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Abstract: Supervised machine learning (ML) techniques have been widely used in various geotechni-
cal applications. While much attention is given to the ML techniques and the specific geotechnical
problem being addressed, the influence of sampling methods on ML performance has received rela-
tively less scrutiny. This study applies supervised ML to the strain-dependent slope stability (SDSS)
method for the prediction of the factor of safety (FoS) using hypoplasticity. It delves into different
sampling strategies for training the ML model, emphasizing predictions of soil behavior in lower
stress ranges. A novel sampling method is introduced to ensure a more representative distribution of
samples in these ranges, which is challenging to achieve through traditional sampling approaches.
The ML models were trained using traditional and modified sampling methods. Subsequently, slope
stability analyses using SDSS were conducted with ML models trained from six different sampling
methods. The results illustrate the impact of sampling methods on the FoS. Besides a noticeable
improvement in predictions of shear stresses within the lower stress ranges, a decisive effect on the
overall FoS was observed as well.

Keywords: machine learning; hypoplasticity; sampling; strain-dependent slope stability

1. Introduction

Supervised machine learning (ML) methods like the artificial neural network (ANN)
or multi-layer perceptrons (MLP) have been successfully applied to diverse geotechni-
cal engineering problems. Examples of the application of supervised machine learning
methods in geotechnics date back more than 25 years ago and include, for example, set-
tlement estimation due to tunneling [1–3], the estimation of pile bearing capacity [4–8],
foundation settlements [4,9], slope stability analysis [10–12], liquefaction potential assess-
ment [4,13] and the adjustment of soil model properties to match field or experimental
observations [14–18]. Among others, comparison and review of different ML algorithms
has been conducted in [19,20]. The use of ANNs is primarily advantageous when the nature
of the problem is complex and deals with uncertainties, where the empirical relations are
not too accurate to the actual values.

Goh [4,21] described the ability of ANNs to predict the friction capacity of piles in
clays. The input parameters considered for training included pile length, pile diameter,
mean effective stress and undrained shear strength. Further, Goh [5,6] implemented ANN
to estimate the ultimate load capacity of driven piles in granular soils. ANN provided
better results compared to the common relationships for prediction of pile capacity. Later
on, Lee and Lee [22] also implemented a neural network to predict the ultimate bearing
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capacity of piles. The results of the trained neural network were found to be in better
agreement with the measured field values compared to the estimations from common
analytical processes (Meyerhof’s equation [23]). These studies indicate the capacity and
usefulness of ANNs to predict some outputs with higher accuracy than some known
analytical/empirical procedures.

Goh [4] also developed a neural network for settlement prediction of a pile foundation
in homogeneous soil. Sivakugan et al. [9] implemented ANNs to predict the settlement
of shallow foundations on granular soils. The neural network was trained with five input
parameters: net applied pressure, average blow count from SPT, shape, width and depth of
foundation, and the actual observed settlement value was used for training the output. In
this study, the ANNs were better at predicting foundation settlements than the classical
analysis methods proposed by [24,25]. Similarly, Shahin et al. [26] implemented ANNs for
settlement prediction of cohesionless soils. A total of 272 data records of actual settlement
in cohesionless soil were used for training the ANN. The input variables included footing
width, footing length, applied pressure on the footing, and soil compressibility. The results
of this study confirmed that of [9], in the sense that ANNs outperformed the prediction of
classical analysis methods. The classical analysis methods included [23,27,28].

Sakellariou and Ferentinou [11], Ferentinou and Sakellariou [12] analyzed the slope
stability problem under monotonic and earthquake loading using ANNs for circular and
wedge failure mechanisms. The model was trained with real information on 46 slopes
composed of soil and 14 rock slopes. The ANNs successfully captured the relationship
between input and output parameters. The authors also extracted information from the
network by partitioning the connecting weights to study the dominance of the parameters
on the FoS.

Puri et al. [29] studied the prediction of geotechnical parameters using ML techniques.
The parameters such as in-situ density, compression index (Cc), cohesion (c) and angle of
internal friction (φ) were correlated with soil parameters determined in the laboratory and
field. For example, c and φ were correlated with SPT N-value and Cc was correlated with
liquid limit and void ratio. The ML techniques implemented for that purpose included
linear regression (LR), ANN, support vector machines (SVM), random forest (RF), and
M5 tree (M5P). The training data were prepared from the geotechnical data collected from
various government and private organizations. SVM produced the most accurate results
for the prediction of φ based on SPT N-value, whereas, regarding c based on SPT N-value,
M5P delivered the best predictions. M5P model was also the best performer for predicting
Cc using liquid limit and void ratio.

Wei et al. [30] implemented support vector regressor (SVR) models, in particular
radial basis function (RBF) to predict the FoS for slope stability analysis based on different
geotechnical parameters such as unit weight of soil within (γ), cohesion (c), angle of internal
friction (φ), slope inclination (β), pore water pressure coefficient (ru), and slope height
(H). The training data of the database consisted of 80 slope stability analyses carried out
in existing literature. Different SVR models were used to evaluate the FoS. Among the
employed SVR models, the RBF model was able to predict FoS with a very low error rate
(RMSE = 0.076) and higher accuracy (R2 = 0.947).

Nanehkaran et al. [31] studied the application of ML techniques for safety factor
estimation in slope stability analyses. The performance of five different machine learning
models, namely multilayer perceptron (MLP), k-nearest neighbor (kNN), support vector
machines (SVM), decision tree (DT), and random forest (RF) to predict the slope safety
factors were studied. The input data parameters included soil dry density, cohesion, friction
angle, slope height and inclination. The output parameter was the factor of safety (FoS).
The primary database source was a total of 70 slopes identified for slope stability analysis in
South Pars region in southwest Iran. The slope stability was analyzed for each slope using
the Limite Equilibrium Methods (LEM) prior to training. From the results obtained from
the implemented machine learning models, it was concluded that the MLP was a superior
classifier compared to the other four employed classifiers. Similarly, [32] performed a
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comparative analysis for slope stability using different ML techniques. The database for the
study was prepared based on 100 records of soil slopes in Iran’s Fars, Isfahan, and Tehran
provinces. The study concluded that MLP was able to predict the result with the highest
accuracy (0.901), whereas kNN and DT also provided satisfactory results with accuracies
greater than 0.8.

Schmüdderich et al. [33] suggested the application of machine learning techniques
for the reduction of computational cost associated with the simulation of element tests
within the framework of strain-dependent slope stability (SDSS) [34]. The method of SDSS
is advantageous to other slope stability analysis methods due to its ability to accommodate
any advanced constitutive model. However, it involves a lot of element test simulations to
be performed, which demands a very high computational cost. This study investigated the
replacement of the element test simulations by ML algorithms and tested the performance
of MLP, kNN, RBF, and RF. The results of the ML algorithms were compared with the
results obtained from the single element test simulations conducted using Incremental
Driver [35]. The application of all four ML algorithms reduced the computational effort
significantly while producing reasonably accurate results. However, the most preferable
algorithm was considered to be RBF, while KNN produced a very fast but slightly less
accurate evaluation. In the same study [33], the training data for the machine learning
algorithms were prepared using a grid sampling approach. The results indicated that
there was lower agreement between the Incremental Driver simulation results and the
ML-trained models’ prediction for the test samples with lower initial effective stresses.
However, whether this disagreement is due to the sampling approach or the machine
learning algorithm itself remained unclear.

Most of the current studies regarding the application of ML techniques in geotechnics
focus on the different machine learning algorithms, optimization strategies, and their
accuracy. Explicit discussion of data sample preparation for training and its effect on the
ML model performance is rare in geotechnical applications, mostly because algorithms
can be easily used as black-boxes and the attention is focused on choosing the right set of
controlling parameters that improve the quality of the prediction. However, the data sample
preparation method is an important part of training any ML algorithm. The sampling
technique plays a major role in the accuracy of prediction, as will be demonstrated in
this research. A careful consideration of different sampling strategies ensures proper
distribution of samples throughout the input parameter space. However, when complex
constraints are needed in the model, the proper distribution of samples through the input
parameter space becomes challenging. The present manuscript discusses the influence of
sampling methods on the prediction results using ML algorithms and suggests techniques
to ensure proper sampling distribution. The analysis is applied to the simulation of element
tests as part of the strain-dependent slope stability method (SDSS). Two new sampling
strategies are proposed to ensure a better distribution of samples in the input parameter
space under the constraints of the failure surface and maximum and minimum void ratios
employed as input parameters of the constitutive model. Finally, the proposed sampling
strategies are applied to evaluate FoS using SDSS [34] and the influence of sampling
strategies is discussed.

2. Enhanced Strain-Dependent Slope Stability Using Machine Learning
2.1. Strain-Dependent Slope Stability (SDSS)

Nitzsche and Herle [34] proposed the concept of strain-dependent slope stability
where a calculation of the factor of safety can be performed considering a particular failure
mechanism using FEM results with any constitutive model describing the soil behavior.
A predefined slip surface is chosen and discretized into a number of segments using
user-defined nodes. A predefined stress field is necessary (obtained by finite element
simulations), so that the stresses for each node are interpolated and rotated in the direction
of the predefined slip surface. The factor of safety is defined based on the mobilization of
shear stresses considering the stress–strain behavior. The stress–strain behavior is simulated
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by performing a numerical element test (simple shear, triaxial or biaxial compression tests)
for each node, which yields the evolution of shear stress mobilization with the increase
in shear strains. The global mobilized shear resistance ratio T(γ) for the particular slip
surface is thus determined by the summation of the mobilized shear stresses τmob with
respect to the shear strain γ along the nodes i, divided by the sum of initial shear stresses
τ0 of each node i.

T(γ) =
∑i τmob,i(γ)

∑i τ0,i
(1)

Equation (1) yields the global mobilized shear resistance T with respect to the shear strain
γ, also depicted in Figure 1. Initially, T(γ) = 1 since ∑i τmob,i(γ) and ∑i τ0,i are equal,
but then T(γ) begins to increase with shearing. For loose soils with hardening behavior,
T(γ) approaches its maximum steady value when maximum shear strength is reached in
all nodes. The corresponding value of the mobilized global shear resistance is expressed
as ∑i τmax,i/ ∑i τ0,i. For a loose soil, the FoS corresponds to this value. However, in the
case of dense/stiff soils, T(γ) initially increases until it reaches a peak value and then
further decreases with ongoing shearing. At the final state, the shear stress in all nodes
is equal to the critical shear strength. The mobilized shear stress Tmob,i does not usually
attain maximum values Tmax,i simultaneously at all nodes, causing the maximum value
of T(γ) to be smaller than ∑i τmax,i/ ∑i τ0,i. Denoting Tmax as the maximum value of the
global mobilized shear resistance obtained at a shear strain γmax, the factor of safety (FoS) is
calculated as follows [Figure 1 (right)]: FoSmax(γ) = Tmax for γ ≤ γmax and FoS(γ) = T(γ)
for γ > γmax. In case of materials showing strain-softening behavior upon shearing, the
maximum FoS corresponds to the maximum of T(γ) and the residual FoS corresponds to
∑i τres,i/ ∑i τ0,i.

γ

T(γ)
Στmax,i / Στ0,i

γ

FOS

1

FOS for soil with hardening

max. FOS for soil with softening

Στmax,i / Στ0,i

FoS=T(γ)

Figure 1. Evaluation of the global mobilized shear resistance ratio T with increasing shear strain
for a material (left) without and (center) with strain-hardening and (right) corresponding evolution
of FoS.

One of the significant advantages of SDSS over other slope stability analysis methods,
such as LEM or the strength reduction finite element analysis, is the ability to consider
advanced constitutive models (e.g., Hypoplasticity [36], Sanisand [37], Anisotropic Visco-
hypoplasticity [38] or AVISA [39]) for evaluation of the shear stress evolution, whereas
other methods can incorporate only simple elastoplastic models such as Mohr–Coulomb,
where the shear strength is controlled by the cohesion and friction angle. Apart from stress
states, state and internal variables of the corresponding constitutive model obtained from
the finite element simulation can be transferred to the numerical element test simulation.
This indeed allows for better prediction of shear stress mobilization along the slip surface
compared to other methods.
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2.2. Implementation of SDSS

SDSS enables the evaluation of the FoS considering advanced constitutive models
by performing element tests for nodes located along a potential slip surface. Different
shapes of the slip surface can be used, such as planar or circular slip surface considering
a translational or rotational failure of the soil above the slip surface, respectively. In this
study, circular slip surfaces are used as planar surfaces tend to yield non-conservative
results. The general workflow to detect the critical slip surface associated with the smallest
FoS is depicted in Figure 2.

Start

Definition of
• Slope geometry
• Material parameters
• Slope discretization

Determination of 
initial stress field
(FE simulation)

Selection of 
slip surface i

Determination of 
rotated stresses at 

corresponding nodes

Run ID 
simulations

FoS
determination

Update critical 
surface and 

FoS

All 
surfaces 
analyzed

?

Yes

No

Critical surface 
and FoS

Stop

i=i+1

Figure 2. Determination of FoS based on SDSS with element test simulations conducted using
Incremental Driver (ID).

SDSS can be conducted on the basis of different element tests; for instance, direct
simple shear (DSS) tests or a combination of DSS and triaxial compression tests. In this
study, only DSS tests are considered. Element tests can be simulated using continuum finite
elements or single Gauß point solvers. In this study, Incremental Driver [35] is utilized.
Incremental Driver is a program for testing constitutive models, performing element tests
that could be strain, stress or mixed controlled considering only a single Gauss point.
The program requires the definition of the initial conditions, the constitutive model with
its corresponding parameters and the testing program. The former is defined in terms
of the initial stress state and the initial values of the internal variables of the respective
constitutive model. The second is defined by referring to a user material (UMAT) and
providing material constants. The UMAT updates the stress, the internal variables and
state variables, and returns their updated values together with the Jacobian matrix at the
end of the increment. Any stress path can be defined in the testing program, though, stress
paths associated with different popular geotechnical tests are predefined in Incremental
Driver. Incremental Driver can be coupled with many different constitutive models. In
this study, the constitutive model chosen is hypoplasticity [36] as it enables considering
advanced soil behavior such as pycnotropy, barotropy, and loading history.

2.3. Application of Machine Learning in SDSS

To detect the critical slip surface, SDSS requires the evaluation of element tests at mul-
tiple points along potential slip surfaces. Furthermore, searching for the critical slip surface
entails evaluating element tests along multiple potential slip surfaces, each with multiple
points along the slip surface. Depending on the implemented optimization scheme (e.g.,
brute optimization, differential evolution [40], particle swarm optimization [41], genetic
algorithms [42]), and desired accuracy, more than 10,000 element test simulations may be
required for identifying the critical slip surface [33]. Additionally, in case of boundary value
problems considering temporal effects, for instance slopes subjected to seismic loading,
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multiple time steps need to be analyzed, resulting in huge computational cost. Machine
learning (ML) algorithms can help reducing the computational costs associated with SDSS
significantly by substitution of the computing-intensive Incremental Driver simulations
with ML algorithms, as summarized in the flowchart in Figure 3. To replace element
test simulations conducted with Incremental Driver by ML, an ML algorithm needs to be
selected, data for training and testing needs to be sampled and the ML algorithm needs to
be trained first.

Start

Definition of
• Slope geometry
• Material parameters
• Slope discretization

Determination of 
initial stress field
(FE simulation)

Selection of 
slip surface i

Determination of 
rotated stresses at 

corresponding nodes

Run ID 
simulations

FoS
determination

Update critical 
surface and 

FoS

All 
surfaces 
analyzed

?

Yes

No

Critical surface 
and FoS

Stop

Run ML 
algorithm

Train ML 
algorithm

Sampling for 
training data

Preparation of 
training data

i=i+1

Figure 3. Flowchart showing replacement of Incremental Driver (ID) simulations by machine learning
(ML) algorithms with application to strain-dependent slope stability analysis.

Previous studies [33] and additional investigations revealed that many different ML
algorithms, for instance radial basis functions (RBF), K-nearest neighbors (KNN), random
forest (RF), multilayer perceptron (MLP), or support vector machines (SVM), could be used
to enhance SDSS by ML. Although MLP did not provide the most accurate predictions in
the aforementioned study, it was selected in this study to emphasize the importance of the
sampling approach. The multi-layer perceptron (MLP) model is applied from the scikit-
learn package. Note that the settings of the MLP algorithms used within the framework of
SDSS are reported in Section 3.3.

After selection of an adequate ML algorithm, sampling is necessary to generate data
required for training and testing of the ML algorithm. As ML is used here to approximate
the stress–strain behavior for a specific loading path (i.e., DSS test) considering a fixed
constitutive model with constant material parameters, the results are only dependent on
the initial conditions, which include the initial stress tensor and the initial values of the
state variables. As plane strain conditions apply for DSS tests, only four components
of the stress tensor need to be considered. Five additional dimensions could be added
by consideration of the state variables of the hypoplastic model. Those include the void
ratio and four components of the intergranular strain (IGS) tensor in case this extension of
hypoplasticity [43] is used. As the consideration of IGS leads to increased stiffness at small
strains, shear stresses as well as T(γ) may be over-predicted, leading to non-conservative
estimates of the FoS [33]. For this reason, the IGS extension is not used in the current
study. The basic hypoplastic model [36] is applied. Consequently, five input variables
(i.e., dimensions) are considered for the sampling and training of the ML algorithms: four
stress components (three normal stresses σxx, σyy, σzz and one shear stress τxy) and one
state variable (void ratio e). Note that these five variables are not fully independent as
constraints, such as limit surfaces or limit void ratios need to be considered. Further details
regarding those constraints are discussed in the following section.
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3. Sampling
3.1. Motivation

To train a machine learning algorithm for a specific problem, a proper sampling
strategy is needed to ensure that sample points are well distributed inside the input
parameter space. Equally essential is the definition of suitable ranges of variables and
relevant constraints. As the training and potentially also the evaluation of ML algorithms is
dependent on the training sample size, the objective is to use the least number of samples
that guarantees a proper distribution within the n-dimensional space. In this regard,
the type of sampling method has a major impact on the sampling output and, thus, on
the training quality and the ML algorithms’ predicted output. Among others, common
sampling approaches include grid, stratified, cluster, weighted, Monte Carlo, and Latin
hypercube sampling (LHS). Out of those, six sampling approaches are described in more
detail and applied throughout this study. The interested reader can find more detailed
information about sampling techniques in specialized references like, for example, [44–46].

Grid sampling, otherwise also known as uniform sampling, uses a certain fixed spacing
between the input parameter values. The sample parameter values in each input dimension
are combined with each other so as to form a grid of samples. The major drawback of
grid sampling is that it only samples specific grid values, leaving empty spaces in all
dimensions of the input parameter space. Therefore, the use of uniform sampled data
for training ML algorithms cannot always ensure proper output prediction throughout
the space, and the quality of predictions depends on the density of the sampling grid. To
ensure a larger number of samples for lower stresses, grid spacing can be modified, for
instance, by accounting for quadratic spacing between the input parameters. An alternative
method that uses random sampling is based on the Monte Carlo technique [47]. This
method generates N samples in a sample space S. The method, though simple, does not
ensure proper distribution between samples in the input parameter space, and the user has
very little control over the final sample distribution. A better random sampling strategy
could be applied using Latin hypercube sampling (LHS) [48]. This is a stratified sampling
procedure where each component K of sample space S is partitioned into N intervals. Each
interval is assigned a probability of 1/N, thus leading to the sample partitioning into Nk
samples. The LHS sample of size N is thus obtained by assigning one random observation
in each cell.

For many applications, the sampling approaches discussed above must also consider
constraints to avoid generating sample points with combinations of input parameters that
violate well-established soil mechanical conditions. Samples not violating the constraints
are considered valid samples. Among others, those constraints can be formulated based
on stresses to account for limiting surfaces or based on limiting void ratios at given mean
pressures [49]. Suitable limiting surfaces for soils can be defined based on various surface
shapes in the principal stress space, for instance, cylinders (von Mises), cones (Drucker–
Prager), cones with hexagonal base (Mohr–Coulomb), cones with hexagonal base and
rounded corners (e.g., Matsuoka–Nakai, Lade–Duncan) or ellipsoids (Modified CamClay).
In this study, the Matsuoka and Nakai [50] criterion depending on the stress invariants
I1, I2 and I3 and the friction angle φ (Equation (2)) is applied as constraint since the same
function is incorporated as limiting surface in the hypoplastic model.

I1 I2

I3
= 8 tan2 φ + 9 =

9 − sin2 φ

1 − sin2 φ
= KMN (2)

In the simulation of element tests using hypoplasticity, it is fundamental to ensure that
void ratios do not evolve beyond the limit void ratio ei (loosest state) or below ed (densest
state), respectively, for a given mean effective stress p. Those limit void ratios constitute an
additional constraint for the sampling process and the randomly generated values of void
ratios must be validated against the limits imposed by Bauer’s law [49] as summarized
in Equation (3), where ei0, ec0, ed0 denote the respective void ratios at the loosest, critical,
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and densest state at zero mean effective stress, hs is the granular hardness, n is a material
constant and σ is the stress tensor. Note that in this study, the void ratios at densest state ed
and at critical state ec are considered as respective lower and upper limits during sampling.

ei
ei0

=
ec

ec0
=

ed
ed0

= exp
[
−
(
−trσ

hs

)n]
(3)

Imposing constraints to the sampling process can significantly reduce the amount of
valid samples needed to train the ML algorithms (A sufficient number of samples has to
be generated to populate the n-dimensional sampling space considering problem-specific
constraints. In general, the process to determine the number of samples is based on trial
and error, considering a desired level of accuracy in the predictions). Let us consider
60,000 samples generated using Latin hypercube sampling (LHS) as shown in the top row
of Figure 4. When the constraints summarized in Equations (2) and (3) are implemented,
a significant reduction of samples is observed as shown in the bottom row of the same
figure. Although only four out of ten projections are shown here, the influence of the
constraints can clearly be seen. A significant number of rejected samples corresponds to
lower stress states (e.g., σx ≤ 100 kPa). Violation of the constraints is more likely for lower
stresses due to smaller ranges of admissible stress states. In contrast, significantly more
amounts of samples at higher stress levels (e.g., σx ≥ 200 kPa) fulfilled the constraints
and, thus, were not removed. In total, consideration of the constraints led to a reduction
of the number of samples from 60,000 to approximately 10,000. Although not explicitly
depicted here, this issue does not solely apply to LHS, as emphasized in Figure 4, but is
also observed for grid sampling with linear or quadratic spacing, Monte Carlo sampling or
other standard sampling techniques identical constraints. To ensure that ML algorithms
are trained with the intended number of samples—in this case 60,000—that also should
not violate the aforementioned constraints, larger initial sample sizes need to be defined.
However, following this strategy, the sample distribution will be unsatisfactory as the
number of samples accepted for small stresses would still be small compared to those
accepted for larger stresses, resulting in an inhomogeneous distribution of samples along
the desired stress range. This is also depicted in Figure 5 showing four out of ten projections
for approx. 60,000 valid samples that were generated using grid sampling with linear and
quadratic spacing (1st and 2nd row), Monte Carlo sampling (3rd row), and Latin hypercube
sampling (4th row).

Figure 4. Influence of constraints on the distribution of samples using Latin hypercube sampling:
(top row) initial distribution of 60,000 samples, (bottom row) distribution of 10,000 valid samples
accounting for constraints.
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Grid sampling with quadratic spacing was used in [33] to train different ML ap-
proaches within the concept of SDSS, where similar issues regarding the distribution of
samples at lower stresses were also reported. The ML algorithms over-predicted τxy − γ
curves at low mean effective stresses compared to Incremental Driver simulations. The
over-prediction eventually resulted in an overestimation of the factor of safety (FoS) ob-
tained using SDSS. The over-prediction of the FoS results in an unsafe design must be
avoided under any circumstances. Considering the above discussions, modification of
sampling approaches is required to enable more accurate predictions of the shear stress vs.
shear strain behavior (e.g., for simple shear tests). For this reason, two modified sampling
algorithms are presented in the following section. The approaches referred to as “Modified
Latin Hypercube sampling 1 (LHS-1) and 2 (LHS-2)” are based on sampling and resampling
using Latin hypercube sampling and allow for more accurate predictions of the shear stress
vs. shear strain behavior, especially for small stress states.

Figure 5. Distribution of 60,000 valid samples generated using (1st row) grid sampling with linear
spacing, (2nd row) grid sampling with quadratic spacing, (3rd row) Monte Carlo sampling, and
(4th row) Latin hypercube sampling.

3.2. Modified Sampling Approaches

As discussed in Section 3.1, many sampling algorithms yield proper distributions
of samples for cases without constraints. However, as sampling for application in SDSS
involves constraints limiting potential unfeasible combinations of stress states and void
ratios, many samples generated using those sampling algorithms were eliminated as shown
for the case of LHS in Figure 4. The desired number of valid samples was achieved by
increasing the initial sampling size, as shown in Figure 5. However, this resulted in an
uneven distribution of samples across the entire stress range. Using those distributions of
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samples for training an ML algorithm would lead to an inaccurate approximation of shear
stress vs. shear strain curves, especially for lower stress levels. One of the main reasons for
this issue was that smaller stress levels had a higher probability of violating the constraints
compared to larger stress levels. This was due to the narrower admissible ranges in the
input dimensions for smaller stress levels.

To improve the quality of the sampling, two modified Latin hypercube sampling
approaches (LHS-1 and LHS-2) are formulated and schematically presented in Figure 6.
Both approaches start with a Latin hypercube sampling with the desired number of samples
considering five independent dimensions (σx, σy, σz, τxy, and e). After the generation of
samples using LHS within the ranges of 0 and 1, samples are scaled to the desired lower
and upper bounds of the respective dimensions. Afterwards, an iterative procedure for
both approaches is applied, whereby the workflow of the two algorithms differs slightly. In
LHS-1, the constraint limiting unfeasible stress states, for instance violating the Matsuoka–
Nakai criterion (Equation (2)), is checked, while in LHS-2, two constraints, the Matsuoka–
Nakai criterion (Equation (2)) and Bauer’s law (Equation (3)) are checked. If there are
any samples that do not meet the specified constraint(s), they will be resampled. To
ensure an adequate number of samples generated at small stress levels, the first stress
component (σx) is kept constant during resampling, while the other stress components
(σy, σz and τxy) and the void ratio e (only for LHS-2) are resampled using the conventional
LHS. This iterative procedure is repeated until all samples fulfill the constraint(s). Based
on trial analyses, approximately 1/3 of the initial samples are accepted directly, while
additional 30–35 iterations are required for the remaining samples. Note that the overall
sampling process including resampling iterations takes less than onew minute. Once all
samples comply with the constraint(s), the iteration procedure stops. At the end of the
iteration process, LHS-2 approach is finished, while an additional step is required for LHS-1.
Sampling and scaling of the fifth dimension (i.e., void ratio) is performed using 1D Latin
hypercube sampling considering the individual limiting void ratios in accordance with
Bauer’s law (Equation (3)).

Start
Generate n samples with 

LHS in range (0,1)
Scale samples to 

range (a,b)

Check for MN 
criterion

Check for 
Bauer’s law

Yes

NoResample the rejected 
samples and scale

Stop

Constraints
LHS 1 LHS 2

Generate void ratios 
accounting for Bauer’s law

LHS 1

LHS 2

All samples accepted?

Figure 6. Flowchart of the modified sampling approaches (LHS-1 and LHS-2).

Four projections (σx vs. σy, σx vs. σz, σx vs. τxy and σx vs. e) of the five-dimensional
space are depicted in Figure 7 for LHS-1 (top row) and LHS-2 (bottom row). It can be seen
from those projections that both modified Latin hypercube sampling approaches improved
the distribution of samples significantly, allowing for a higher number of samples in the
lower stress range compared to the standard sampling algorithms. Note that although an
increased number of samples is located at lower stresses after resampling, the generated
samples still cover the full domain properly.
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Figure 7. Sample distribution in the input parameter spaces using the modified sampling approaches:
(top row) modified Latin hypercube sampling 1, (bottom row) modified Latin hypercube sampling 2.

The quality of the distribution of samples following the stress and void ratio constraints
for different sampling methods can be summarized by plotting the frequency distribution
of each set of generated variables in terms of histograms. The scarcity of samples in a
specific stress range is reflected in an inhomogeneous distribution of the corresponding
histogram. An improved sampling strategy that guarantees better coverage of the entire
sampling space should produce quasi-uniform and symmetric histograms. In Figure 8
the frequency distributions of the four stress components and void ratio generated with
grid sampling with linear spacing, grid sampling with quadratic spacing, Monte Carlo,
Latin hypercube sampling, and modified LHS-1 and LHS-2 are presented. Grid sampling
with linear and quadratic spacing (Figure 8-rows 1,2) produced multimodal skewed left
distributions for the normal stresses and bimodal distributions for the void ratio with a gap
around e ≈ 0.8. Monte Carlo and Latin hypercube sampling (Figure 8-rows 3,4) resulted
in unimodal skewed left distributions for normal stresses. The skewed left distributions
evidence the problem that conventional sampling methods suffered in producing enough
samples for lower stresses that fulfilled all constraints. In contrast, the modified LHS-1
and LHS-2 showed a more uniform distribution of normal stresses for all ranges of interest.
Histograms for τxy exhibit a symmetric unimodal distribution that could be described
with a Gaussian distribution function. The high concentration of samples around τxy = 0
coincides with the needed increase in non-rejected normal stress samples near the low
stresses range after resampling.

3.3. Influence of Sampling Approach on Accuracy of MLP Prediction

This study investigates the impact of the sampling approach on the accuracy of the
ML prediction compared to the simulation of direct simple shear (DSS) element tests
using hypoplasticity in Incremental Driver (ID). The sampling approaches under inves-
tigation considered the Matsuoka–Nakai and Bauer’s law constraints and included grid
sampling with linear/uniform and quadratic spacing, Monte Carlo sampling, Latin hy-
percube sampling and both modified Latin hypercube sampling approaches (LHS-1 and
LHS-2) presented in Section 3.2. For all sampling approaches under investigation, MLP
with three hidden layers, each composed of 290 neurons, and a “logistic sigmoid” activation
function was used. These MLP settings were chosen based on trial analyses. The training
was conducted considering 60,000 valid samples accounting for the aforementioned con-
straints. In the case of the four traditional sampling approaches, larger initial sample sizes
were needed (see Figure 5), whereas in the modified Latin hypercube sampling approaches,
samples violating constraints were resampled following the concept of LHS-1 or LHS-2
presented in Section 3.2 with the final distribution of samples depicted in Figure 7. The



Geosciences 2024, 14, 44 12 of 23

influence of sampling strategies was validated using new sampling points. A total of
3000 new test samples were generated, 1500 each with LHS-1 and LHS-2. Shear stress vs.
shear strain curves were produced with MLP using the validation samples. Simulations of
DSS element tests with ID were conducted using the stress states and void ratios generated
in the validation set as initial conditions.

Figure 8. Histogram of the input parameters using (1st row) grid sampling with linear spacing,
(2nd row) grid sampling with quadratic spacing, (3rd row) Monte Carlo sampling, (4th row) Latin
hypercube sampling, (5th row) modified Latin hypercube sampling 1, and (6th row) modified Latin
hypercube sampling 2.

Representative results of shear stress vs. shear strain curves for test samples with
different initial mean effective stresses are depicted in Figure 9. The curves were obtained
from MLP predictions and DSS simulations with ID and hypoplasticity using the validation
set. It is apparent from this figure that good agreement between MLP using all sampling
approaches and the element test simulations with the hypoplastic model was obtained for
large mean stresses (p ≥ 100 kPa), while minor differences were obtained for intermediate
mean stresses (p = 58 kPa). Note that for the latter case, the accuracy of the predicted
shear stress vs. shear strain curve decreased using grid sampling with linear spacing due
to over-prediction of shear stresses for shear strain levels γ ≤ 10 %. Significant differences
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between the curves predicted by MLP and ID were obtained for smaller mean stresses
(p = 6 kPa and p = 13 kPa). In the case of grid sampling with linear spacing and traditional
LHS, large initial offsets in the predicted shear stresses were seen. All four traditional
sampling approaches significantly overestimated the shear stresses for the whole range of
shear strains applied. In contrast, it was observed that the predictions of the MLP model
using the modified Latin hypercube sampling approaches LHS-1 and LHS-2 resulted in
good agreement with the ID results for all stress ranges.
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Figure 9. Comparison of shear stress vs. shear strain curves (DSS test) at different mean stresses obtained
from Incremental Driver and multi-layer perceptron (MLP) using different sampling approaches.

The accuracy of the predictions of the MLP model using different sampling approaches
for the 3000 test samples was evaluated in terms of the coefficient of determination limited
to 0.0 ≤ R2 ≤ 1.0. Overall, a good approximation of the shear stress response from
ID was obtained with MLP in combination with all sampling approaches, as indicated
by coefficients of determination varying in the range 0.773 ≤ R2 ≤ 0.913 (see Table 1).
However, the evaluation of R2 regarding different mean stress ranges revealed that the MLP
predictions utilizing different sampling approaches varied strongly. The best agreement
between ID and MLP was obtained for large mean stress levels (p ≥ 100 kPa) for all
sampling approaches (0.858 ≤ R2 ≤ 0.938). A lower level of agreement was observed for
intermediate mean stress levels (20 kPa ≤ p ≤ 100 kPa). In that range, the lowest R2 was
obtained using grid sampling with linear/uniform spacing (R2 = 0.313), while the other
sampling approaches resulted in 0.603 ≤ R2 ≤ 0.856. As expected, no improvement of
R2 was seen using the modified Latin hypercube sampling approaches LHS-1 and LHS-2
for large mean stress levels. This can be explained by the smaller number of samples for
large mean stress levels. However, as the difference in R2 was small, the predictions of
MLP using LHS-1 and LHS-2 for large mean stress levels could be considered accurate.
In the case of intermediate mean stress levels, it was observed that the LHS-1 and LHS-2
approaches provided better estimates compared to the other sampling approaches as a
result of higher sample densities that could also be seen by comparing the distribution of
samples depicted in Figures 5 and 7.
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Table 1. Accuracy of MLP in terms of R2 using different sampling approaches.

p ≤ 20 kPa 20 kPa ≤ p ≤ 100 kPa p ≥ 100 kPa Overall

Grid sampling with linear spacing 0.000 0.313 0.858 0.773
Grid sampling with quadratic spacing 0.000 0.750 0.934 0.887
Monte Carlo sampling 0.011 0.642 0.938 0.879
Latin hypercube sampling 0.003 0.603 0.878 0.823
Modified Latin hypercube sampling-1 0.328 0.856 0.936 0.913
Modified Latin hypercube sampling-2 0.769 0.823 0.917 0.907

As intended, the most pronounced differences between the R2 values obtained with
the six sampling approaches were seen for smaller mean stress levels. In contrast to the tra-
ditional approaches providing very small coefficients of determination (0.0 ≤ R2 ≤ 0.011),
indicating very low accuracy of the shear stress vs. shear strain behavior obtained in a DSS
test, the modified Latin hypercube sampling approaches (LHS-1 and LHS-2) resulted in sig-
nificantly improved approximations. It is worth noting that there is a significant difference
in the results obtained when using MLP in combination with the modified Latin Hypercube
sampling methods LHS-1 and LHS-2, with the latter performing better than the former.
These differences can be directly related to the different sampling strategies employed,
particularly when dealing with the void ratio. In LHS-1, the void ratio is sampled using
LHS. However, apart from considering individual bounds in accordance with Bauer’s law,
this is done separately from the four stress components. It is possible that small stresses
were only combined with void ratios associated with large relative densities, as it is not
checked whether LHS-1 results in a proper distribution of samples in the 5D space. This
deficit was overcome in LHS-2 by incorporating the void ratio in the resampling process,
which allowed Latin hypercube sampling to consider four variables instead of three, with
the void ratio sampled separately.

4. Influence of Sampling on the FoS for Slopes Subjected to Different Loading
4.1. Methodology

The selection of the sampling approach has a decisive influence on the accuracy of the
stress–strain behavior predicted by the machine learning algorithm, especially for small
mean stresses, as extensively discussed in Section 3 with the simulation of element tests.
Now, the effect of sampling techniques is studied on the scale of geotechnical boundary
value problems, where the stability of a slope with an inclination of 15◦ subjected to two
different loading conditions was analyzed in terms of the factor of safety (FoS) using
the concept of strain-dependent slope stability (SDSS) proposed by [34] and outlined in
Section 2.1. In the first example depicted in Figure 10a, the slope is subjected to an external
uniform distributed load applied on the crest, whereas in the second example presented in
Figure 10b, an embedded foundation at the crest is considered. In both examples, the soil is
considered dry with an initial relative density of DR = 40%. The material behavior of the
soil is described using the hypoplastic constitutive model [36], which requires the definition
of the following material parameters: the critical friction angle φc, the void ratios (at zero
mean effective stress) at densest state ed0, at critical state ec0 and the maximum void ratio in
a suspension ei0, the granular hardness hs, and the exponents n, α and β. The parameter
set utilized in this study is shown in Table 2. The finite element simulations were carried
out using the software numgeo ([51–54] and www.numgeo.de, accessed on 21 December
2023). The simulations were performed in the following steps: first, in the geostatic step,
gravitational load (soil weight) was considered and an additional artificial load of 0.1 kPa
acting perpendicular to the top surface was applied for the purpose of numerical stability.
Secondly, loads q acting at the crest of the slope and on the embedded foundation were
increased incrementally up to 200 kPa (example 1) and 600 kPa (example 2). Lastly, the
factor of safety of the slopes was quantified based on the SDSS method.

www.numgeo.de
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(a)

Crest loading
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Figure 10. Schematic drawing of the slopes under consideration: (a) uniform distributed load and
(b) embedded foundation.

Table 2. Parameters of the hypoplastic model for the slope material.

φc in ◦ hs in MPa n ed0 ec0 ei0 α β

33.1 4000 0.27 0.677 1.054 1.212 0.14 2.5

Considering the spatial distribution of stresses and state variables (e.g., void ratio)
obtained from numgeo at different loads, stability analyses were conducted using SDSS,
quantifying the factor of safety in terms of FoSmax. SDSS was conducted with shear stresses
determined in accordance with direct simple shear (DSS) tests performed at each node. The
element test simulations for the DSS tests were carried out using Incremental Driver (ID).
Although SDSS could be implemented for different shapes of slip surfaces (e.g., planar, circular,
or polyline), only circular slip surfaces with 20 nodes are considered in the current study.
As the location of the critical slip surface is unknown a priori, many slip surfaces need to
be investigated. In accordance with the discussions by Schmüdderich et al. [33], differential
evolution [40] was used as an optimization algorithm to determine the critical slip surface.

Stability analyses were conducted at predefined load intervals of ∆q = 20 kPa (example
1) and ∆q = 100 kPa (example 2) to investigate the influence of the magnitude of loading
on the FoS. To study the influence of the sampling approach on the FoS prediction, com-
parative analyses with multi-layer perceptron (MLP) trained based on different sampling
approaches were undertaken, considering the results obtained with ID as the proper solution.
In accordance with Section 3.3, four traditional sampling approaches (grid sampling with
linear and quadratic spacing, Monte Carlo sampling, and Latin hypercube sampling) and
both modified Latin hypercube sampling approaches (LHS-1 and LHS-2) were considered
for the FoS estimation of both slopes. Although grid sampling with linear spacing provided
inaccurate approximations of the shear stress for small mean stress levels (see Section 3.3), it
was included in this section to allow for a comprehensive comparison of the FoS predictions.
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In addition to the FoS, the shape of the critical slip surfaces associated to the smallest
FoS was investigated. Note that for the first example, very shallow slip surfaces were mostly
expected (failure types 1 and 2 in Figure 10a) since the friction angle governs the shear
strength and the surcharge is acting on the top surface. For the second example, shallow
(failure type 1 in Figure 10b) and deep (failure types 2 and 3 in Figure 10b) slip surfaces are
expected depending on the magnitude of load applied to the embedded foundation. For
small magnitudes, shallow slip surfaces might be observed that do not interfere with the
foundation, while for increased loads slip surfaces might start right below the foundation.
Thus, there should be a threshold load separating different types of slip surfaces. Note that
discussions with regard to different types of slip surfaces depending on load magnitudes
or interfering objects in close proximity were also provided in previous studies with regard
to the bearing capacity problem [55,56].

4.2. Results and Discussion

Figure 11 depicts the results in terms of the factors of safety (FoSmax) versus applied
vertical loads based on SDSS analyses obtained with ID and MLP using different sampling
approaches for both slope examples. As mentioned in Section 2.1, the SDSS analysis can
yield two FoS depending on whether the global mobilized shear resistance ratio T reaches
a peak value and then decreases. All the results presented and discussed in this section
refer to the peak FoS, also denoted as FoSmax. Figure 11-left presents the results of example
1 (Figure 10a), where a uniform load is acting on the crest of the slope. Analyzing the
results obtained with ID (continuous line), that the initial level of safety (FoS = 2.44)
obtained with SDSS for the case of zero surcharge is in good agreement with the rough
estimate of tan φc/ tan β = 2.43, with β = 15◦ being the slope inclination. Moreover, FoS
decreases with increasing surcharge applied on the slope crest until the stability approaches
FoS = 1.0 for a surcharge of 200 kPa. Note that convergence of the FE simulations could
not be obtained for loads exceeding 200 kPa, which is in good agreement with the FoS
falling below the value of 1.0. Based on the evaluation of slope stability using MLP with
different sampling methods, it can be observed that there is a strong agreement between
MLP and ID for LHS-1 (red points) and LHS-2 (purple points). However, the other four
traditional approaches (grid sampling with linear and quadratic spacing, Monte Carlo
sampling, and Latin hypercube sampling) exhibit a wider range of variation in the factor
of safety (FoS). Overall, grid sampling with linear spacing led to the largest FoS for all
loads investigated, while the other traditional sampling approaches showed oscillating
deviations. It is also worth noting that the variation of FoS with the increasing vertical
load follows an almost linear pattern for the grid sampling with linear spacing, whereas
for the LHS-1 and LHS-2 methods, the trend is nonlinear with a quicker reduction of the
FoS for external loads between 0 and 120 kPa. At certain loads, accurate predictions of the
FoS were achieved, though, for other loads, large deviations were seen. This is seen, for
instance, for grid sampling with quadratic spacing at q = 40 kPa and q = 60 kPa, resulting
in a large overestimation for the former case and an accurate estimate for the latter case.

Considering the results obtained for the second example (slope with embedded footing
on the crest, Figure 10b) presented in Figure 11-right, it can be seen that levels of safety
similar to example 1 are obtained for all approaches in case of zero surcharge. For the
simulations with ID, FoS = 2.44 is obtained. This level of safety remains unchanged until
the load acting on the embedded foundation is increased beyond 300 kPa. Thereafter,
a steady decrease of the FoS with increasing load is observed. This trend indicates that
the embedded foundation does not interfere with the critical slip surface of the slope in
case of small or moderate loads, which will be further discussed regarding the shape of
the critical slip surface in the subsequent paragraph. Only when a threshold load—here,
approximately 300 kPa—is exceeded then the FoS starts decreasing, accompanied by a
change in the shape and location of the critical slip surface. Considering the FoS predictions
obtained with MLP using different sampling approaches, over-estimation of the FoS is
observed when using the traditional sampling approaches for q ≤ 300 kPa, whereas more
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accurate predictions are obtained using the modified Latin hypercube sampling approaches
LHS-1 (red dots) and LHS-2 (purple dots). Similar to example 1, it is apparent that the
largest deviations in the FoS are obtained using grid sampling with linear spacing. In
contrast to the scattering of FoS predictions observed for q ≤ 300 kPa, more accurate and
consistent FoS predictions are obtained using all sampling approaches for higher loads.
This is in good agreement with the performance of the MLP model at higher stress levels
using all sampling approaches, as previously discussed with regard to Table 1.
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Figure 11. Comparison of FoSmax based on SDSS using ID and MLP trained with different sampling
approaches for (left) example 1 and (right) example 2.

As discussed in the previous paragraph, the FoS versus load curve for the slope
example 2 presented in Figure 11-right is characterized by a distinct kink at q ≈ 300 kPa.
Following the discussions of previous works related to the bearing capacity problem [55,56],
this kink in the FoS plot should be accompanied by a switch in the location and shape of the
critical slip surface. To check if this reasoning is valid for the two examples studied here, the
locations of the critical slip surfaces are analyzed for both examples, considering different
loads. Focusing on LHS-2, which resulted in more accurate FoS predictions compared to ID
for all load cases, all slip surfaces investigated during the optimization process are plotted
in Figure 12 for the example 1 (top row) and the example 2 (middle and bottom row) with
colours indicating the level of safety in terms of the FoS. Upon examining the critical slip
surfaces for the example 1, it is evident that a large slip surface extends from the crest to the
toe of the slope for zero surcharge (failure type 1 as schematically indicated in Figure 10a).
With increasing magnitude of the distributed surface load applied to the slope crest, a very
shallow critical slip surface is detected close to the slope crest (failure type 2 as shown
in Figure 10a). Independent of the sampling approach selected, these two types of slip
surfaces are observed, also for stability analyses performed with ID. Note that, although a
switch in the critical slip surface is observed here, a kink in the FoS vs load plot was not
detected. A potential reason for this is that the switch takes place at very small loads, even
below the first load increment of 20 kPa investigated here.

When analyzing the critical slip surfaces for the example 2, shown in the middle
and bottom rows of Figure 12, it becomes evident that a similar critical slip surface is
obtained in the example 1 without surcharge as in the example 2 when the surcharge
is q = 100 kPa and q = 300 kPa (failure type 1 as shown in Figure 10b). Note that the
FoS remains unchanged, as well, since the stress level in the shallow parts of the slope
is not influenced significantly by the external load acting on the embedded foundation.
However, once exceeding a threshold load, the location and shape of the critical slip surface
changes, leading to a failure below the embedded foundation (failure type 2 in Figure 10b)
as indicated in the bottom right subfigure for q = 500 kPa. Interestingly, a third type of
critical slip surface (failure type 3 in Figure 10b) is observed applying grid sampling with
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linear spacing as well as traditional LHS sampling, the latter shown for q = 300 kPa in the
bottom left subfigure. This type 3 failure is obtained for moderate stresses and spans from
the right corner of the foundation to the slope toe. As also type 2 failure is observed for
grid sampling with linear spacing as well as traditional LHS sampling considering higher
loads, this observation allows to conclude that there should be even two thresholds loads
for the application of embedded foundations in close proximity of slopes, where the first
transition happens between type 1 and type 3 and the second between type 3 and type 2.
Thus, starting with type 1 and increasing the load on the embedded foundation, first, the
crest point of the critical slip surface moves towards the foundation corner (type 2) and
afterwards, the toe point moves upwards along the slope until reaching type 3. Figure 13
summarizes the observed changes in the typology of the failure mechanism as function of
the increasing load on the footing for the example 2, considering all the studied sampling
methods. The influence of sampling is evidenced for grid sampling with linear spacing
and Latin hypercube sampling because a transition between failure type 1 and type 3
appears at different values of the applied loading, whereas that transition is not observed
for the other sampling techniques, where a change between failure type 1 and type 2 occurs
at q = 400 kPa. Still, further investigations with smaller load increments are required to
precisely detect this transition, expecting also to observe a second kink in the FoS versus
load curves for the results of those investigations.

Figure 12. Influence of surcharge on location of critical slip surface obtained using LHS-2 for (top
row) example 1 and (middle and bottom row) example 2 as well as comparison of LHS and LHS-2
for example 2, q = 300 kPa.
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Figure 13. Influence of the sampling method on the type of critical slip surface as function of surcharge
for the example 2.

Another way to investigate the effects of sampling methods on the slope stability
analysis with SDSS consisted of comparing the prediction of τxy − γ curves at the 20 nodes
used to represent a critical slip surface. The stress condition and the void ratio at each point
were used as initial conditions in Incremental Driver and as input variables for the MLP
to obtain the shear stress–shear strain curve of a DSS test. Then, the shear stress values
τxy at 5% shear strain were compared between ID and MLP results. The relative error was
defined as ε = (τ(5%)MLP − τ(5%)ID)/τ(5%)ID. Two critical surfaces were considered,
namely for the example 1 with q = 0 kPa (failure type 1) and for the example 2 with
q = 500 kPa (failure type 2). The results of this evaluation are summarized in Figure 14.
It can be seen from the results for the example 1 without surcharge (Figure 14a) that grid
sampling with linear spacing constantly overestimates the shear stress along all the nodes
by more than 20%. Monte Carlo sampling also produced overestimation in the shear stress,
but the difference was reduced for those nodes in the central portion of the slip surface
(nodes 4–18). Grid sampling with quadratic distance, Monte Carlo and Standard Latin
hypercube sampling caused the largest overestimation of τ(5%) for nodes close to the entry
and exit points on the slope surface. Grid sampling with quadratic distance and Standard
Latin hypercube sampling caused the largest underestimation of τ(5%) (negative errors
between 7–15%) intermediate nodes (nodes 5–17). Standard LHS also produced the largest
negative errors for the intermediate nodes. Modified LHS-1 and LHS-2 yielded smaller
errors compared to the conventional sampling methods. With modified LHS-1, negative
errors around -5% were obtained for nodes close to the slope surface, but for those nodes in
the middle portion of the slip circle the errors reduced significantly and were close to 0%.
In the case of modified LHS-2 the errors exhibited smaller fluctuations around 0% ± 2% for
all nodes on the slip surface.

For the second example, considering a footing load of q = 500 kPa, a large variation
of the relative error ε was observed depending on the position of the node on the slip
surface. For nodes 1–16 below the foundation as well as at greater depth, −3 % ≤ ε ≤ +6 %
were obtained, whereas huge deviations were observed for nodes in close proximity to
the slope surface. For this second example, a more consistent trend in the errors for nodes
1–14 was calculated for all sampling methods, where except for Monte Carlo and grid
sampling with quadratic spacing, the errors were negative and did not exceed −2.5%.
Monte Carlo overestimated the shear stress for most of the nodes closer to the free surface
(nodes 14–20). Modified LHS-1 showed an underestimation of −7.5% at the last node on
the slope surface, whereas LHS-2 produced a smaller error of −1.5%. For the same node 20,
the other sampling methods showed an overestimation of more than 300%. In summary,
the LHS-1 and LHS-2 methods had smaller errors in shear stress, with LHS-2 consistently
outperforming LHS-1.
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Figure 14. Relative deviations for nodes along the critical slip surface for (a) example 1 without
surcharge (q = 0) and (b) example 2 with q = 500 kPa.

5. Conclusions and Future Work

The effects of six different constrained sampling techniques on the performance of
machine learning algorithms to predict soil response under element test conditions were
studied. Simulations of direct simple shear tests with hypoplasticity were used as input
patterns to train MLP algorithms. Constraints were introduced in the sampling strategy
to explore the sampling stress space, accounting for the failure limit surface inherent to
hypoplasticity. An additional restriction in the void ratio space was needed to account
for the limit conditions imposed by Bauer’s law to define the maximum and minimum
allowable void ratios as functions of the effective mean stress. The imposed constraints
affected the density and homogeneity of the sampling space. Consequently, additional
considerations were needed in the sampling strategy to cover sparsely populated areas,
particularly for lower mean stresses. Two improved Latin hypercube sampling strategies
(LHS-1, LHS-2) were proposed to overcome the insufficient density of sampling points at
lower mean stress. The modified LHS-1 and LHS-2 showed a more uniform histogram of
normal stresses for all ranges of interest compared to the conventional sampling methods.

The six sampling methods were applied to evaluate the factor of safety using the strain-
dependent slope stability (SDSS) analysis proposed by [34]. Significant improvements were
observed in the simulation of shear stress–shear strain curves using MLP for lower mean
effective stresses when the modified LHS-1 and LHS-2 sampling methods were used,
with LHS-2 consistently outperforming LHS-1. This improvement was also reflected in
a closer and better agreement between MLP and Incremental Driver (ID) simulations for
conditions where the shear strength exhibited a peak behavior followed by softening. All
four conventional sampling methods (grid sampling with linear and quadratic spacing,
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Monte Carlo and Latin hypercube) were found to overestimate the shear stresses for the
entire range of applied shear strains for smaller mean stresses. The slope stability analysis
based on the SDSS method showed that for a slope with a distributed load acting on the
crest, the sampling method strongly impacts the evolution of the FoS with increasing
load. Conventional sampling approaches showed significant overestimation in the FoS
compared to results based on ID simulations. Even the decreasing trend between FoS and
the increasing load was not followed steadily by methods like Monte Carlo, grid sampling
with quadratic spacing or Latin hypercube sampling, where random oscillations in the FoS
were observed. Modified LHS-1 and LHS-2 showed a consistent decreasing trend matching
closely the observed results using the ID simulations for that example.

Results obtained with SDSS for the slope with an embedded foundation at the crest
indicate that the sampling technique influences the critical slip surface type and the applied
load threshold that triggers the change between failure modes. The influence of sampling
is evidenced for grid sampling with linear spacing and Latin hypercube sampling because
a transition between failure type 1 and type 3 appears at different values of the applied
loading, whereas that transition is not observed for the other sampling methods. Further
investigations with finer increments in the external load applied on the crest of the slope
and on the footing are required to detect the transition between different failure modes,
reflected in kinks in the FoS versus load curves. Additional machine learning techniques
can also be considered in the future to study if different sampling methods significantly
impact the SDSS analysis, as observed here for the specific case of multilayer perceptrons.

Considering the use of SDSS enhanced by machine learning for slope stability analyses,
this study emphasized the importance of proper sampling for the prediction of the FoS.
As shown, inappropriate sampling may result in non-conservative estimates of the FoS,
which can have severe consequences for the design of geotechnical structures. Note that
adequate sampling is not only relevant for the application of ML within the framework
of SDSS, but also applies to other boundary value problems, where ML is used to replace
conventional analyses, for instance finite element analyses for the prediction of FoS based
on strength reduction method or limit equilibrium method that are associated with higher
computational costs compared to ML.
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ANN Artificial neural network
DSS Direct simple shear
FoS Factor of safety
ID Incremental Driver
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RBF Radial basis functions
RF Random forest
SDSS Strain-dependent slope stability
SVM Suppor vector machines
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