed on simple or data-poor problems being published. For example, ref. [12]
developed a model that performs better on the test data and trained the model on incorrect
rock mass classification data. Another study, ref. [26], developed models based on their
entire dataset instead of splitting the data. Other examples include misunderstandings
of ML/statistics-specific terms [27], which led to incorrectly identifying non-normal dis-
tributions. As discussed by [28], language is not neutral, and even more important is the
perception that specific words leave in the mind of an audience that are neither engineers
nor geoscientists. Indeed, in the author’s experience, rock engineering practitioners often
misunderstand the terms “validation” and “skewed data”. Potential solutions to these
knowledge issues include staffing rock engineering ML projects with data and computer
scientists, updating mining and geological engineering curricula to include courses on data
science, and mandating that ML publications publish their data and codes so that lessons
learned and best practices become easier to access.

5. Conclusions and Recommendations

The development of ML models in rock engineering is not immune to the importance
of data quality and quantity. The use of subjective rock engineering parameters in ML
models will result in an equally subjective model and model predictions, and the ML models
examined in this paper demonstrate that ML models run the risk of being unreliable if
they are trained on small datasets, regardless of the data pre-processing steps included
in the modeling workflow. This unreliability is exacerbated when extreme outliers are
present in the dataset (which tends to occur more frequently in skewed data). It can result
in unreliable ML models even when trained on larger dataset sizes. While binning the
data to perform classification can help to mitigate the effects of extreme outliers on model
reliability at larger dataset sizes, classification models (and pseudo-regression models)
are dependent on how the data are binned, and they still result in unreliable ML models
when trained on smaller dataset sizes. It is important to remember that the dataset sizes
outlined in this paper are specific to this example and there is no universal definition of
a small dataset. We recommend that any rock engineers considering applying ML to a
problem follow the methodology outlined in this paper and in [1] to determine if there are
enough data to develop a reliable ML model. Additional recommendations to ensure the
development of reliable ML models in rock engineering include:

• Understanding the methodological issues at play.
• Visualizing the data and performing exploratory data analysis to gain a better under-

standing of the data.
• Starting simple and increasing the complexity of your model as needed. Increas-

ing the complexity of the model does not necessarily improve the model and is
computationally intensive.

If the findings discussed herein are overlooked, ML has the potential to create unnec-
essary computational expense and model complexity, reinforce and bury data biases, and
slow down or even derail engineering decision-making. However, if developed prudently
and with an understanding of blind spots in the data, ML is a powerful tool that may be
leveraged by rock engineers to relieve the burden of data analysis, uncover hidden data
biases, and expedite decision-making.
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Appendix A

Table A1 below provides a summary of recent ML applications to rock mass character-
ization and classification data, including the concerns with their methodology.

Table A1. Summary of recent ML applications to rock mass characterization and classification data..

Reference Application Dataset Size Results Data and
Code Availability Concerns

[29]

Used support vector machine
and back-propagation neural
network to predict basic rock
quality (BQ) class from
inputs, including JRC,
volumetric joint count (Jv),
groundwater condition, etc.

25 data points (20 for
training, 5 for test). Also
included a separate
dataset of 20 data points
to “verify” the accuracy
of their model.

Accuracy on the 20 data
points to “verify” the
accuracy of their model
is 95%.

The dataset is not
available. The code is
not available.

Small and imbalanced dataset (BQ
class ranges from 3–5, with the
majority being 4). The data is
limited to Anhui province in
China. The ML model is
redundant, as many of the input
features are used in the equations
to calculate BQ class.
The training and test accuracy are
not reported.

[30]

Used naïve Bayes, random
forest, artificial neural
network, and support vector
machine to predict the rock
mass rating (RMR) rock mass
class from the RMR ratings
for intact rock strength,
discontinuity spacing,
weathering, persistence,
aperture, and presence of
water. The inputs were
label encoded.

3216 data points (2144
training, 1072 test). The
authors performed their
own version of
cross-validation, where
the model was trained
30 times on a different
train/test split and the
model performance for
each split was averaged.

Average test accuracy
ranges from 0.81–0.89 for
all models.

The dataset is available.
The code is
not available.

The authors did not make it clear
which RMR version was used
(RMR89 was assumed). The
authors’ version of
cross-validation could result in
data leakage (where the test data
influence the training of the
model). The training results were
not reported. The models are
redundant, as the model inputs
make up 68% of RMR89, however,
it is possible to estimate the RQD
rating from the discontinuity
spacing rating since the two
parameters are linked, meaning
that there is enough information
to estimate the RMR class without
the use of ML.

[12]

Used support vector machine
(SVM), decision trees (DT),
random forest (RF), Gaussian
process regression (GPR),
and ensemble learning (EL)
using the previous 4 models
to predict the end-bearing
capacity of rock-socketed
shafts from the unconfined
compressive strength of
intact rock, geological
strength index (GSI), length
of shaft within the soil layer,
length of shaft within the
rock layer, and
shaft diameter.

151 data points (121
training, 30 test points).

SVM: training R2 of 0.56,
test R2 of 0.55, training
RMSE of 2.13, test
RMSE of 2.33.
DT: training R2 of 0.80,
test R2 of 0.85, training
RMSE of 1.38, test
RMSE of 1.21.
RF: training R2 of 0.82,
test R2 of 0.87, training
RMSE of 1.38, test
RMSE of 1.42.
GPR: training R2 of 0.79,
test R2 of 0.83, training
RMSE of 1.50, test
RMSE or 1.54.
EL: training R2 of 0.84,
test R2 of 0.89, training
RMSE of 1.39, test
RMSE of 1.17.

The dataset is available
but contains 138 data
points instead of 151.
The code is available
upon request.

The dataset is small and some of
the models perform better on the
test dataset than the training
dataset. Refer to Section 3 for
additional details.

[13]

Used relevance vector
regression (RVR) and
support vector regression
(SVR) to predict RMR values
from seismic velocity (Vp
and Vs), seismic wave type,
orientation, polarity, wave
magnitude, and
reflection depth.

132 data points (92
training, 40 test). No
validation or
cross-validation
was performed.

RVR: training R of 0.99,
test R of 0.94, training
RMSE of 1.4, test
RMSE of 4.3.
SVR: training R of 0.995,
test R of 0.96, training
RMSE of 1.1, test
RMSE of 3.6.

The dataset and code are
not available.

The dataset is small and
limited—the test RMR values are
concentrated between 0 and 20
and 60–85. The data is also based
on two case studies in Iran. The
RMR version was not specified by
the authors.

https://github.com/beverlyyang/geosciences-machine-learning-in-engineering-geology
https://github.com/beverlyyang/geosciences-machine-learning-in-engineering-geology
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Table A1. Cont.

Reference Application Dataset Size Results Data and
Code Availability Concerns

[26]

Used classification and
regression tree (CART) as
well as genetic programming
(GP) to predict tunnel boring
machine (TBM) performance
(FPI—field penetration index)
from uniaxial compressive
strength (UCS), rock quality
designation (RQD, joint
spacing, partial joint
condition rating in RMR89,
and rock type code.

580 data points from
7 tunneling projects
(4 from Iran, 1 from
New Zealand, 1 from
India, 1 from
Switzerland; 35%
metamorphic, 37%
igneous, 28%
sedimentary). A
train/test split was not
performed (to the best of
my knowledge).

CART: entire dataset R2

of 0.91, entire dataset of
RMSE 6.67.
GP: entire dataset R2 of
0.85, entire dataset
RMSE of 8.46.

The dataset and code are
not available.

A train/test split was not
performed (i.e., the model results
are for the entire dataset), making
it difficult to determine how well
the models will generalize (which
is the end goal of ML). The
authors did not explain what a
partial joint condition rating from
RMR89 meant.

[31]

Used k-nearest neighbors
(kNN), naïve Bayes (NB),
random forest (RF), artificial
neural network (ANN), and
support vector machine
(SVM) to predict rock
compressive strength from
acoustic characteristics
stemming from hitting the
core with a geological
hammer (amplitude
attenuation coefficient (AAC)
and high and low frequency
ratio (HLFR)).

2104 data points
(1614 training, 400 test).

kNN: training R2 of 0.98,
test R2 of 0.98, training
RMSE of 0.6, test
RMSE of 0.6.
NB: training R2 of 0.88,
test R2 of 0.88, training
RMSE of 3.84, test
RMSE of 3.94.
RF: training R2 of 0.98,
test R2 of 9.07, training
RMSE of 1.1, test
RMSE of 1.8.
ANN: training R2 of 0.99,
test R2 of 0.99, training
RMSE of 0.3, test
RMSE of 0.3.
SVM: training R2 of 0.99,
test R2 of 0.99, training
RMSE of 0.08, test
RMSE of 0.1.

The dataset and code are
not available.

AAC and HLFR showed good
correlation with rock compressive
strength without the use of ML
(R2 of 0.91 for AAC and R2 of 0.93
for HLFR), putting into question
the practicality of using ML for
this application.

[32]

Used random forest to
predict Is50 classes from
fracture frequency, RQD,
mineralized veins per meter,
rock density, intact rock
strength hammer test class,
alteration strength index,
mineralization strength
index, mineralization percent
sum, fracture spacing,
fracture frequency index,
discontinuity frequency
index, discontinuity
frequency index weighted by
orientation, joint set index,
rock colour, lower contact,
rock texture, rock type,
selvage mineralization,
mineral metric, rock
structure, rock fabric, PLT
machine ID.

7687 data points. The
authors performed their
own version of
cross-validation, where
their model was trained
on all boreholes except
for one, and then tested
on the remaining
borehole. This was
repeated until all
boreholes had been used
as the ”test dataset”, and
the score for each
borehole was averaged.

The average accuracy of
the boreholes is 39%.

The dataset and code are
not available.

The authors’ version of
cross-validation could result in
data leakage (where the test data
influences the training of the
model). The training results were
not reported. Some of the input
features are correlated with one
another (ex; fracture frequency
and fracture frequency index).
The reported accuracy is low and
does not represent the true “test”
accuracy (which should be lower
than the reported 39%).

[33]

Used stacked autoencoders
(SAEs—a type of deep
learning) to predict RMR
rock mass class from its input
parameters (UCS, RQD,
spacing, persistence,
aperture, roughness, infilling,
weathering, groundwater,
and orientation). The rating
classes of each input
parameter was one-hot
binary encoded (ex; the UCS
rating class for UCS > 250
MPa was transformed into
1000000, while the UCS
rating class for UCS between
100 and 250 MPa was
transformed into
0100000, etc.)

309 data points
(232 training, 77 test).

The train and test
accuracy are both 100%.

The dataset and code are
not available.

The dataset is small, especially for
a neural network. The model is
redundant as it uses the inputs of
RMR to determine RMR, which
can be done (and is done) easily
without ML in Excel. The authors
also did not specify which RMR
version was used (RMR89 was
assumed). The authors also
misused the word calibration, as
they referred to one-hot encoding
the input features as “calibration”,
despite it being a form of
data preparation.
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Table A1. Cont.

Reference Application Dataset Size Results Data and
Code Availability Concerns

[34]

Used ANN to predict RMR
values from its input
parameters (strength,
spacing, RQD, joint
conditions,
and groundwater).

The dataset size
is unclear.

The MAPE was less than
1%. It was unclear if this
was for the training or
test set.

The dataset and code are
not available.

The dataset size is unclear, and it
is unclear if the model
performance is for the training or
test set. The model is redundant
as it uses the inputs of RMR to
determine RMR, which can be
done (and is done) easily without
ML in Excel. The authors also did
not specify which RMR version
was used (RMR89 was assumed).

[18]

Used Gaussian process
regression (GPR), support
vector regression (SVR),
decision tree (DT), and long
short-term memory
(LSTM—a type of neural
network) to predict cohesion
and friction angle of
sandstone from uniaxial
compressive strength,
uniaxial tensile strength, and
confining stress.

233 data points from
RockData (195 training,
49 test). The authors
performed a 5-fold
cross-validation.

For cohesion, the R2 of
all of the models ranged
from 0.95 to 0.98, while
the RMSE ranged from
1.3 to 2.38.
For friction angle, the R2

of all the models ranged
from 0.6 to 0.85, while
the RMSE ranged from
1.86 to 9.88. It was
unclear if this was for the
training set, test set, or
entire dataset.

The dataset is available
in RockData. The code is
not available.

The dataset size is small,
especially for LSTM, and limited
to only sandstone. It is unclear if
the model performance values are
for the training set, test set, or
entire dataset, making it difficult,
if not impossible, to determine
how well the model generalizes.

[35]
Used convolutional neural
networks (CNN) to predict
RQD from core photos.

124 images (99 training
images, 25 test images).

Average test error of
3.24%. RQD for training
was determined by two
experienced engineers.

The dataset is available
upon request. The code
is available.

The dataset is small, especially for
a CNN. The model has issues
differentiating between natural
and mechanical fractures. The
hard and soundness requirement
was not mentioned in the paper.

[15]
Used convolutional neural
networks (CNN) to predict
RQD from core photos.

7030 images (6400
training images, 630 test
images). The training
images were of
sandstone, while the test
images contained 540
sandstone images and
90 limestone images.

Test error for sandstone
is 2.58%, while the test
error for limestone
is 3.17%.

The dataset is not
available. The code
is available.

The model does not differentiate
between natural vs. mechanical
fractures and the hard and
soundness requirement is not
mentioned. The model is limited
to sandstone and limestone.

[23]

Used artificial neural
networks to predict intact
rock elastic modulus from
uniaxial compressive
strength and the unit weight
of the rock.

609 data points
(487 training, 122 test).

Training and test results
are unclear.

The dataset and code are
not available.

The training and test results
are unclear.

[20]

Used support vector
machines with heuristic
optimization algorithms (for
hyperparameter tuning) to
predict the rock mass grade
(based on a scale of 1 to 5
using qualitative
descriptions) from saturated
rock compressive strength,
RQD, rock mass integrity
factor, and water inflow.

80 data points from
China (64 training, 16
test). The data
is available.

Training accuracy of 91%
and test accuracy of 94%.

The dataset is available.
The code is
not available.

The dataset is very small, and the
model performs better on the test
dataset than the training dataset
(despite its limited dataset size).

[36]

Used support vector
regression to predict the
modulus of deformation
from the dynamic modulus
of elasticity, uniaxial
compressive strength, RQD,
joint conditions, and
joint spacing.

88 data points. The
authors only performed
cross-validation on the
entire dataset. There is
no test dataset.

Cross-validation results
for the SVR include R2 of
0.87 and RMSE of 1.01.

The dataset and code are
not available.

The authors did not explain how
the joint condition parameter was
determined. The dataset is small
and limited to one site. The results
of cross-validation cannot be used
to determine how well the model
will perform on new, unseen data.
A test dataset is missing.



Geosciences 2024, 14, 67 17 of 31

Table A1. Cont.

Reference Application Dataset Size Results Data and
Code Availability Concerns

[17]

Used k-nearest neighbor
(kNN), random forest (RF),
multi-layer perceptron
(MLP), random tree (RT), and
stacked RT-RF-kNN-MLP to
predict Young’s modulus
(modulus of elasticity) from
porosity, Schmidt hammer
rebound number, pulse
velocity, and Is50.

92 data points.
Performed a sensitivity
analysis for each model
using different
percentages of training
data (80%, 85%, and 90%
of the entire dataset).

For an 80/20
train/test split:
RT: training R2 of 0.84,
test R2 of 0.67, training
RMSE of 14.92, test
RMSE of 20.47.
kNN: training R2 of 0.82,
test R2 of 0.78, training
RMSE of 15.81, test
RMSE of 17.02.
RF: training R2 of 0.84,
test R2 of 0.71, training
RMSE of 14.80, test
RMSE of 19.04.
MLP: training R2 of 0.90,
test R2 of 0.77, training
RMSE of 11.78, test
RMSE of 16.97.
Stacked: training R2 of
0.83, test R2 of 0.82,
training RMSE of 15, test
RMSE of 15.01.

The dataset and code are
not available.

The dataset is small. Each input
already shows a strong linear
correlation with the output.

[37]

Used support vector machine
(SVM), k-nearest neighbor
(kNN), random forest (RF),
gradient boosting decision
tree (GBDT), decision tree
(DT), logistic regression (LR),
multi-layer perceptron
(MLP), and a stacking
ensemble classifier to predict
rock mass class (on a scale of
1 to 5) from 10 TBM
operational parameters
(cutterhead rotational speed,
pitch angle of gripper shoes,
gear sealing pressure,
pressure of gripper shoes,
output frequency of main
drive motor, internal pump
pressure, penetration rate,
control pump pressure,
torque penetration index,
and roll position of
gripper shoes).

7538 data points (6784
training, 754 test). A
10-fold cross-validation
was performed.

SVM: test accuracy of
89%, test F1 of 0.89.
kNN: test accuracy of
88%, test F1 of 0.87.
RF: test accuracy of 91%,
test F1 of 0.90.
GBDT: test accuracy of
92%, test F1 of 0.92.
DT: test accuracy of 87%,
test F1 of 0.87.
LR: test accuracy of 79%,
test F1 of 0.75.
MLP: test accuracy of
81%, test F1 of 0.80.
Stacked ensemble
classifier: test accuracy
of 93%, test F1 of 0.93.

The dataset and code are
not available.

Training results were
not provided.

[38]

Used a back-propagation
neural network to predict the
rock mass deformation
modulus from the uniaxial
compressive strength of
intact rock, RQD, dry density,
porosity, number of joints per
meter, and GSI. A genetic
algorithm was used to
optimize the neural network.

120 data points. The
amount of data in the
training and test
datasets was not clear.
Data are limited to four
sites in Iran and consist
predominantly of
sedimentary rocks.

Training R of 0.981, test
R of 0.4. Training MSE of
3.16, test MSE of 5.21.

The dataset and code are
not available.

The dataset size is small,
especially for a neural network,
and limited to sedimentary rocks.
The size of the training and test
datasets were not mentioned. The
authors did not mention how the
rock mass deformation modulus
values were determined and how
reliable these values are, despite
mentioning that the credibility of
the results of in situ tests are
questionable.
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Appendix B

The learning curves for Models 1a, 1b, 5, 6a, 6b, 9a, 10a, 11a, and 12 are shown here.
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Figure A1. Regression learning curves for Model 1a (kNNRegressor base case): (a) R2 learning curves,
(b) RMSE learning curves, (c) RMSE difference learning curves.
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Figure A2. Regression learning curves for Model 1b (MLPRegressor base case): (a) R2 learning curves,
(b) RMSE learning curves, (c) RMSE difference learning curves.
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Figure A3. Classification learning curves for Model 6a (kNNClassifier base case): (a) accuracy learn-
ing curves, (b) F1-score learning curves, (c) accuracy difference learning curves, (d) F1-score differ-
ence learning curves. 
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Figure A3. Classification learning curves for Model 6a (kNNClassifier base case): (a) accuracy
learning curves, (b) F1-score learning curves, (c) accuracy difference learning curves, (d) F1-score
difference learning curves.
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Figure A4. Classification learning curves for Model 6b (MLPClassifier base case): (a) accuracy learn-
ing curves, (b) F1-score learning curves, (c) accuracy difference learning curves, (d) F1-score differ-
ence learning curves. 
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Figure A4. Classification learning curves for Model 6b (MLPClassifier base case): (a) accuracy
learning curves, (b) F1-score learning curves, (c) accuracy difference learning curves, (d) F1-score
difference learning curves.
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Figure A5. Pseudo-regression learning curves for Model 6a (kNNClassifier base case): (a) R2 learn-
ing curves, (b) RMSE learning curves, (c) RMSE difference learning curves. 
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Figure A5. Pseudo-regression learning curves for Model 6a (kNNClassifier base case): (a) R2 learning
curves, (b) RMSE learning curves, (c) RMSE difference learning curves.
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Figure A6. Pseudo-regression learning curves for Model 6b (MLPClassifier base case): (a) R2 learn-
ing curves, (b) RMSE learning curves, (c) RMSE difference learning curves. 
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Figure A6. Pseudo-regression learning curves for Model 6b (MLPClassifier base case): (a) R2 learning
curves, (b) RMSE learning curves, (c) RMSE difference learning curves.
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Figure A7. Accuracy learning curves for (a) Model 9a (kNNClassifier with stratified sampling), (b) 
Model 10a (kNNClassifier with oversampling), and (c) Model 11a (kNNClassifier with SMOTE). 
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Figure A7. Accuracy learning curves for (a) Model 9a (kNNClassifier with stratified sampling),
(b) Model 10a (kNNClassifier with oversampling), and (c) Model 11a (kNNClassifier with SMOTE).
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Figure A8. RMSE (pseudo-regression) learning curves for (a) Model 9a (kNNClassifier with strati-
fied sampling), (b) Model 10a (kNNClassifier with oversampling), and (c) Model 11a (kNNClassifier 
with SMOTE). 
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Figure A8. RMSE (pseudo-regression) learning curves for (a) Model 9a (kNNClassifier with stratified
sampling), (b) Model 10a (kNNClassifier with oversampling), and (c) Model 11a (kNNClassifier
with SMOTE).
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Figure A9. R2 regression learning curves for (a) kNNRegressor base case (Model 1a) and (b) 
kNNRegressor with ln transformation and the predictions back transformed (Model 5). 
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Figure A9. R2 regression learning curves for (a) kNNRegressor base case (Model 1a) and (b) kNNRe-
gressor with ln transformation and the predictions back transformed (Model 5).
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Figure A10. RMSE regression learning curves for (a) kNNRegressor base case (Model 1a) and (b) 
kNNRegressor with ln transformation and the predictions back transformed (Model 5). 
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Figure A10. RMSE regression learning curves for (a) kNNRegressor base case (Model 1a) and
(b) kNNRegressor with ln transformation and the predictions back transformed (Model 5).
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Figure A11. Accuracy classification learning curves for (a) kNNClassifier base case (Model 6a) and 
(b) kNNClassifier with ln transformation and the predictions back transformed (Model 12). 
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Figure A11. Accuracy classification learning curves for (a) kNNClassifier base case (Model 6a) and
(b) kNNClassifier with ln transformation and the predictions back transformed (Model 12).
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Figure A12. F1-score classification learning curves for (a) kNNClassifier base case (Model 6a) and 
(b) kNNClassifier with ln transformation and the predictions back transformed (Model 12). 
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