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Abstract: In observational method projects in geotechnical engineering, the final geotechnical design
is decided upon during actual construction, depending on the observed behavior of the ground.
Hence, engineers must be prepared to make crucial decisions promptly, with few available guidelines.
In this paper, we propose coupling numerical analysis with machine learning (ML) algorithms
for enhancing the decision process in observational method projects. The proposed methodology
consists of two main computational steps: (1) data generation, where multiple numerical models are
automatically generated according to the anticipated range of input parameters, and (2) data analysis,
where input parameters and model results are analyzed with ML models. Using the case study of
the Semel tunnel in Tel Aviv, Israel, we demonstrate how this computational process can contribute
to the success of observational method projects through (1) the computation of feature importance,
which can assist with better identifying the key features that drive failure prior to project execution,
(2) providing insights regarding the monitoring plan, as correlative relationships between various
results can be tested, and (3) instantaneous predictions during construction.

Keywords: observational method; machine learning; tunnel; numerical modeling; geotechnical analysis

1. Introduction

In light of the uncertainty associated with geological materials, the observational
method has been proposed and implemented in various geotechnical projects [1]. This
approach has been developed due to the inherent uncertainty associated with geological
materials. The initial design is based on a range of probable ground conditions, and the final
geotechnical design is decided upon during construction and depending on the observed
behavior of the ground. Proper application of the observational method requires setting
forth a rigorous monitoring plan and devising contingency actions according to a range of
anticipated ground conditions [2]. The observational method has potential for significant
cost savings, considering that with the alternative conventional approach, a high factor of
safety is assumed upfront, regardless of the actual ground response during construction.
For the conventional design-build approach, design procedures are specified in a clear
and detailed manner. In contrast, engineers tasked with implementing the observational
method must make crucial decisions promptly, with few to no available guidelines [3]. This
may be one of the main reasons that the observational method is not widely applied [4].

Recently, machine learning algorithms (MLAs) have been proven successful for a wide
range of tasks, and researchers from diverse backgrounds are rapidly integrating the use of
MLAs for several applications. MLAs analyze data sets to recognize patterns, which are in
turn used to make predictions or infer behavior without the need for human intervention [5].
Supervised MLAs regularly involve a training process, where large amounts of input data
are processed in order to find the best fit to the output data. This training process is
performed on the training data. Subsequently, predictions based on this fit are tested
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against data the model has never seen before, referred to as the test data. The test–train split
helps diminish problems such as overfitting that were common with traditional statistical
analyses [6]. Overfitting is a phenomenon where the statistical model fits the specific data
set very well but fails to generalize to unseen data.

In the field of geotechnical engineering, MLAs have been proposed for different pur-
poses, including geological anomaly detection [7], tunnel boring machine operation [8],
and ground settlements [9]. An overview of different ML applications for geotechnical
engineering is given by [10]. However, things are not necessary as straightforward when
it comes to using ML for engineering design. For instance, ML algorithms require experi-
mental databases (field observations and/or laboratory tests) to train the algorithm and
to validate its predictions. This raises the question of how to train MLAs when data are
not available (e.g., before the excavation of a tunnel is initiated). In this context, numerical
models provide access to a set of artificial data that could be used as input for MLAs.

These MLAs could be interpreted as a simplified form of a preconstruction digital
twin that establishes a connection between the physical object (e.g., a tunnel) and the digital
objects (numerical models). To become a true digital twin, the models and MLAs would
have to be continuously updated with actual data originating from the physical object. In
this context, numerical models represent virtual prototypes of the rock mass [5].

In this paper, we examine the coupling of finite element (FE) analysis with MLA for the
objective of aiding engineers tasked with applying the observational method. In order to better
illustrate the proposed methodology, a practical example of the Semel cut-and-cover tunnel
(Tel-Aviv, Israel) is discussed and analyzed. The paper is hereinafter organized as follows.

First, we review the background information of the Semel tunnel project. Second, we
present the proposed methodology for coupling MLAs with the geotechnical analysis for
an observational method project. Thirdly, we demonstrate the use of the proposed analysis
method with the example of the Semel tunnel. Finally, we summarize the main findings
and discuss important limitations of the integration of MLAs for geotechnical engineering.

2. Semel Tunnel Project

The Semel tunnel is currently under construction in Tel Aviv, Israel. The tunnel will
allow vehicular access to the underground parking lots of high-rise buildings that are being
built concurrent to the tunnel. The geological formation consists mainly of coarse-grained
soil, locally termed ‘Kurkar’. The Kurkar is sporadically interbedded with clay, silt, and
shale lenses, which represent different periods of seawater transgressions and regressions
of the Pleistocene age [11]. Under greater depths, the Kurkar is denser and stiffer and may
exhibit rock-like qualities. The groundwater level is well below the tunnel and its impact
on the tunnel can be neglected.

Due to the shallow depth of the tunnel, the cut-and-cover tunnel construction method
was found most suitable. Due to the proximity of the adjacent structures, an open excavation
was not feasible. Thus, slurry and pile walls were constructed on both sides of the tunnel
prior to any excavation works. For lateral support of the tunnel walls, ground anchors were
used. In some portions of the tunnel, existing buildings and utilities did not permit the use
of ground anchors and required special considerations.

One of the main risks of deep excavations in a dense urban environment is that
nearby structures can be negatively impacted by ground movements. Particularly, the
Heychal Yehuda synagogue is highly sensitive to ground movements. The synagogue
is situated approximately 3 m west of the Semel tunnel, and its basement floor lies on
shallow foundations. Moreover, cracks have appeared in the synagogue walls even prior
to the tunnel excavation works, most likely due to the excavations of high-rise buildings
constructed on the southern and western boundaries of the synagogue. Figure 1 shows an
aerial view of the Semel tunnel route and the adjacent synagogue structure.



Geosciences 2023, 13, 196 3 of 15Geosciences 2023, 13, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Semel tunnel and Heychal Yehuda synagogue (modified from gisn.tel-aviv.gov.il ac-
cessed on 18 May 2023). 

The Semel tunnel project was not planned according to the observational method, 
and the traditional design–bid–build approach was implemented. However, due to the 
sensitivity of the synagogue structure, special considerations were made for this section. 
It was decided that in the vicinity of the synagogue, a top-down construction operation 
would be applied, consisting of two main stages: (1) minimal excavation to allow for the 
tunnel concrete slab to be constructed, and (2) excavation to the bottom of the tunnel, with 
the tunnel slab serving as lateral support. Figure 2 shows the formwork for the slab con-
crete during stage #1. 

 
Figure 2. Formwork for the tunnel concrete slab during stage 1 of the top-down construction. 

Based on SPT tests carried out on-site, input parameters were assumed, and geotech-
nical analysis was carried out. This analysis showed that the top-down method would 
induce small displacements, and it was, therefore, assumed that excavation would not risk 
the structural integrity of the synagogue. However, given the uncertainty of geotechnical 

Figure 1. Semel tunnel and Heychal Yehuda synagogue (modified from gisn.tel-aviv.gov.il accessed
on 18 May 2023).

The Semel tunnel project was not planned according to the observational method,
and the traditional design–bid–build approach was implemented. However, due to the
sensitivity of the synagogue structure, special considerations were made for this section.
It was decided that in the vicinity of the synagogue, a top-down construction operation
would be applied, consisting of two main stages: (1) minimal excavation to allow for the
tunnel concrete slab to be constructed, and (2) excavation to the bottom of the tunnel,
with the tunnel slab serving as lateral support. Figure 2 shows the formwork for the slab
concrete during stage #1.
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Based on SPT tests carried out on-site, input parameters were assumed, and geotech-
nical analysis was carried out. This analysis showed that the top-down method would
induce small displacements, and it was, therefore, assumed that excavation would not risk
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the structural integrity of the synagogue. However, given the uncertainty of geotechnical
works, an observational approach was adopted. A monitoring plan was devised, where
tunnel wall displacements were measured, and vibrating wire crack meters were installed
in the synagogue. Given a large displacement of the wall during the first stage and the
appearance and/or elongation of cracks in the synagogue, a jet-grouting operation would
be carried out to reinforce the soil beneath the synagogue basement. This operation would
be used as a last resort, due to both the large cost of this operation and apparent risks due
to possible improper application of the grouting. Ultimately, the top-down construction
was recently completed without need of the grouting operation. It is noted that the first
author was part of the project design team.

3. Methodology for Coupling FE and MLA Analysis

The idea of coupling numerical modeling with MLA has been discussed, tested,
and implemented for different applications. The concept of surrogate models where
MLAs are used to alleviate the burden of computationally expensive models has been
developed [12]. Furtney et al. [13] discuss the use of surrogate models for rock and soil
engineering applications and demonstrate three examples of predictive tasks: crushed
zone size in rock blasting, the effective properties of a discrete fracture network (DFN),
and the bearing capacity of a layered soil. Salazar and Hariri-Ardebili [14] used ML to
construct a metamodel for assessing dam safety according to a statistical distribution of
random variables. Tao et al. [15] used a particle swarm optimization algorithm to increase
the accuracy of a tunnel deformation analysis. Mitelman and Urlainis [16] used numerical
data to demonstrate that learning can be transferred from different but similar data sets.

For geotechnical operations, it is important to decide upon the suitable analysis
methods. Whether using empirical, analytical, or numerical methods, it is common practice
to compute results for a range of input parameters. For conventional projects, the engineers
need to design according to a critical scenario and apply a suitable factor of safety to their
design. In contrast, for projects where the observational approach is implemented, a range
of possible outcomes are considered and prepared for.

Due to the inherent uncertainties associated with the selection of soil and rock input
parameters, different probabilistic tools have been integrated within standard geotechnical
analysis [17]. The probabilistic analysis is regularly used to compute the probability of
failure [18].

Here, we propose automating the process of finite element (FE) modeling for ML analysis.
The FE models must be staged according to the observational approach, where results from
early stages of the project are used as a basis for assessing subsequent ground responses.

Prior to ML analysis, it is important to gain confidence that the FE models are accept-
able. Hence, it is advised that a number of models be examined thoroughly to avoid the
garbage in, garbage out phenomenon.

Once a series of FE models have been computed, three variables can be created:

• V1: initial deformation profile;
• V2: final deformation profile;
• V3: the input parameters (IPs) used for each model.

Table 1 lists the two proposed ML analyses. By training variable V3 against V2, feature
importance can be readily computed. Feature importance is the relative impact of each
input parameter on the final outcome for that specific ML model and is often used for
model interpretability. However, it can also be used to improve the performance of the ML
model through feature selection, as well as to establish whether additional efforts should
be invested in field investigations.



Geosciences 2023, 13, 196 5 of 15

Table 1. Input and output variables for ML analysis.

Use Input Data Target Output

Feature importance V3 V2
Deformation prediction V1 V2

By training V1 against V2, final deformation predictions can be computed instanta-
neously based on deformations from previous stages. This obviates the time-consuming
task of building, calibrating, and interpreting FE models manually. This is especially im-
portant for observational method projects, where decisions must be made promptly during
the actual project construction.

Devising an effective monitoring plan is considered an essential part of applying the
observational method. In addition to assisting the engineer during construction, the ML
analysis for deformation prediction can provide valuable insights that can affect the monitoring
plan. During this stage, different displacement results can be compared, and the deformations
that serve as the best predictors of future failure should be selected for monitoring.

Both the quantity and quality of the data have a significant impact on the success of
the subsequent stages of data analysis. With MLA, different sensitivity analyses can be
carried out with the objective of investigating how many data points are optimal and how
robust the model is in cases where noise is introduced to the data.

The flowchart in Figure 3 summarizes the proposed methodology.
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Although numerous geotechnical modeling methods and techniques have been devel-
oped by many notable researchers, for many geotechnical engineering projects, it is difficult
to accurately predict the physical outcomes (i.e., stresses, strains, and deformations) of
construction. Due to epistemic knowledge gaps in the fields of soil and rock mechanics, this
statement is true even for projects where rigorous field data are gathered prior to project
execution [19]. The limitations of the proposed methodology will be discussed in Section 7.

4. Demonstration of Proposed Analysis
4.1. Data and Assumptions

In this section, we use the Semel case study as an example to demonstrate the use of
the methodology proposed in the previous section. It is noted that the original data (i.e.,
geometry and strength parameters) have been changed, as the purpose of the current study
is to demonstrate the use of ML for a practical application, and not to discuss the actual
results in the Semel tunnel project. For the same reason, actual measured displacements
are not presented in this paper.
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The commercial code RS2 was used for the 2D FE analysis [18]. While tunnel analysis
is essentially a 3D problem, a 2D plane-strain analysis is assumed to be sufficient for the
current problem. An important advanced, built-in feature of the RS2 code is its ability to
execute probabilistic analyses. Different statistical methods (e.g., point estimate, Monte
Carlo, and Latin hypercube) and distributions (normal, uniform, etc.) can be used to
automate the process of generating models with strength parameters that vary according
to user preference.

Accordingly, one thousand FE models were automatically generated via the Monte
Carlo method. The Monte Carlo method is an iterative process where random parameters
are selected according to a statistical distribution defined by the user. It is emphasized that
Monte Carlo analysis was used as a tool for generating the data set for the ML analysis.
This is different from the traditional use of the Monte Carlo method as a probabilistic tool.
For this reason, a uniform distribution was used for all parameters. While probabilistic
analysis generally requires using normal distributions for geological materials, ML models
perform better when trained on uniformly distributed data sets. The sixteen model input
parameters are listed in Table 2. A Mohr–Coulomb plastic failure criterion was assigned to
the soil materials in the model. The fill layer was cohesionless. The mean relative minimum
and relative maximum values are given in the table as well. For the structural elements,
the input parameters of the concrete material were constant for all models. The concrete
Young’s modulus and Poisson ratio were assigned values of 30 GPa and 0.25, respectively.
The thickness of the tunnel walls and ceiling were 0.6 and 0.45 m, respectively.

Table 2. Variables for data generation.

Entity Property Notation Units Minimum Mean Maximum

1. Fill
Young’s Modulus E1 MPa 5 10 15
Friction Angle (peak) FA1 Degrees 25 30 35
Cohesion C1 MPa NA 0 NA

2. Sand 1

Young’s Modulus E2 MPa 30 40 50
Friction Angle (peak) FA2 Degrees 27.5 30 32.5
Cohesion C2 MPa 0 0.002 0.004
Friction Angle (residual) RFA2 Degrees 10 20 30

3. Sand 2

Young’s Modulus E3 MPa 90 100 110
Friction Angle (peak) FA3 Degrees 30 35 40
Cohesion (peak) C3 MPa 0 0.02 0.04
Friction Angle (residual) RFA3 Degrees 10 22.5 35
Cohesion (residual) RC3 MPa 0 0.02 0.04

4. Joint
Normal Stiffness JNS MPa 20 40 60
Shear Stiffness JSS MPa 2 4 6
Friction Angle JFA Degrees 15 20 25

5. Earth Pressure K Ratio K - 0.4 0.5 0.6

In regular practice, it is generally instructed to assume a normal distribution for
soil strength parameters [17]. However, the objective of the current automated modeling
process was to generate data for MLAs to train and test on. Training the data on normally
distributed data would favor prediction of data close to the mean, at the expense of the
accuracy of the data farther away from the mean. However, the primary concern during
construction is to capture the extremes (i.e., high redundancy vs. unacceptable risk). A
uniform distribution ensured a balanced data set for the ML analysis.

The parameters of each of the three soil layers were varied for the model analysis.
For all soil materials, the Mohr–Coulomb elastoplastic model was used. More advanced
constitutive models for soils, such as the Hardening Soil model, have been found to be more
accurate in terms of displacement prediction. However, the traditional Mohr–Coulomb
failure criterion has been found to yield acceptable results for tunneling problems [20].
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Switching to a more advanced material would require re-evaluating MLA performance.
Complex failure models require a greater number of inputs with nonlinear relationships,
which may necessitate using more sophisticated MLAs, as well as generating more data.

In order to model the interface between the wall and the soil, a joint boundary was
defined in the model. The joint boundary stiffness is a numerical construct intended to
simulate the relative slip within a FE mesh. The friction angle at the wall interface can be
estimated using empirical guidelines (e.g., see [21]).

Figure 4 shows the problem geometry, and Figure 5 shows the FE model and mesh.
The models consisted of 3169 elements and 12,748 degrees of freedom. The model was
divided into four modeling stages:

• Stage #1: preliminary geostatic stage;
• Stage #2: installation of tunnel walls and loading of the adjacent structure;
• Stage #3: initial excavation stage to a depth of 2 m from surface level;
• Stage #4: construction of the upper tunnel slab and final excavation to the bottom level

of the tunnel.
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Figure 4. Problem geometry and collected data.

During the solving process, result files with stresses, strains, and displacements for
each node were generated and stored as text files. A Python script was created to collect the
relevant results and organize the data in the proper form for ML analysis. In order to avoid
collecting meaningless results, non-converging models were checked for. For the current
work, all models converged. Three main variables were generated through this process:
(1) the wall displacement profile (WDP) recorded in Stage #3, (2) the basement displacement
(BD) recorded in Stage #4, and (3) the input parameters (IPs) used for each model.

The WDP and BD are shown in Figure 4. The BD represents the resultant horizontal
displacement of the structure adjacent to the tunnel and the WDP is the full horizontal
displacement profile measured at 25 points along the wall. The objective of the ML model
was to predict the BD on the basis of the measured WDP. Succeeding in this task would,
therefore, imply that an engineer could accurately predict the final displacement of the
adjacent structure. Subsequently, the engineer should compare the predicted deformation
to the predetermined critical deformation. In the current example, if the BD was predicted
to be greater than the acceptable deformation, a grouting operation was set forth.
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Figure 6 shows a plot of the BD with respect to the maximum value from the WDPs.
This plot is useful, as it visualizes the anticipated ranges of displacements. The linear fit
shown in Figure 6 shows that no simple linear correlation can be applied between the two
deformations. A near-zero coefficient of determination (R2) of 0.002 was computed for
these data, suggesting that a more advanced ML scheme was needed.
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The results shown in Figure 6 demonstrate how the proposed methodology may pro-
vide nontrivial insights for the development of a monitoring plan. Empirical investigations
conducted by others have shown that for the problem described here (a flexible cantilever
wall), the maximum value of the WDP occurs at the point of the top of the wall [21]. In
situ data collection requires devising a firm understanding of the available monitoring
methods and their accuracy and limitations [22]. The maximum WDP could be obtained
manually, by measuring the deformation at the top of the wall. Measuring the full WDP
requires the installation of suitable monitoring devices, such as inclinometers. Another
important capability of inclinometers with respect to ML analysis is that the recorded
data can be transmitted in digital form, allowing for further computer processing. Obvi-
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ously, additional monitoring has budgetary consequences and is justified only if it aids
the engineer in the decision-making process. Figure 6 illustrates that the full maximum
displacement serves as a poor predictor, indicating that a more rigorous monitoring plan
must be employed.

We, therefore, define the data set according to the full WDP. The size of the data set
in this example depended on the matrices of the WDP and BD. The number of columns
in the WDP represented the number of data points along the tunnel wall profile (equal to
the number of nodes in the FE model, as shown in Figure 4). The BD was a single-column
vector. The number of rows in the WDP and BD were equal to number of FE models.

For ML analysis, the random forest (RF) regression type model was used. The decision
tress were ML models used for both classification and regression. Decision trees predict
the value of a target variable by learning simple decision rules inferred from data features.
The tree is built by splitting the data, constituting the root node of the tree, into subsets.
This process is repeated in a recursive manner. The number of splits in a decision tree
are referred to as the tree depth. Random forest (RF) models consist of multiple decision
trees. For regression tasks, the average prediction of individual trees is calculated. An
individual decision tree is prone to overfitting, and, therefore, using a group of trees reduces
the overfitting overall because the algorithm averages the results of each tree in the RF.
RFs generally outperform decision trees and are considered more robust models. For
engineering applications, RFs have been found to outperform other MLAs, such as support
vector machines and extreme gradient boosting [23]. For the purpose of this paper, RFs
were chosen because of their robust and interpretable nature, as well as their ability to
perform well with minimal hyperparameter tuning. A maximum tree depth of 60 was
chosen for the RF model, and no hyperparameter tuning was carried out. Hyperparameters
are parameters that control the learning process of the MLA and are not part of the problem.

The open-source Python programming language was used for data preprocessing
and MLA application. The Scikit-learn library was used to import the functions for the
execution of the RF model.

It is the authors’ opinion that a culture of data sharing should be encouraged in order
for the benefits of ML to be utilized for the progress of geotechnical engineering [24].
In accordance with this view, we intend to provide our basic script upon request to the
corresponding author to allow for other researchers and practitioners to further build upon
our work.

4.2. Results

The RF model was trained on 800 FE models and tested on 200 to predict the final
deformation (BD) from the initial deformation (WDP). For the purpose of keeping the model
simple, no cross-validation, hyperparameter tuning, or feature selection were performed.
Figure 7 shows a comparison of the actual results of the BD vs. the corresponding results
predicted by the ML model for 10 FE models that were randomly selected from the test set.

In general, the predicted BD values closely matched the actual values. However,
checking for all predicted values shows that the trained RF model fell short when predicting
the most extreme values. The predicted and actual values had the closest match at final
deformation values ranging from approximately 1 to 3 mm. This is consistent with the
distribution of the final deformation values used in this exercise, where around 90% of the
values fell in this range, as shown in Figure 8.

The mismatches between the predicted and actual values shown in Figure 7 tended to
result from the model overpredicting the final deformation. In the context of this problem,
an overprediction is considered acceptable because it lends to a more conservative design.
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A number of metrics are available for evaluating model performance, including mean
square error, root-mean-square error (RMSE), and more. Here, we used the coefficient of
determination R2 as well as the RMSE. The R2 coefficient is calculated as:

R2 = 1 − SSres

SStot

where SSres is the sum of squares of the residuals, i.e., the difference between the actual
and predicted values, and SStot is the total sum of squared differences. R2 provides a
straightforward assessment of the ML model performance; a result of one indicates perfect
accuracy, and a result of zero indicates no correlation whatsoever. Note that negative values
of R2 are possible, inferring a model that has worse predictions than the baseline zero.
RMSE is calculated as:

RMSE =

√
∑(yi − ŷi )

n
where n is the number of data points, yi is the actual value, and ŷi is the predicted value.
Compared to R2, RMSE has the advantage of being in the same units as the predicted
variable, rendering it more interpretable.
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The R2s for the training and testing data sets were 0.97 and 0.76, respectively, while
the RMSE for the training and testing data sets were 0.0000974 and 0.000266, respectively.

These results indicate some minor overfitting. The test data results are considered
acceptable for the problem at hand. Possibly, higher accuracy could be obtained through
methods such as hyperparameter tuning and feature selection [25].

The amount of data to be collected is a fundamental question that lies in the basis of
any data-scientific research project. Pre hoc sample size determination is generally regarded
as an unsolved challenge in the field of data science [26]. Therefore, each problem requires
determination of the sample size via post hoc testing. In order to investigate the effect of the
number of samples (i.e., FE models) on the model performance (R2 and RMSE), an iteration
where a subset of the total number of FE models for training and testing was increased
from 50 to 1000 in increments of 10 was created. For each iteration, the data were split into
80% for training and 20% for testing. The results of this analysis are shown in Figure 9.
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As can be seen from Figure 9, there was significant variation in the R2 and RMSE
values for data sets with up to 200 samples. After 600 samples, the R2 and RMSE values
generally converged to greater values of around 0.8 and 0.00025, respectively. These
results demonstrate that MLAs are capable of accurately predicting the BD from the WDP.
Comparing these results with those shown in Figure 6 shows that when monitoring the
full WDP, in contrast to measuring only the maximum wall displacement, deformation
predictions can be accurately made with fewer than 1000 FE models. Note that the results
are not smooth, as MLAs use iterative and randomized methods for data fitting.

Numerical simulations are inherently noisy, due to various effects (e.g., mesh depen-
dence, boundary effects, etc.). However, real-world settings are regularly found to be
considerably noisier. Sources of real-world noise may include the inherent heterogeneity of
geological materials, complex time-dependent behavior, the impact of construction vibra-
tions on the monitor device output, readings from uncalibrated monitoring devices, etc. It
is, therefore, emphasized that ML analysis can help set a lower bound for an on-site moni-
toring plan, and depending on the degree of noise, it is possible that a considerably greater
amount of data would need to be collected for ML analysis. The proposed methodology
limitations are further discussed in Section 7.

5. Feature Importance Analysis

Feature importance in an ML model allow us to better interpret the model and deter-
mine which features have a bigger impact on the model’s predictions. This can aid engineers
in improving the performance of both the FE and the ML modeling by focusing efforts
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on obtaining better-quality data for the features that are important. The computational
technique for feature importance was first published by [27].

The input parameters for the feature importance analysis were those listed in Table 2.
An additional RF model was generated, where the input parameters were used as the input
to predict the final deformation (BD). Similar to the RF model in the previous section, the
data set was divided into 80% for training (800 samples) and 20% for testing (200 samples),
and no hyperparameter tuning, cross-validation, or feature selection were performed for
the sake of simplicity. Similar to the RF model in the previous section, there was a generally
close match between the predicted and actual BD values, but the model was unable to
capture the extreme values.

The Scikit-learn feature importance function was used for the feature analysis. The
results of the feature analysis are shown in Figure 10. The results show that the most
important feature for the model prediction was the joints’ normal stiffness. This variable is
a fictitious numerical entity intended for simulating relative slipping between the tunnel
wall and soil. Reliable estimation of this parameter is difficult, and there are only general
recommendations for estimating joints’ boundary stiffness [18]. If real-world deformation
data are collected from a similar geological formation, it would be advisable to compare
model results and consider rerunning models with a different range of normal stiffness of
joints to see if this improves the model’s accuracy.
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The second significant variable was the lateral earth pressure coefficient Ko. This
variable manifests a material property that could be measured in situ or assessed according
to different empirical formulae. Hence, depending on the project characteristics and
constraints, consideration should be given to whether it would be effective to carry out in
situ testing to reduce the uncertainty of Ko.

The other parameters were found to be considerably less significant. This suggests
that the material properties (e.g., Young’s modulus, friction angle, cohesion, etc.) of the soil
layers have a slight impact on deformation results, and that reducing their uncertainty in
this case would be ineffective.

It is important to bear in mind that feature importance results are highly dependent
on the model and specific data set. Feature importance does not provide a mechanistic
understanding of the problem; rather, it is mainly used for better understanding how
the model made predictions. Even small changes in the range of input parameters can
highly alter feature importance. Hence, broad conclusions from feature importance must
be avoided.
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6. Summary and Conclusions

The observational method is an approach developed to allow geotechnical engineers
to modify a design during project construction according to monitored data. Although
it has economic appeal, this approach is not widely applied in practice. In this study,
MLAs were coupled with FE modeling in order to enhance the modeling process and to
aid the engineer in the decision-making process during the application of the observational
method. Specifically, two important tasks were automated: determining model’s feature
importance and predicting final deformations from preliminary deformations.

Feature importance can readily be calculated using RF models. The results of feature
importance could be used to determine whether additional field data collection and/or
modeling would be effective for reducing the uncertainty of impactful input parameters.

Implementation of the observational method requires that decisions for later stages of
the project be made based on observations of the ground response during earlier stages of
construction. Accordingly, the engineer must determine whether ground conditions are
within the acceptable range or require the application of predetermined contingency actions.
Increasing the ability to predict final deformations from these observations can greatly
assist the engineer in the decision-making process. For this purpose, MLAs can be trained
and tested on FE models to establish a mathematical relationship between deformations in
the preliminary and final stages.

The case study of the Semel cut-and-cover tunnel was used as an example for the
demonstration of the proposed analyses. For this example, ML analysis showed that the
maximum tunnel wall displacement alone was not sufficient for establishing a correlation
with the final displacement of the structure adjacent to the tunnel, and the full tunnel
wall displacement profile was necessary. This demonstrates how ML analysis can assist in
developing a monitoring plan that collects the essential data for optimal decision making.

When considering the full wall displacement profile, it was found that accurate and
non-trivial deformation predictions could be obtained with the RF MLA. A database
of 1000 FE models was generated, and it was found that fewer models are sufficient for
successful MLA performance. The RF models did not perform well with the extreme
values, indicating that it would be good practice to extend the range of the estimated input
parameters for better ML performance.

7. Limitations

The past decades have witnessed the increased digitization and digitalization of
geological engineering processes [19]. Kant and Kerr [28] discussed the epistemic problem
of perceptual tasks performed by different software and concluded that automated data
interpretation processes should not replace human engineering judgment. For the field of
geotechnical engineering, acknowledging limitations and applying critical thinking and
expert judgment is particularly important, as the consequences of an engineering failure
can be catastrophic. Actual decision making based on monitoring data and numerical
modeling requires a clear understanding of knowledge gaps and limitations.

The methodology of ML integration proposed in the current paper is intended solely
for the objective of accelerating engineering modeling tasks for geotechnical projects.

The proposed methodology helps to increase predictive power only if the models
themselves are acceptably accurate. Ultimately, any limitation that applies to geotechnical
analysis via FE modeling cannot be eliminated by MLAs.

Another important limitation is related to the technical process of generating numerical
data. At the current state of practice, numerical packages can be categorized into three classes:

1. Codes that have application programming interfaces (APIs) for external programming;
2. Codes that do not have an API but generate text files that can be subject to external coding;
3. Closed codes that are not open to any type of interfacing.

With regard to the coupling of ML with numerical modeling, it is generally required
that the code belong to classes 1 or 2; otherwise the user would not be able to generate and
prepare data for ML applications. The RS2 code used for the current study belongs to the
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second class; hence, the modeling automation and manipulation were limited to the avail-
able features of the program. The authors, therefore, encourage research and commercial
developers to make their codes open for API interface, which enables manipulation and
analysis, and develop built-in ML features to assist users that wish to do so.
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