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Abstract: Direct shear (DS) is a common geotechnical laboratory test used to determine strength
and deformation properties of rock discontinuities, such as normal and shear stiffness, peak and
residual shear strength, and dilation. These are used as inputs for discontinuous geomechanical
numerical models to simulate discontinuities discretely and shear strength is often expressed by
Mohr–Coulomb, Patton, or Barton–Bandis constitutive models. This paper presents a critical review of
the different boundary conditions and procedural techniques currently used in practice, summarizes
previous contributions, addresses their impacts on interpreted results for rock engineering design,
and introduces clarifying terminology for shear strength parameters. Based on the review, the authors
advise that constant normal stress is best suited for discrete numerical-model-based rock engineering
design in dry conditions, but constant normal stiffness should be considered where fluid permeability
is of interest. Multi-stage testing should not be used to obtain peak shear strength values except
for stage 1, because of accumulating asperity damage with successive shear stages. Nevertheless, if
multi-stage testing must be employed due to limited budget or specimen availability, guidance is
presented to improve shear strength results with limited displacement techniques.

Keywords: direct shear testing; rock fractures; joint stiffness; shear strength; dilation; multi-stage
testing; boundary conditions

1. Introduction

Direct shear testing is a common laboratory method used to measure geomechanical
properties of rock discontinuities [1,2], including normal and shear stiffness (e.g., [3]), peak
and residual shear strengths (e.g., [4]), and dilation angles (e.g., [5–7]). Measured shear
strengths can be used to determine constitutive model parameters of linear and/or nonlin-
ear failure envelopes. Linear methods commonly characterize discontinuities in terms of
Mohr–Coulomb constitutive parameters: joint friction angle (ϕ) and joint shear strength
y-intercept in shear stress versus normal stress space (apparent cohesion, c). Nonlinear
approaches commonly use the Barton–Bandis constitutive model, which quantifies disconti-
nuity shear strength in terms of joint roughness coefficient (JRC), joint compressive strength
(JCS), and residual friction angle (ϕr) [4,8]. The accuracy of these calculated geomechanical
properties partly depends on the selected laboratory test procedures used to measure the
data in direct shear. Staged tests (e.g., single stage or multi-stage) and boundary conditions
(e.g., constant normal load, constant normal stress, or constant normal stiffness) are the
laboratory procedures that are the focus of this paper.

The current standard for laboratory direct shear testing (D5607-16) published by
the American Society for Testing and Materials (ASTM) [9], along with the most recent
suggested method published by the International Society for Rock Mechanics and Rock
Engineering (ISRM) by Muralha et al. [2], state that at least three to five different normal
loads are required to define a shear strength envelope [2,9]. To achieve this, there are two
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direct shear testing procedures that can be followed: (1) single-stage direct shear testing
and (2) multi-stage direct shear testing. Under the multi-stage procedure, two techniques
are described: (i) with repositioning of the specimen to zero displacement and (ii) without
repositioning, between each stage. To address some of the limitations associated with
multi-stage direct shear testing, an alternative procedure was proposed by Barla et al. [10]
and Petro [11]. The proposed method limits the shear displacement within each stage of a
multi-stage test to prevent extensive post-peak damage to the specimen and is referred to
as limited displacement multi-stage direct shear testing (LDMDS) [11,12].

Over time, many researchers have questioned the validity of multi-stage testing as it
has been observed to damage the surface of a specimen with successive shearing and impact
the interpreted failure envelope strength parameters [11–19]. To evaluate the feasibility of
multi-stage direct shear testing, test programs have been completed by various researchers
to directly compare the results of single- and multi-stage tests and the interpreted Mohr–
Coulomb parameters (e.g., [11,12,17–19]).

The ISRM suggested method by Muralha et al. [2] discusses constant normal load
(CNL), constant normal stress (CNL*), and constant normal stiffness (CNS) boundary condi-
tions for laboratory direct shear testing. The ASTM D5607-16 standard [9] only refers to the
CNL condition, which was the first to be applied in laboratory research [20]. CNL and CNL*
are unconstrained conditions that represent laboratory-scale analogues for fractures in near-
ground surface environments where gravity-driven shear dominates [5,21]. In contrast,
CNS is a constrained condition that represents deep underground environments where
shear of rock fractures is driven by in situ and induced ground stresses near excavations
(e.g., [20,22]).

It is important to note that the behaviour of a rock fracture can be generalized into two
main categories: filled and unfilled fractures. The shear behaviour of an unfilled, clean, rock
fracture is a function of the roughness and compressive strength of the fracture walls. On
the other hand, filled fractures are mainly concerned with the physical and mineralogical
properties of the infilling material [4]. The review presented herein is focused on unfilled,
clean, rock fractures. Further, it is important to understand that the term discontinuity
is often used to define several geological features, including, but not limited to, bedding
planes, fractures, cleavage, veins, joints, and faults. In this paper, the term discontinuity is
used interchangeably with the terms rock fracture and joint to identify a clean mechanical
break in a rock mass with negligible tensile strength.

2. History of Direct Shear and Multi-Stage Testing

Direct shear testing has been a laboratory testing method used as early as 1776 by
Coulomb, who, at that time, used it to determine the material properties of soils [23]. The
practice of direct shear testing is still used today for the purposes of testing both soils and
rock discontinuities.

The practice of multi-stage testing originally dates to 1950, where it was used in triaxial
testing for the determination of soil strength properties. This original test was completed
by De Beer, who stated “by increasing the axial load by steps and for each step determining
the corresponding minimum lateral principal stress, a certain number of combinations of
ultimate principal stress is obtained. The Mohr circles corresponding to these combinations
can be drawn, and the envelope of these circles is determined” [24].

Taylor [25] confirmed the validity of this testing procedure for the use of determining
peak shear strengths of a soil by completing a final stage following the testing program
at the same pressure as stage 1 of the multi-stage testing program and comparing the
results. Taylor observed that the final stage agreed with the first stage and deemed it was
an acceptable procedure as long as the materials are not sensitive to a change in structure.
These findings led to the belief that a multi-stage procedure was advantageous considering
that the four-stage test gives as much information as four conventional single-stage tests
and provides better information unless four identical samples can be collected [25].
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Following the original multi-stage tests completed on soils, the first use of a multi-stage
testing procedure on rocks was by Jaeger [26], who completed a series of multi-stage triaxial
tests on natural joints and model joints (rock cylinders saw-cut at various angles to their
axes) to gain information about the coefficient of friction and the process of sliding between
rock surfaces. Shortly thereafter, Ripley and Lee [27] completed a series of multi-stage direct
shear tests on both artificially smoothed and naturally rough surfaces of rock joints and
separated bedding planes. Planar artificially smoothed surfaces were used to provide data
on the basic friction properties of the materials and as a basis of comparison for assessing
the effects of roughness on the sliding resistance of naturally rough surfaces [27]. This
work by Ripley and Lee investigated the contribution that rough undulating surfaces have
on the sliding resistance along planes of separation that extends beyond the contribution
from simple friction between planar surfaces. This work is accredited with being the first
published result that separates the effects of the geometry of the discontinuity from the
coefficient of friction of the material [28]. During the study, the specimen surface in each
subsequent stage was either washed or blown clean, and it was found that in all cases the
initial stage produced values of resistance considerably higher than the subsequent stages.
The difference in strength was attributed to the shearing of asperities during the initial
stage and confirmed through visual observations [27].

The literature suggests that the practice of multi-stage testing for triaxial and direct
shear testing of both rock and soil has been followed since some of the earliest research on
direct shear testing (e.g., [25,27,29]). Although there was early evidence that its use impacts
the strength results of later stages (e.g., [27]), the overall use of a multi-stage technique was
viewed as an advantageous way to obtain additional data from a specimen using only one
sample for testing as opposed to multiple samples [25,29,30]. A similar claim was made
by Muralha [15], who stated “it is not practical to use a joint sample to perform a single
shearing under a constant normal stress. Instead, several shearings under different normal
stresses are performed on the same joint, enabling the assessment of its failure envelope”.

In the original suggested method for laboratory determination of direct shear strength
published by the ISRM [1], the direct shear test was defined as a method of establishing
values for peak and residual shear strengths of a test horizon. In the suggested method,
the use of a multi-stage procedure was only detailed and suggested to establish additional
residual strength values, with no mention of its use for determining additional peak shear
strengths. After reaching a peak strength, the original ISRM reads “having established a
residual strength the normal stress may be increased or reduced and shearing continued to
obtain additional residual strength values” [1].

3. Current Practice for Laboratory Direct Shear Testing of Rock Fractures

Laboratory direct shear testing of rock specimens involves subjecting a specimen
to a constant shear displacement rate under an applied normal load that is maintained
under one of three boundary conditions: constant normal load (CNL), constant normal
stress (CNL*), or constant normal stiffness (CNS). The appropriate selection of a boundary
condition depends on the real-world application of the testing results and is discussed
further in Section 4. It is worth noting that despite the boundary condition or staging
technique used in a test, all direct shear testing machines incorporate the following com-
ponents: a stiff testing frame, specimen holder, normal and shear loading devices, load
and displacement monitoring instrumentation, pressure-maintaining devices, and data
acquisition equipment. They can also be servo-controlled, meaning that a user-defined
computer program controls the load and displacements of the direct shear machine and
records data throughout the test. The programming of the servo-controlled component may
vary depending on the testing regime. The setup of a typical direct shear testing apparatus
is illustrated in Figure 1.
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Figure 1. General test setup of a direct shear box with an encapsulated rock fracture specimen
(modified after [9]).

In general, all three boundary conditions begin with the application of a target normal
load or stress to the test specimen, followed by application of a shear force at a constant
shear displacement rate until the yield, peak, and then residual shear strengths are achieved.
In some cases, two different peak shear strengths may occur. Examples of these shear
strength parameters measured from direct shear test data are shown in Figure 2.

Yield shear strength is the onset of nonlinear behaviour following elastic loading and
is commonly defined as the point of maximum curvature [31]. The first peak shear strength
typically occurs shortly after yield and is followed by the first decrease in shear stress.
This is commonly referred to as the peak shear strength and is typically observed in all
three boundary conditions (CNL, CNL*, and CNS). Upon additional shear displacement
after the first peak shear strength, residual shear strength is typically observed under CNL
and CNL* boundary conditions. However, under CNS boundary conditions, a second
peak shear stress may occur prior to reaching residual. Due to a variety of terminologies
in the literature for first and second peak shear strengths, it is difficult to distinguish
between these important parameters. To overcome variations in the definitions of peak
shear strength under different boundary conditions, the authors propose the following
blanket terminology that can be used for direct shear tests under any boundary condition
(CNL, CNL*, or CNS).

Unconstrained peak shear strength (τp-u) refers to the maximum attainable shear stress
followed by the first decrease in shear stress immediately following yield. Under CNL and
CNL* conditions, there is no constraint on the specimen’s ability to dilate. However, under
CNS boundary conditions (that allow dilation to be constrained), the applied normal stress
at this point is either equal to or very close to the initial normal stress level and is regarded
as unconstrained. It is worth noting that yield and unconstrained peak shear strengths may
be equivalent in some cases.

Constrained peak shear strength (τp-c) applies to the maximum attainable shear stress
that may occur with additional shear displacement following τp-u. This (second) peak shear
strength is more commonly observed under CNS boundary conditions where KNM > 0.
The introduction of a positive KNM will lead to an increase in the applied normal stress as
a response to positive normal displacement to constrain the experienced dilation during
shear testing.

The sustained shear stress in the post-peak region is referred to as the residual or
ultimate shear strength. To define a shear strength envelope, ISRM and ASTM require three
to five shear strengths measured at different normal loads. To achieve this, three methods
have been developed: single-stage, multi-stage, and limited displacement multi-stage direct
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shear testing. Currently, only the first two methods are described in detail by the ISRM
Suggested Methods [1,2] and ASTM Standard [9]. Limited displacement multi-stage direct
shear testing is a more recent development and is described by several authors [10–12]. The
details of each staging methodology are further discussed in Section 5.
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Figure 2. Example of shear stress versus shear displacement direct shear test data with com-
mon linear shear stiffness measurements and shear strength parameters for (a) rough, clean
limestone joint under constant normal stress (CNL*) boundary condition (modified after [6,32]);
(b) rough, clean granitic crystalline joint under constant normal stiffness (CNS) boundary condition
(modified after [7]).

4. Direct Shear Test Boundary Conditions

In laboratory direct shear testing, it is necessary to define the boundary condition
under which a sample will be tested. The purpose of varying boundary conditions is to
simulate real world stress conditions. In general, this can be simplified into two external
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conditions: (i) the normal stress remains relatively constant during shearing (achieved
with CNL or CNL* boundary conditions); and (ii) the normal stress varies during shearing
(achieved with a CNS boundary condition). Each boundary condition is representative of
different scenarios that may be encountered in rock engineering designs (e.g., [20,33]).

The use of CNL or CNL* boundary conditions represents fracture behaviour in slopes
and other near surface gravity driven environments in which the applied normal load or
stress remains constant (Figure 3a). Alternatively, a CNS boundary condition is representa-
tive of rock fractures near underground excavations such as tunnels, mines, and nuclear
waste repositories in which sliding blocks are constrained between parallel dilatant joints
where little to no normal displacement occurs, or a controlled stiffness response occurs [20],
as illustrated in Figure 3b. In these respective conditions, under CNL/CNL*, the fracture
is free to dilate during shearing with no feedback between dilation and normal stress,
whereas under CNS conditions, dilation is constrained by feedback between dilation and
normal stress to maintain a constant machine stiffness. The details of dilation behaviour in
each of these boundary conditions are described and illustrated in the following sections.
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conditions); (b) sliding block in an underground excavation (represented in laboratory tests by CNS
boundary conditions) (modified after [20]).

4.1. Constant Normal Load (CNL) and Constant Normal Stress (CNL*)

Constant normal load (CNL) is the conventional and first-used boundary condition for
laboratory direct shear testing [20]. CNL testing is achieved by applying a normal load to
the specimen using either weights or hydraulic pressure (depending on the mechanics of the
machine), which remains constant for the duration of a direct shear test. More recently, the
development of servo-controlled laboratory direct shear machines has made it possible to
complete direct shear tests under CNL* boundary conditions. A servo-controlled machine
is an automated device that uses a negative feedback loop from the system to adjust internal
mechanisms to minimize the error between the machine input and the machine output [34].
For CNL and CNL* testing, a measurement of normal stress lower than the input would
prompt the machine to increase the normal load until the desired normal stress is achieved
during shear displacement. Based on an input geometry representing the cross-sectional
target shear area of the specimen, the servo-controlled direct shear machine can calculate
and update the contact surface area at any shear displacement. Knowing the change in
surface area and the rate at which shear displacement occurs, the servo-controlled machine
can continuously calculate and update the required applied normal load for the duration
of a shear test. This continuous feedback allows for the applied normal load to vary
accordingly and maintain a constant normal stress. An example of changing contact surface
area of a specimen during a CNL or CNL* direct shear test is illustrated in Figure 4.
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shear surface horizons (modified after [33]).

4.2. Constant Normal Stiffness (CNS)

Although the use of CNL and CNL* boundary conditions are representative of near-
surface projects where a fracture is free to dilate, it is considered unrepresentative for
projects at depth where the dilation of a fracture is constrained by the surrounding rock
mass. This was confirmed in a study conducted by [35], who concluded that a CNS
boundary condition should be applied to jointed rock masses in which dilation is con-
strained as there is a strengthening effect due to the normal stiffness of the rock mass.
Johnston et al. [22] further studied the boundary between cast-in-place concrete piles and
a sandstone rock mass and concluded that a CNS boundary condition can be applied to
better represent the shear behaviour of rough rock joints when dilation is constrained. A
CNS boundary condition involves restricting a fracture’s ability to dilate, resulting in an
increase in the applied normal stress, which in turn increases the measured shear strength
of a fracture [35–37]. The change in the applied normal load (∆Fn) to the test specimen
depends on the change in normal displacement (∆δn) of the specimen and normal stiffness
of the machine (KNM), as mathematically described in Equation (1) [35], where KNM is
the machine normal stiffness, N is the applied normal stress, and No is the initial applied
normal stress. Readers are directed to [7] for additional detail.

N = No + ∆Fn = No + KNM(∆δn) (1)

The CNS boundary condition can be implemented using two types of machines: (i) a
CNL machine outfitted with springs of known stiffness or (ii) a servo-controlled direct shear
machine [38]. For a spring-outfitted CNL machine, the bottom half of the specimen box
is constrained to movements in the horizontal direction and the top half of the specimen
box is rigidly constrained so that it can only move in the vertical direction. Furthermore, to
simulate CNS conditions, the constrained top half of the box can only move against a spring
of known stiffness. The steel shaft transmits the normal force through a load cell and a
screw jack to a suspended spring system mounted at the top of the frame [22] (Figure 5a,b).
For a servo-controlled machine, a negative feedback loop is used to satisfy a user-defined
constant machine normal stiffness (KNM) (Figure 5c,d). This is achieved as the normal
actuator holds the machine stiffness constant and the feedback loop increases or decreases
the applied normal load based on an empirical relationship used to represent the normal
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stiffness of a rock mass. As a joint begins to dilate, negative feedback will be prompted, and
the machine will correct for the change in normal displacement by increasing the applied
normal load. On the contrary, in the case where a joint begins to contract, a negative
feedback loop will prompt the machine to decrease the load to maintain a constant normal
stiffness. At points where there is no dilation (and no increase or decrease of the normal
load due to dilation or contraction), the machine will hold the normal load constant rather
than the normal stress constant [7].
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(CNS) direct shear tests with (a,b) physical springs with known stiffness (KNM) and (c,d) servo
control of KNM showing (a,c) initial conditions and (b,d) after shear displacement.

For underground tunnelling applications, machine normal stiffness (KNM) can be
calculated based on the elastic properties of a rock block (Young’s modulus, E, and Poisson’s
ratio, ν), joint spacing in the rock mass, L, and the test fracture surface area, A, with
Equation (2) by Packulak et al. [7]. For additional methods to calculate machine normal
stiffness for different applications, readers are encouraged to read Johnston et al. [22] and
Skinas et al. [39].

KNM =
E

2L(1− ν2)
A (2)

5. Single- and Multi-Stage Direct Shear Testing

The conventional approach for direct shear testing is to follow a single-stage testing
procedure, which involves testing a minimum of three to five different specimens that are
similar in nature and come from the same discontinuity or sampling horizon. Each speci-
men is tested at a different normal stress and the results are used to define a shear strength
envelope of the discontinuity. A single-stage test is complete once the residual shear stress
for the tested specimen is defined [2,9]. The idealized results for four typical single-stage
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direct shear tests at different normal loads under CNL/CNL* boundary conditions and
their corresponding failure envelopes are illustrated in Figure 6a.
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5.1. Conventional Multi-Stage Direct Shear Testing

In practice, it is often difficult and/or expensive to obtain several specimens from
the same discontinuity or discontinuity set that are similar in nature for the purpose of
completing multiple single-stage tests. As a result, it has become common practice to
repeatedly test the same specimen under several increasing normal stresses to define a
failure envelope. Similar to the single-stage procedure, a minimum of three to five normal
stresses are required to define the failure envelope. In contrast to a single-stage test, once
the residual shear stress for a specimen is achieved, this indicates the completion of stage 1.
Following stage 1, an additional two to four stages are required to be completed on the
same specimen. When using a multi-stage testing procedure, there are two methods that
can be followed for the subsequent stages: (i) multi-stage without repositioning (Figure 6b);
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and (ii) multi-stage with repositioning (Figure 6d). The practice of repositioning involves
returning the specimen to zero shear displacement between each stage prior to increasing
the normal load. Alternatively, the specimen can begin subsequent stages at the final
position of the previous shear stage [2,9]. In terms of the applied normal load for each
stage, it is recommended by ASTM D5607-16 [9] that each consecutive stage should be
performed with a higher normal load, starting at the lowest required normal load, to reduce
the potential for the effects of specimen degradation and wear. It is worth emphasizing
that the current ASTM standard details that prior to increasing the normal load for each
subsequent stage, residual strength is required to be established.

At this point it is worth clarifying a key difference between the 1974 and 2014 ISRM
publications. As opposed to the original 1974 ISRM Suggested Method, the updated 2014
ISRM Suggested Method has retracted its statement of using multi-stage testing to obtain
additional residual strength values and now states “Using the data records and the shear
stress versus shear displacement graphs, evaluate the peak and ultimate or residual shear
stress for each sample of the same rock joint or test horizon in the case of single stage tests,
or for all stages of multi-stage tests of the same rock sample” [2]. The same statement is
made for obtaining peak and/or residual dilation angles. Although the use of multi-stage
results is considered for the determination of peak and residual parameters, the limitations
of multi-stage testing do not go unnoticed. Within the same ISRM Suggested Method, a
cautionary statement is made that reads “In the case of multi-stage tests, the apparent
cohesion can be exaggerated due to accumulation of damage with successive shearing of
the same joint specimen” [2].

5.2. Limited Displacement Multi-Stage Direct Shear Testing

The multi-stage direct shear testing method described by the ISRM and ASTM (and
here in Section 5.1) results in the accumulation of damage to the discontinuity surface as the
specimen is sheared to its residual shear strength for each shear stage. To prevent extensive
asperity damage and limit the shear displacement during each stage, Barla et al. [10]
developed an alternative procedure, which was later termed by Petro [11] as the limited
displacement multi-stage direct shear (LDMDS) test. This technique, which has been
conducted only under CNL or CNL* boundary conditions, limits the damage by pausing
the shear displacement once the unconstrained peak shear strength is achieved and is
designed to not slip past the first critical asperity. Once paused, the normal load/stress is
increased to the next desired load/stress, and shear displacement is resumed. Once the
unconstrained peak shear strengths are measured for each normal load/stress magnitude,
residual shear strength can then be defined [10–12]. An example of a shear stress versus
shear displacement curve of an LDMDS test is shown in Figure 6c.

6. Shear Behaviour of Clean Rock Joints

The shear strength of a discontinuity in rock has been observed to be controlled by
several components, including joint size, joint roughness, joint compressive strength, asper-
ity height, asperity angle, joint weathering, joint infill material(s), joint loading history, and
stress conditions (among others, [4,5,40,41]). As there are several components that influence
the shear behaviour of a discontinuity, it is important to understand the fundamentals of
each one and how it impacts shear behaviour. Many analytical and experimental studies
have been completed to investigate empirical relationships using single-stage laboratory
testing under CNL/CNL* boundary conditions (e.g., [42–45]) and CNS boundary condi-
tions (e.g., [38,46,47]). Thirukumaran and Indraratna [48] present further discussion on
the shear strength constitutive models specifically for rock joints subjected to CNS bound-
ary conditions. With the increased use of computational tools over the past few decades,
research has started to focus on how numerical codes predict how fractures will behave
when sheared (e.g., [49–51]).

As shear strength is dependent on normal stress, many researchers have developed em-
pirical relationships that rely on various input parameters (among others, [4,8,21,41,44,52–55].
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Many of these constitutive models have been created using empirical relationships based
on field observations and laboratory results, while some have been developed based on
theory. Regardless, it is important to understand that each constitutive model has been
developed under certain boundary conditions and assumptions that may not hold true to
every scenario. Of these, there are three main shear strength criteria for rock discontinuities
that are commonly referenced and expanded on in the literature: Mohr–Coulomb’s linear
shear strength criterion [52], Patton’s bilinear failure envelope [53], and Barton–Bandis’
nonlinear shear strength criterion [8].

This section provides an overview of these three common shear strength criteria and
the shear failure mechanism of rock joints in a simplified manner.

6.1. Common Shear Strength Criteria for Rock Fractures
6.1.1. Mohr–Coulomb Linear Shear Strength Criterion

The linear Mohr–Coulomb shear strength criterion is the oldest constitutive model
created to quantify the shear strength of soils and is described by Equation (3) [52]. The
Mohr–Coulomb model has been adopted into the rock mechanics field to describe both
the shear strength of intact rock and rock discontinuities. As it has been adopted from soil
mechanics, the Mohr–Coulomb criterion is subject to several limitations as it does not take
into consideration the surface profile and roughness, the geological material, asperity order,
weathering, or stress history. Despite its limitations, this shear strength criterion remains
perhaps the most widely used today.

τ = σn ∗ tanφ+ c (3)

where τ is maximum shear strength, σn is the applied normal stress, φ is the friction angle,
and c represents cohesion [52]. The units of these parameters in rock mechanics are typically
expressed in degrees (◦) for friction angle, and megapascals (MPa) for all of shear stress,
normal stress, and cohesion.

6.1.2. Patton Bilinear Shear Strength Criterion

The bilinear Patton constitutive model was one of the earliest models created to
describe the modes of failure for laboratory direct shear testing of rough rock joints [56].
Patton completed a series of laboratory direct shear tests on artificial sawtooth joints to
evaluate the different modes of failure. From his results, Patton verified an observation
that was originally noted by Newland and Allely [57], who suggested that the differences
between the angle of sliding friction, φµ, and the angle of internal friction, φf, can be
explained through the mode of failure, which itself is a function of φµ. Patton observed
that the failure envelopes are better approximated by two straight lines as opposed to
one, whereby the inflection point is related to a change in the mode of failure from sliding
to shearing, as shown in Figure 7 [53]. Patton completed a series of direct shear tests to
develop failure envelopes and changed one variable each time. Figure 7 illustrates Patton’s
findings when varying (a) the inclination of the artificial teeth, (b) the number of artificial
teeth, and (c) the internal strength of the artificial teeth [53]. From his research, Patton
observed that the data points plotting along the steeply sloping (primary) portion of the
envelope are approximately equal to φµ + i (where i is the inclination from horizontal
of saw tooth asperities), whereas the data plotting along the secondary portion of the
envelope are approximately equal to φr [53]. As a result, Patton concluded that φ does
not vary throughout a wide range of normal loads (although φ + i does) and that changes
in the mode of failure are related to the physical properties of irregularities along the
failure surface [56]. He further suggested that the vertical distance between a peak failure
envelope and residual failure envelope is the strength contributed from the irregularities
on the surface.
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Patton [56] proposed two equations to express the shear strength of rock joints with
inclined teeth for a single direction of shearing. Equation (4) represents the steeper (pri-
mary) portion of the bilinear failure envelope at lower normal stresses (where sliding over
asperities dominates the shear mechanism) and Equation (5) represents the secondary
portion at higher normal stresses (where shearing through asperities dominates the shear
mechanism) of the envelope:

τ = σn ∗ tan (φb + i) (4)

τ = c + σn ∗ tan (φr) (5)

where τ is the total shear strength, σn is the applied normal stress, φb is the basic friction
angle, i is the angle of inclination of the teeth from the horizontal, c is the cohesion intercept
(mobilized when teeth are sheared off at their base), and φr is the angle of residual shearing
resistance [53].

The bilinear Patton [53] constitutive model is similar to the Mohr–Coulomb [52] model
in that both can be described in terms of cohesion (c) and friction angle (φ). As opposed to
developing a failure envelope using Equations (4) and (5), a single straight line would be
used to define the shear failure envelope of the rock fracture, giving it a nonzero positive
shear strength at an applied normal stress of 0, commonly referred to as apparent cohesion.
Patton [53] notes the limitations to this method, as a single line would suggest only one
mode of failure and assumes a nonzero cohesive strength at zero to low normal stresses
which may be incorrect. True cohesive strength is present when cemented surfaces are
sheared and represents the strength of the cementing material [58]. Rock joints that are
clean (with no infilling) will have zero cohesive strength at zero to low confinement and
their strength will be defined by the friction angle. Figure 8 illustrates the relationships
between shear and normal stresses on a sliding surface for five different geological scenarios
at a range of normal stress conditions [58].
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In contrast to the idea of a joint having zero cohesive strength for an applied normal
stress of 0 MPa, the observed cohesion is the result of the interlocking surfaces of nonplanar
joints. Goodman et al. [3] state that through the cohesion due to interlocking asperities, the
joint strength is related to the wall rock strength.

6.1.3. Barton–Bandis Nonlinear Shear Strength Criterion

This nonlinear constitutive model is an empirical relationship for shear strength of
rock fractures (i.e., joints) that was originally developed to be used in three different ways:
(i) curve fitting to experimental peak shear strength data; (ii) extrapolation of experimental
peak shear strength data; and (iii) prediction of peak shear strength data [4]. Over time,
the equation has been revisited by the author and the up-to-date equation is expressed
by Equation (6) [8]. Equation (6) contains three main parameters that vary shear strength
(τ, MPa) with respect to the applied effective normal stress (σn, MPa), depending on the
joint character: joint roughness coefficient (JRC, unitless), joint wall compressive strength
(JCS, MPa), and the residual friction angle (φr, ◦) [4,59]. Figure 9 contains three peak shear
strength envelopes that were calculated using Equation (6) to illustrate the nature of the
empirical law, and the effects that both JRC and JCS have on peak shear strength [4].

τ = σn ∗ tan
(

JRC ∗ log
JCS
σn

+φr

)
(6)
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Joint Roughness Coefficient

The joint roughness coefficient was originally introduced in Barton’s [5] shear strength
criterion as a method to define a joint’s surface profile in terms of roughness and quantify
it for use in his empirical equation. To define JRC, Equation (6) can be rearranged to
give Equation (7).

JRC =
tan−1 (τ/σn)−φr

log
(

JCS
σn

) (7)

In the event that shear stress data are unavailable, Barton and Choubey [4] presented
an alternative method to crudely estimate the JRC of a joint. This method involves visually
comparing the roughness profile for the joint in question to a series of typical roughness
profiles. The 10 typical roughness profiles were based on 136 tested joint specimens and
are illustrated here in Figure 10. Although this method is still commonly used today, it was
originally stated that the most satisfactory method to obtain JRC is by back-calculation,
based on a tilt and/or push/pull test. In this instance, the angle at which sliding occurs
represents

(
tan−1 (τ/σn)) in Equation (7) and the shear stress and normal stress are gener-

ated by the weight of the top half of the specimen [4]. It is acknowledged and emphasized
by Barton and Oslo [60] that the “ten JRC profiles” were only developed to illustrate the
range of surfaces tested and that using them to represent a surface’s roughness is far too
subjective a method.



Geosciences 2023, 13, 172 15 of 38Geosciences 2023, 13, x FOR PEER REVIEW 15 of 38 
 

 

 
Figure 10. Typical roughness profiles and the corresponding range of joint roughness coefficient 
(JRC) values (modified after [4]). 

Joint Compressive Strength 
Similar to JRC, joint compressive strength (JCS) was introduced in Barton’s [5] shear 

strength criterion as a method to define the compressive strength of a joint. The introduc-
tion of JCS allows for shear strength estimations while considering the effects of joint al-
teration (weathering). JCS values can be obtained by measuring the intact rock strength 
from conventional uniaxial compressive stress (UCS) laboratory tests on intact rock cylin-
ders or from point load tests on diamond drill core rock samples. However, this method 
may encounter issues when joint alteration has occurred. To overcome this issue, the use 
of a Schmidt hammer has been suggested. By applying a Schmidt hammer directly to the 
exposed joint wall, the recorded rebound number can then be converted to an estimate of 
the compressive strength using Deere and Miller’s [61] method [4]. For additional infor-
mation pertaining to the practical testing details when using a Schmidt hammer, readers 
are referred to [4] and Barton and Oslo [60]. 

Residual Friction Angle 
Unlike JRC and JCS, the residual friction angle (ϕr) was not a component of Barton’s 

[5] original shear strength criterion. Rather, it was introduced in the updated version of 
the criterion by Barton and Choubey [4]. To determine the residual friction angle of a joint, 
Barton and Choubey [4] proposed completing a residual tilt test and utilizing Schmidt 
hammer rebound numbers. An updated empirical equation to relate these results and de-
termine residual friction angle is expressed in Equation (8) [62]. A residual tilt test involves 

Figure 10. Typical roughness profiles and the corresponding range of joint roughness coefficient
(JRC) values (modified after [4]).

Joint Compressive Strength

Similar to JRC, joint compressive strength (JCS) was introduced in Barton’s [5] shear
strength criterion as a method to define the compressive strength of a joint. The introduction
of JCS allows for shear strength estimations while considering the effects of joint alteration
(weathering). JCS values can be obtained by measuring the intact rock strength from
conventional uniaxial compressive stress (UCS) laboratory tests on intact rock cylinders
or from point load tests on diamond drill core rock samples. However, this method may
encounter issues when joint alteration has occurred. To overcome this issue, the use of
a Schmidt hammer has been suggested. By applying a Schmidt hammer directly to the
exposed joint wall, the recorded rebound number can then be converted to an estimate
of the compressive strength using Deere and Miller’s [61] method [4]. For additional
information pertaining to the practical testing details when using a Schmidt hammer,
readers are referred to [4] and Barton and Oslo [60].

Residual Friction Angle

Unlike JRC and JCS, the residual friction angle (φr) was not a component of Barton’s [5]
original shear strength criterion. Rather, it was introduced in the updated version of the
criterion by Barton and Choubey [4]. To determine the residual friction angle of a joint,
Barton and Choubey [4] proposed completing a residual tilt test and utilizing Schmidt
hammer rebound numbers. An updated empirical equation to relate these results and
determine residual friction angle is expressed in Equation (8) [62]. A residual tilt test
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involves performing a tilt test on dry, unweathered, sandblasted joint surfaces whereby the
angle at which slippage occurs represents the basic friction angle.

φr = (φb − 20◦) + 20(r5/ R5) (8)

where
φb = basic friction angle estimated from residual tilt tests on dry unweathered sawn

surfaces (◦);
R5 = mean Schmidt hammer rebound number of the top 50% measured on a dry

unweathered sawn surface (unitless);
r5 = mean Schmidt hammer rebound number of the top 50% measured on the natural

joint surface (unitless).

Scale Effect

The empirical equation developed by Barton and Bandis [8] is scale-dependent and
results will vary based on whether JRC and JCS values correspond to laboratory or field
scales. For laboratory scale, the two variables are denoted as JRCo and JCSo, whereas
the scale-corrected field scale values are denoted as JRCn and JCSn [8,59]. Scale effect
has been observed to impact peak friction angles in work completed by Pratt et al. [63],
who observed a reduction in peak friction angle as sample length increased. These ob-
servations were later confirmed through a series of work with molded joint replicas by
Bandis [64] and Bandis et al. [65], as well as extensive review of amalgamated data points
by Barton [66]. Barton’s [66] review further observed that joint shear stiffness (Ks) is the
parameter most affected due to simultaneous reductions in strength and increases in peak
displacement as dimensions are increased [59]. As a result, Barton and Bandis [40] devel-
oped Equations (9) and (10) to account for scale correction. The effect of these scale factors
on stress–displacement curves is shown in Figure 12 [8,40]. When defining the input value
for Ln, it should reflect the naturally occurring block size by considering the mean spacing
of joints crossing the joint set of interest [62,65].

JRCn ≈ JRCo ∗
(

Ln

Lo

)−0.02∗JRCo

(9)

JCSn ≈ JCSo ∗
(

Ln

Lo

)−0.03∗JSCo

(10)

where
Subscript (n) = in situ (field scale) block size;
Subscript (o) = laboratory scale (100 mm) size;
L = length (m).

Inputs to Numerical Models

The commonly used nonlinear Barton and Bandis [8] shear strength criterion was
introduced as early as 1973 by Barton. Since then, this criterion for shear strength of
joints and other rock fractures has faced several modifications and updated methods to
estimate the required parameters using index tests and empirical equations. A summary for
the recommended direct shear and index testing when using the Barton–Bandis criterion
as coded in Itasca Consulting Group’s UDEC-BB software, for discrete element method
geomechanics numerical modelling [67], is illustrated in Figure 11 [60,62]. Readers are
encouraged to visit these publications for additional and up-to-date details pertaining to
the use of the Barton–Bandis shear strength criterion.
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6.2. Shear Failure Mechanism of Rock Fractures

It is well known that joint roughness and asperities play a key role in the shear be-
haviour of a joint, so it is important to understand the microscopic shear failure mechanism
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of joints at the scale of an asperity. The two behavioural modes that control joint shear
failure, namely, asperity sliding and asperity shearing, have been experimentally observed
to act independently at very low and very high normal stresses (e.g., [53,56]). More com-
monly, these two failure modes have been observed to act together in combination. As
the morphology of a natural rock joint is random and complex, it is difficult to accurately
recognize the types of shear failure areas [68].

To simplify the visualization of joint shear failure and asperity contact, each joint can
be visualized to contain many triangular asperities using a simplified two-dimensional
illustration (Figure 13). In Figure 13, the applied normal stress is represented by σni.
Depending on the shear direction, only a subset of an asperity will be in contact and
subject to surface wear, whereas the back slope of an asperity will not be in contact and
can be assumed to have a tensile strength of zero for noncemented joints [44]. The shear
mechanism of a joint will vary depending on the applied normal load, strength, and
roughness. According to Li et al. [68], the microscopic shear failure mechanism of a joint
can be generally explained by the following three trajectories (Tn):
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1. T1: Under a low normal stress condition (σn1), the upper asperity will slip along
the lower asperity to vertex T1, where major sliding movements occur along the
joint. At this point, the shear strength satisfies the lower portion of Patton’s [53,56]
bilinear failure envelope, and failure modes of the joint are mainly caused by asperity
sliding wear.

2. T3: Under a high normal stress condition that exceeds the strength of intact material
of the asperity (σn3), no sliding movement occurs, and the asperity is completely
sheared through along trajectory T3. At this point, the shear strength satisfies the
upper portion of Patton’s [53,56] bilinear failure envelope, and the failure modes of
the joint are mainly caused by shearing through the asperities.

3. T2: Under moderate normal stress conditions that fall in between σn1 and σn3 (σn2),
a combination of the two failure modes is expected. Initially, sliding of the upper
asperity will occur whereby the sliding shear stress along the asperity is less than
the asperity strength. As the sliding continues, the contact area of the joint gradually
reduces, and the effective normal stress gradually increases. Thus, the sliding shear
stress of the asperity also gradually increases. At some point, the normal stress in
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the asperity reaches a critical value where the sliding shear stress is greater than the
strength of the asperity, and the behaviour will change from sliding to shear failure
along trajectory T2. The failure modes of joints for this scenario are composed of
asperity sliding wear and asperity shearing failure.

7. Geomechanical Parameters Calculated from Direct Shear Test Data

In addition to determining the overall shear behaviour of a joint from laboratory
direct shear tests, several geomechanical parameters can be calculated from their results.
These parameters are in turn used in geomechanics numerical modelling software where
joints are discretely simulated for the purpose of rock engineering design. The frequently
used geomechanical parameters and the corresponding methods in calculating them from
direct shear test data, including pre-peak normal and shear stiffness, yield and peak
shear strengths, peak shear displacement, peak friction angle, dilation, and residual shear
strength, are presented in the following sections.

7.1. Pre-Yield Deformation Behaviour: Stiffness

Joint deformation is a critical component in understanding joint behaviour and the
performance of a discontinuous rock mass under changing stress conditions. To understand
joint behaviour, Goodman et al. [3] note that it does not only depend on the applied
loads and constraints, but also the properties of component joints (stiffness and strength)
along with the fabric of a joint system as a whole (spacing, orientation, persistence, etc.).
This section details two of the three component joint parameters that Goodman et al. [3]
introduced to describe joint behaviour: joint normal stiffness (Kn) and joint shear stiffness
(Ks). These stiffness parameters can be characterized using normal stress versus normal
displacement and shear stress versus shear displacement plots by describing the rate
of change between normal stress and normal displacement, and shear stress and shear
displacement, respectively.

7.1.1. Joint Normal Stiffness (Kn)

Joint normal stiffness is defined as the deformation (joint closure) of a discontinuity
that occurs as it is subject to increasing normal stress and can be measured during the initial
normal loading stage of a laboratory direct shear test. Experimental results have shown
that this relationship can vary and has led to the development of multiple closure laws in
order to estimate joint normal deformation (e.g., [20,31,64,69–71]). Of these closure laws,
the relationship has commonly been described as nonlinear hyperbolic (e.g., [20,64]) and as
linear responses (e.g., [31]), and less commonly described as nonlinear power law [70] and
semilogarithmic [71,72] responses.

The hyperbolic response has been discussed to be the result of increasing contact
areas as normal stress increases. The contact area of a joint when subject to a normal load
of zero is very small and is defined by the contacts of a few asperities. When subject to
an increasing normal load, the point contacts enlarge by elastic deformation, crushing,
and tensile cracking, while the deformation brings new regions into contact [20]. An
example of a hyperbolic response is shown in Figure 14a. Along with initial contact area,
normal deformability of a discontinuity is also dependent on rock type, joint wall strength,
roughness, strength, and deformability of asperities, thickness and properties of infill
material (if present), and aperture distribution [64].
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In contrast to the hyperbolic response, a linear relationship was found to exist between
normal displacement and normal stress in a study completed by Hungr and Coates [31]
on natural joints in limestone and sandstone. From the results of their study, it was
determined that no correction was needed to be applied to the joint normal closure test
results, and neglecting minor irregularities, all normal stress versus normal displacement
plots were close to linear. Based on these findings, it was considered realistic to represent
the normal stiffness coefficient by fitting a linear function to the plotted results. Further,
as the relationship observed differed from those made by [20,69], it was believed that this
may be a result caused by the samples of natural joints having been precompressed in situ
by pressures considerably greater than those applied in the laboratory tests. Therefore,
it is thought that the relationship given by [20,69] is only valid for joints that are not
precompressed. Figure 14a outlines the effect that precompression has on the normal
stress–displacement behaviour of unfilled joints [31].

The linear relationship observed by Hungr and Coates [31] faced criticism by Ban-
dis et al. [73] as they believed that the observations were a result of three things. First,
the joints were subject to previous in situ compression under higher stresses than those
used for testing. Second, the applied normal stresses did not range high enough to reveal
complete joint behaviour (the maximum applied normal stress in the study by Hungr and
Coates [31] was 2.3 MPa). Third, the authors seemingly did not consider the inevitable
disturbance of the natural in situ closure seating condition [73].

Swan [70] advised that a power law would be suitable for normal stresses below 30
MPa. Packulak et al. [74] reported good agreement with fitting Swan’s [70] power law to
direct shear test data of granitic joints after correcting the test data to eliminate the effect of
machine deformation on the fracture deformation results.

Regarding the semilogarithmic closure law, Evans et al. [71] defined its single free pa-
rameter as the “stiffness characteristic”, dKn/dσn, which makes this closure law appealing
because only one closure measurement over a small normal stress range is needed to fully
define the nonlinear stiffness behaviour for a large stress range [72].

Several laws and equations have been developed in efforts to describe joint normal
deformability (stiffness). As such, each individual closure law has been developed while
considering various assumptions and constraints, and each closure law is subject to a series
of advantages and disadvantages. There is currently no recommended normal closure
law to be used when evaluating joint normal stiffness according to ASTM Standards and
ISRM Suggested Methods [2,9]. Therefore, the selection of a closure law may require the
comparison of several closure laws for a dataset in order to determine which law will best
represent joint closure for different lithologies and joint characteristics.
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7.1.2. Joint Shear Stiffness (Ks)

Joint shear stiffness can be characterized using the shear stress versus shear displace-
ment plot obtained from a direct shear test. Shear stiffness represents the resistance of
the specimen to shear displacement under an applied shear force prior to reaching the
peak shear strength [9]. Observing the pre-peak portion of a shear stress versus shear dis-
placement plot, both linear and nonlinear behaviours can be identified, with nonlinearity
being more profound in weathered and/or disturbed joints. In addition to the degree
of weathering, there are several other parameters that affect shear deformability, which
include roughness, size, applied normal stress, infill material(s) (if present), and stress his-
tory [73]. As the shear load–deformation curves have been observed to be characteristically
different, Goodman [75] made several generalizations about the results for different types
of weakness surfaces and classified the shear load–deformation curves into four types, as
illustrated in Figure 15.
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Another factor potentially affecting the peak shear stiffness of a joint is its past in situ
loading history [73]. In Barton’s [5] study, a series of direct shear tests were completed
on model joints that were both precompressed and normally loaded. The results of these
tests demonstrated that precompressed joints (normally loaded to a stress higher than
that during the direct shear test) have the potential for a higher shear strength than joints
normally loaded. This effect is referred to as “overclosure” and its impact can be observed
in Figure 14b.

Despite this natural variability in the behaviour, joint shear stiffness is most often
characterized as the slope of the linear elastic region for a shear stress versus shear displace-



Geosciences 2023, 13, 172 22 of 38

ment plot [20]. The characterization of shear stiffness using a linear approach is commonly
completed using two methods: (i) the peak (secant) method and (ii) the yield (tangent)
method. Additional linear shear stiffness measurement methods are discussed in the fol-
lowing sections, including Day’s [6] best-fit chord and Grasselli and Egger’s [44] method.
Nonlinear methods are available in the literature but are not discussed in this study; readers
are referred to the following references for additional information on characterizing shear
stiffness for nonlinear responses (among others [31,73,76]).

Peak Secant Method

The peak secant method is the most common and simplest approach to measuring
shear stiffness of a joint. It is completed by measuring the secant between zero shear
stress and the unconstrained peak shear strength on a shear stress–displacement plot,
as shown in Figure 2. This method is rather limited as there is no consideration of the
influence of sample seating in the nonlinear portion near the beginning of the test, or
nonlinear behaviour that may occur immediately prior to reaching unconstrained peak
shear strength [6,32,75].

Yield Tangent Method

The second approach is referred to as the yield (tangent) method. This method results
in two shear stiffness values through the identification of two characteristic points on a
shear stress versus shear displacement plot: (i) the “yield” point, which is defined as the
point of maximum curvature, and (ii) the shear stress point at which 50% of unconstrained
peak shear strength occurs. Using the two identified points, the tangent of each point can
be taken to represent the shear stiffness, or, in the case of a multi-stage direct shear test,
where several shear stages are completed on a joint specimen, a “secant coefficient” can be
calculated at the critical points for each stage. Using the various secant coefficients, a linear
regression analysis can be applied to the data with the “best fit line” crossing through the
origin, making the regression coefficient equal to the shear stiffness of the joint [31].

Of these two approaches, it is most common to measure the shear stiffness as the
tangent at 50% of unconstrained peak shear strength, which can be approximated by
the chord of the curve between 40% and 60% of the unconstrained peak shear strength
(Figure 2a). This is an easily repeatable and objective measurement; however, in some
cases, using a chord measurement between 40% and 60% of unconstrained peak shear
strength may include deviations from an elastic trend, potentially resulting in an inaccurate
measurement of shear stiffness [6,32].

Best-Fit Chord Method

The inclusion of nonlinear portions of a shear–displacement curve when measuring
shear stiffness will result in an artificially low joint shear stiffness value. In efforts to
overcome the noted limitations that come with the peak and yield tangent methods, Day [6]
proposed a best-fit chord method to measure the shear stiffness of a joint. The best-fit chord
method requires manual selection of the linear elastic portion of a shear stress–displacement
curve between the onset of shearing and unconstrained peak shear strength (Figure 2). This
technique minimizes the influence of nonlinear behaviour that commonly occurs early in
the test and immediately before unconstrained peak shear strength is achieved [6,32].

Although the peak secant and yield tangent methods face limitations, both methods
are simplistic and can be determined with consistency by practitioners. Contrary to this,
the method proposed by Day [6] is subjective and requires manual selection of the linear
region to be measured. This will inevitably introduce variation between practitioners and
may result in inconsistent measurements of the same data by different individuals.

Grasselli and Egger Linear Relationship

Grasselli and Egger [44] proposed a linear relationship to define shear stiffness, stating
that the nonlinearity observed at the beginning of a shear strength versus shear displace-
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ment plot is the result of joints not being entirely mated. This results in a small displacement
occurring prior to the joint being able to provide its entire strength. Thus, Grasselli and Eg-
ger [44] expressed the shear displacement as the sum of two components: (i) the horizontal
displacement necessary to mate the joint (δm) and (ii) the horizontal displacement prior to
reaching unconstrained peak shear strength (∆δp). The total horizontal displacement is
expressed by Equation (11). Observing the experimental curves as the joint is mated, Gras-
selli and Egger [44] affirmed that the joints deformed almost linearly up to unconstrained
peak shear strength and described shear stiffness using the linear relationship expressed
by Equation (12).

δp = δm + ∆δp (11)

Ks =
1

∆δp
∗

τp

σn
(12)

7.2. Yield, Unconstrained Peak, and Constrained Peak Shear Strengths

Yield and peak shear strength of a joint are commonly used interchangeably and can
therefore be misleading to the reader. In Hungr and Coates’ [31] study, yield is referred
to as the point of maximum curvature on a shear stress–displacement curve and the peak
shear strength is the maximum shear stress achieved, whereas Goodman [75] refers to the
point of maximum curvature as the peak and the yield is undefined.

Depending on the nature of the rock, testing procedures, and other factors, the ob-
served shear response of a joint can take on the form of ductile, semiductile, or brittle
behaviour. In the case of these three behaviours, the points of maximum curvature and
peak shear strength may vary. Commonly, under CNL* boundary conditions, the uncon-
strained peak shear strength and yield point coincide for semiductile and brittle behaviour.
Conversely, for direct shear tests under CNS conditions, the maximum attainable shear
stress may vary from the point of maximum curvature due to a post-peak “strengthening”
behaviour [20]. When comparing CNL* and CNS testing, shear behaviour is similar prior
to the point of maximum curvature but will diverge after this point. This is the result of an
increase in the applied stress under CNS conditions as the sample begins to dilate. Conse-
quently, as the normal stress increases, a higher shear stress will be required to horizontally
displace the joint, thus yielding an increase in shear strength. Figure 16 illustrates the
shear stress–displacement response for a typical rock joint specimen under CNL* testing
conditions (solid lines) and under CNS testing conditions (dashed lines).
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Barton et al. [59] state that the variations in these behaviours are a result of scale effect
and joint surface properties, where the peak-residual behaviour is a typical representation
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of small block sizes, rough joints, and low ratios of σ′n/JCS, whereas the smooth hyperbolic
behaviour is a result of large block sizes, smooth joints, and high ratios of σ′n/JCS.

In the case of multi-stage direct shear testing, the response of a joint may change from
an initially brittle response to a ductile shear response. This change can be explained by
the shearing of microscopic roughness on the contact areas. In the case of multi-stage
testing with repositioning, the contact areas are subject to wear and may be smoothed
by the last test stage, creating a different response than stage 1. This occurrence was
observed by Grasselli and Egger [44] and MacDonald [19], who continuously sheared a
specimen at the same normal stress and observed the shear strength tend towards the same
residual value with each subsequent stage (Figure 17). As a result, joints that originally
demonstrate brittle behaviour will have a clear peak resistance in the first stage, but for
subsequent stages, the occurrence of peak may be difficult to distinguish. The authors
of this review recommend that unconstrained peak shear strength be referred to as the
maximum attainable shear stress that occurs shortly after yield and is followed by the
first decrease in shear stress. Constrained peak shear strength should be referred to as the
maximum sustained shear stress that may be observed at shear stresses greater than the
unconstrained peak shear strength after additional shear displacement, as often observed
with testing under CNS boundary conditions where an increase in the applied normal
stress occurs with increasing dilation. Yield shear strength should be used to represent the
point of maximum curvature (Figure 2).
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7.3. Unconstrained and Constrained Peak Shear Displacements

Unconstrained and constrained peak shear displacements
(
δp−u&δp−c

)
are referred

to as the horizontal displacements required to reach unconstrained and constrained peak
shear strengths, respectively, and are defined in Figure 2. Unconstrained peak shear
displacement is commonly used to determine the secant shear stiffness of a fracture, as
previously described in Section 7.1.2. An earlier study completed by Barton [77] indicated
that for model tension fractures representing prototype joint lengths from 225 cm up to
2925 cm, it requires approximately 1% of horizontal displacement to reach unconstrained
peak shear strength. Despite presenting a 1% “rule of thumb”, Barton and Choubey [4]
pointed out that unconstrained peak shear displacement will reduce to less than 1% of joint
length as the joint length (L) increases to several meters. An extensive review of 650 in situ
and laboratory tests for filled discontinuities, rock joints, and modelled joints by Barton
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and Bandis [40] provided further evidence to support the observation that as joint length

increases,
δpeak

L decreases.

7.4. Peak Friction Angle (φ)

Peak friction angle (φp) is commonly measured by one of two ways: (i) calculated using
Equation (13) or (ii) measured graphically as the inclination of the linear Mohr–Coulomb
failure envelope of a rock joint.

φp = tan−1
(

τp−u

σn

)
(13)

In early work completed by Patton [53], it was concluded that the shearing of a joint
exhibits two modes of failure that are best represented by one bilinear failure envelope.
The lower part of the envelope is defined by sliding behaviour of the joint, and the upper
portion of the envelope is defined by a shearing behaviour. For the lower part of the
envelope, the friction angle is the sum of two components: (1) the basic friction angle
and (2) the mean inclination of the roughness surface. Although this simple change in
failure mode depicted by the bilinear failure envelope is representative for direct shear
tests on controlled sawtooth specimens, failure envelopes for natural irregularities will
not reflect such a simple change in failure modes; rather, failure modes are expected
to occur simultaneously at different intensities [56]. Therefore, under a given normal
stress, complete or partial damage of asperities contributes a shearing or failure compo-
nent (S

◦

A

)
to the peak frictional resistance (φp). To better represent peak friction angle,

a three-component equation was developed instead of two, consisting of (1) the basic
friction angle (φ

◦
b), (2) the angular component described in terms of peak dilation (d

◦
n), and

(3) the shearing failure component, shown empirically by Equation (14) and graphically in
Figure 18 [5,65].

φp = peak tan−1
(

τ

σn

)
= φ

◦
b + d

◦
n + S

◦
A (14)

Geosciences 2023, 13, x FOR PEER REVIEW 25 of 38 
 

 

pointed out that unconstrained peak shear displacement will reduce to less than 1% of 
joint length as the joint length (L) increases to several meters. An extensive review of 650 
in situ and laboratory tests for filled discontinuities, rock joints, and modelled joints by 
Barton and Bandis [40] provided further evidence to support the observation that as joint 
length increases,  decreases. 

7.4. Peak Friction Angle (ϕ) 
Peak friction angle (𝜙 ) is commonly measured by one of two ways: (i) calculated 

using Equation (13) or (ii) measured graphically as the inclination of the linear Mohr–
Coulomb failure envelope of a rock joint. 

𝜙 = 𝑡𝑎𝑛 (
𝜏

𝜎
) (13)

In early work completed by Pa on [53], it was concluded that the shearing of a joint 
exhibits two modes of failure that are best represented by one bilinear failure envelope. 
The lower part of the envelope is defined by sliding behaviour of the joint, and the upper 
portion of the envelope is defined by a shearing behaviour. For the lower part of the en-
velope, the friction angle is the sum of two components: (1) the basic friction angle and (2) 
the mean inclination of the roughness surface. Although this simple change in failure 
mode depicted by the bilinear failure envelope is representative for direct shear tests on 
controlled sawtooth specimens, failure envelopes for natural irregularities will not reflect 
such a simple change in failure modes; rather, failure modes are expected to occur simul-
taneously at different intensities [56]. Therefore, under a given normal stress, complete or 
partial damage of asperities contributes a shearing or failure component (𝑆° ) to the peak 
frictional resistance (𝜙 ). To be er represent peak friction angle, a three-component equa-
tion was developed instead of two, consisting of (1) the basic friction angle (𝜙° ), (2) the 
angular component described in terms of peak dilation (𝑑° ), and (3) the shearing failure 
component, shown empirically by Equation (14) and graphically in Figure 18 [5,65]. 

𝜙 = 𝑝𝑒𝑎𝑘 𝑡𝑎𝑛
𝜏

𝜎
=  𝜙° + 𝑑° + 𝑆°  (14)

 
Figure 18. The angular components of shear strength for an undulating joint, where τ is shear stress, 
σn is normal stress, and R is the resultant stress (modified after [5]). 

7.5. Dilation (𝜓) 
Dilation is a very powerful phenomenological parameter of shear strength, as for a 

given normal stress it represents the minimum energy path between a sliding and shear-
ing mode of failure [5]. Further, dilation is an important feature when evaluating joint 
shear strength as it can increase the shear resistance of a discontinuity in one of two ways. 

Figure 18. The angular components of shear strength for an undulating joint, where τ is shear stress,
σn is normal stress, and R is the resultant stress (modified after [5]).

7.5. Dilation (ψ)

Dilation is a very powerful phenomenological parameter of shear strength, as for a
given normal stress it represents the minimum energy path between a sliding and shearing
mode of failure [5]. Further, dilation is an important feature when evaluating joint shear
strength as it can increase the shear resistance of a discontinuity in one of two ways. Firstly,
if a discontinuity is confined, as it begins to dilate it will result in an increase in the applied
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normal stress, which in turn increases the shear strength. Secondly, as demonstrated in
Patton’s [53] work, sliding asperities can increase the frictional resistance by an angle of
asperity inclination, i [20]. When shearing of a nonplanar joint occurs, asperities on the
joint surface will slide over each other and cause an increase in the aperture (displacement
perpendicular to the joint), which is referred to as dilation (ψ) [59]. Dilation can be calculated
using the instantaneous inclination from a normal displacement versus shear displacement
plot by following Equation (15).

ψ = tan−1
(

δn

δh

)
(15)

Dilation is known to initialize at an increasing rate as unconstrained peak shear
strength is approached and thereafter continuing at a reduced rate as roughness is gradually
destroyed [59]. The dilation angle of a fracture depends on the strength of the rock material,
angle of asperities, and applied normal stress [3]. The impacts that normal stress and joint
roughness have on the dilation angle are illustrated in Figure 19. In general, as the friction
of a joint increases, an increase in dilation can be expected, and as the ratio of applied
normal stress to joint compressive strength decreases, an increase in dilation will also occur.
The inverse relationship observed between dilation angle and applied normal stress has
been additionally confirmed by other researchers (e.g., [7,19–21,32,78]).
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Figure 19. Peak dilation angle response to varying joint friction angles and ratios of normal stress
(σn) to compressive strength (σc) (modified after [5]).

Ultimately, joint characteristics will control the degradation and dilation that a joint
will experience during shear. A rough weak joint will suffer greater damage than a strong
smooth joint surface, yet neither will experience high degrees of dilation. Strong joints with
a high degree of surface roughness will dilate strongly as unconstrained peak shear strength
is approached [4]. It has been shown by Barton [79] that the occurrence of the maximum
dilation angle corresponds with the shear displacement at which peak strength occurs.
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7.6. Residual Shear Strength (τr)

Under CNL/CNL* boundary conditions, following unconstrained peak shear strength,
a very rapid decrease of strength is often observed on a shear strength versus shear displace-
ment plot, and as the shear displacement continues, the reduction rate of shear strength
will slow until it reaches its final value, which is referred to as residual shear strength [80].
True residual strength is said to only be achieved once dilation ceases. As a result, it is
difficult to achieve true residual strength, as roughness tends to continuously contribute to
shear strength even after large displacements [66]. Barton [5] claims that when testing joints
in strong rock, true residual strength will seldom be attained unless the normal stresses
are very high, or repeated tests are made. The slow reduction towards residual strength
found in practice has prompted the use of a more appropriate definition, termed “ultimate”
strength, to represent the value measured at the end of a shear test [66].

Some discrete geomechanics numerical modelling software require that post-peak
shear strength be defined by dilation angle, residual shear strength, and maximum dilation.
Packulak et al. [7] proposed a measurement method to holistically measure all three of
these parameters from direct shear test data. Readers are referred to [7] for details.

Under CNS boundary conditions, following unconstrained peak shear strength, the
decrease in shear strength is dampened by the increase of applied normal stress to main-
tain the input KNM condition. After some amount of shear displacement past uncon-
strained peak shear strength, which depends on the rock and joint properties and test
conditions, constrained peak shear strength will be reached, followed by a very rapid
decrease of strength. After further shear displacement, residual shear strength will be
achieved (Figure 2).

8. Critical Assessment of Boundary Condition Selection

The decision to test rock fractures in direct shear under a CNL/CNL* or a CNS
boundary condition should be evaluated against the environment in which the project of
interest is located and the intended use of the laboratory test data. In cases where the normal
load/normal stress applied to the discontinuity is expected to remain constant (e.g., rock
slope and surface excavation stability or the sliding of structures on rock foundations), direct
shear testing under a CNL/CNL* boundary condition is recommended. In rock engineering,
there are many instances where the normal stress on a discontinuity would not remain
constant as sliding occurs, such as fractures compressed by rock bolts, displaced blocks
around an underground excavation, or shearing of joints during fluid injection activities.
Fluid injection activities include hydraulic fracturing for petroleum resource extraction
or rock mass preconditioning, and carbon dioxide for deep underground sequestration,
among others.

Both CNL/CNL* and CNS boundary conditions measure the stiffness, strength, and
dilation of the discontinuity, and the current ISRM suggested method states that testing
should be completed using a minimum of three (3) but preferably five (5) distinct normal
stress conditions. These normal stresses should reflect the expected normal stress that the
discontinuities will be subjected to in a given project context. For instance, in the case of
the evaluation of the stability and sliding potential of a water-control structure founded on
a bedded limestone with an expected load of 300 kPa, a single-stage program consisting of
three to five specimens, tested at normal stresses of 100, 200, 300, 400, and 500 kPa under
CNL* conditions, would be considered sufficient to determine the strength envelope of the
investigated discontinuity set.

The fundamental difference between the CNL/CNL* and the CNS boundary condition
is the stress path of the discontinuity during shear. The CNL/CNL* boundary condition
holds the applied, normal load/normal stress constant. The CNS boundary condition does
not hold the applied normal stress constant; therefore, it is hypothesized that the stress path
the discontinuity takes as shearing progresses would be along the strength envelope. As the
stress path is believed to follow the strength envelope, hypothetically fewer tests would be
required to predict the strength envelope [49]. Furthermore, the direction of the stress path
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is thought to provide insight as to the orientation of the development of subsequent shear
planes [81]. One of the limitations of using the CNS stress path to determine the strength
envelope is the degradation of asperities with increasing shear. As the shear displacement
increases, asperities will break and the mobilized resistance to shear will decrease until
the joint reaches a residual strength state [66,82]. While highlighting the degradation of
roughness with increasing shear, CNS conditions provide static strength measurements
that are roughly equivalent to the measurement points for CNL/CNL* boundary condition
direct shear tests [7].

The dilative properties of rock joints have impacts on the overall rock mass behaviour
both on surface and in underground settings. Recall that in underground settings the dila-
tion potential of a rock joint and the confinement of underground environments results in a
higher shear resistance [35,83]. However, the dilation potential also impacts the hydraulic
conductivity of the joint and the rock mass if fractures are continuous. The study of the
evolution of joint permeability with increased shear displacement has been undertaken
by numerous researchers, including Archambault et al. [84], Nguyen and Selvadurai [85],
Esaki et al. [86], Hans and Boulon [87], Min et al. [88], Barton [89], and Li et al. [90]. These
studies show that as the rock joint undergoes shear and the area of contact on the joint
plane decreases, water conductivity increases until maximum dilation is reached, or the
dilatancy rate becomes zero. In cases where permeability around underground structures
is important, such as underground reservoirs for carbon dioxide sequestration and deep
geological repositories for the safe storage of spent nuclear fuel, the dilative behaviour of
the joint under a CNS boundary condition becomes critical, and CNL/CNL* testing does
not accurately capture the increased dampening of the dilation angle due to the increase in
normal stress.

9. Critical Assessment of Multi-Stage Direct Shear Testing

Multi-stage direct shear testing has proven to be a useful technique as it can increase
the amount of information gained from a single rock specimen, overcome sampling issues
when more than one discontinuity cannot be obtained, and limit the natural variability
of rock properties in the case of heterogeneous rock specimens. Given these benefits,
multi-stage testing has become a common practice in the industry, but it does come with
limitations. The impact that multi-stage direct shear testing has on the unconstrained peak
shear strength values of subsequent shear stages has not passed unnoticed. Currently, both
the ASTM standard and ISRM suggested method contain cautionary statements with the
use of multi-stage testing. They read as follows:

1. “To minimize the influence of damage and wear, each consecutive shear stage should
be performed with an increasingly higher normal stress” [2];

2. “In the case of multi-stage tests, the apparent cohesion can be exaggerated due to
accumulation of damage with successive shearing of the same joint specimen” [2];

3. “In order to reduce the potential for the effects of specimen degradation and wear,
each consecutive stage should be performed with a higher normal load . . . Bear in
mind that with each repetition the surface will be further damaged” [9].

The degradation of a specimen’s surface when subject to multiple shear stages has
been observed to impact the results since the earliest tests completed on joints and separated
bedding planes of sandstone, siltstone, and shale by Ripley and Lee [17]. This observation
was later confirmed in a study by Hencher and Richards [91] on sheeting joints in Hong
Kong granite, who noted that when using a multi-stage technique, true peak strength was
only obtained for the initial stage, and all subsequent stages exhibited a reduced shear
strength in comparison to undamaged peak strengths. Despite these initial observations,
the use of multi-stage testing persists, and additional research has been carried out to
evaluate the feasibility of the testing technique.

In general, direct shear testing will result in surface damage through asperity sliding
and shearing. When conducting a multi-stage test, rock specimens are subject to large
displacements and the damage will accumulate with each stage, thus changing the overall
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surface morphology of a sample and resulting in lower shear strength results for the later
stages than might be expected with an undamaged surface. This issue has been addressed
by many researchers (among others, [11–19,91,92]). Figure 17 illustrates the reduction in
shear strength of a specimen that is sheared multiple times and repositioned after 5 mm of
displacement under the same normal load for each stage [44]. In specimens with rougher
surface profiles, it is suggested that shear forces accumulate on the irregular sample surface
against the highest asperities, reaching larger intensities [93]. Therefore, damage typically
concentrates on one or a few dominant asperities. In cases where only a few asperities play
a role, test-induced damage will have a significant impact on the shear strength observed
in subsequent stages of a multi-stage test, as in the later stages, dominant asperities may be
absent through damage and may be controlled by less prominent asperities [94].

The same occurrence In shear strength reduction can be observed when a specimen
is tested following a multi-stage procedure without repositioning. In addition to surface
damage, the lack of interlocking between asperities as shear displacement progresses
contributes to lower shear strengths. This occurrence was empirically demonstrated and
confirmed experimentally on ordinary compressed concrete bricks by Ladanyi and Archam-
bault [21], who noted “for an increasing loss of interlock, the maximum strength is seen
to tend more and more to the residual one”. To visualize the reduction in unconstrained
peak shear strengths as a result of decreasing levels of interlocking asperities, Ladanyi
and Archambault [21] published their results compared to Patton’s [53,56] shear behaviour
constitutive models (Figure 20). Ladanyi and Archambault’s [21] model includes the def-
initions of transition stress points (σT) along a linear slope of 39◦ [95,96], at points TI–IV

in Figure 20c, because at normal stresses exceeding the transition stresses, the strength
envelopes for discontinuities would join the one for rock mass because the discontinuities
would have little effect on the strength of the rock mass.
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Figure 20. Effects of a decreasing degree of interlocking of asperities on the shear strength along rock
surfaces (modified after [21]); (a) definition of the degree of interlocking, η; (b) results according to
Patton’s [53,56] bilinear model; (c) results according to Ladanyi and Archambault’s [21] model.

Experimentally, the impact that multi-stage testing without repositioning has on the
unconstrained peak shear strength of concrete lift joints sorted by corresponding shear
stage is illustrated in Figure 21 [17]. Here, there is a clear reduction in both cohesion and
friction angle of the failure envelopes between shear stages 1 to 5.
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Figure 21. Peak shear strengths sorted by stages 1 to 5 of a suite of multi-stage direct shear tests
without repositioning (modified after [17]).

More recently, Gaines [18] completed a study on tension-induced Saint-Canut sand-
stone joints that confirms previous findings and expands on the comparison of multi-stage
testing with and without repositioning. He concluded that multi-stage testing without
repositioning is far more inaccurate than multi-stage testing with repositioning. In agree-
ment with Ladanyi and Archambault [21], Gaines [18] believes the decrease in apparent
shear strength is likely due to the lack of interlocking of asperities and minor undulations
as shear displacement progresses. A visual summary of the results from Gaines’ [18] study
is provided in Figure 22.
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When combining the results from damaged and undamaged surfaces, an underesti-
mation in friction and overestimation in cohesion can be expected when defining Mohr–
Coulomb parameters [12,16–19]. This problem is accentuated when a sample has a high
JRC, low JCS, and the applied normal stress is high in relation to JCS, therefore causing
more damage during each stage [16]. Figure 23 illustrates this occurrence, where “standard”
refers to a multi-stage direct shear test with repositioning, as described by ISRM and ASTM,
beginning at the lowest normal stress and ascending to the highest.
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(undamaged), standard multi-stage tests with repositioning (damaged), and limited displacement
direct shear tests (modified after [12]).

In the study completed on sheeting joints in Hong Kong granite by Hencher and
Richards [91], it was suggested that when significant losses of peak strength are suspected,
the effect may be quantified by testing similar samples under decreasing normal stresses.
This allows for a comparison of the maximum shear strengths achieved at the highest
normal load to see if the sample loading history has an impact on the results. To overcome
the issue of (false) unconstrained peak shear strengths measured from multi-stage tests,
Hencher and Richards [13,14] note that when conducting multi-stage direct shear tests,
it is good practice to carry out tests with different normal loads for the first stage, so
the first-stage results can be used by themselves to define the unconstrained peak shear
strength envelope if necessary. This testing philosophy was carried out in two direct shear
testing programs by Yathon et al. [17] and Gaines [18]. When applying this approach, the
results demonstrate that the selection of the initial normal stress along with the magnitude
of normal stress increase between each stage will impact the interpreted Mohr–Coulomb
shear strength properties [18]. Figure 24 contains the results of multi-stage direct shear tests
completed on concrete lift joints by Yathon et al. [17]. This demonstrates how interpreted
shear strength properties can vary depending on whether the stages of applied normal
stress follow an ascending or descending order. The slope and intercept of the linear
regression will be influenced by the first-stage results as it is performed on an undamaged
surface [17].
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To overcome the issue of excessive asperity damage due to large shear displacements,
the LDMDS was proposed [11,12]. This recently developed testing technique has been
observed to minimize asperity damage and provide more accurate peak shear strength
parameters compared to conventional multi-stage direct shear tests. These findings were
validated through an experimental study using joint replicas made of cement to directly
compare the results of LDMDS and single-stage procedures, illustrated in Figure 23 [11].

The recent laboratory investigation completed by Gaines [18] at the Government of
Canada’s CanmetMINING Rock Mechanics Laboratory assessed the strength of induced
rock joints in sandstone by applying different testing procedures and interpretation meth-
ods. Direct shear testing was completed using multi-stage, with and without repositioning,
and limited displacement multi-stage procedures to quantify the difference between inter-
preted strength parameters for each testing method. In agreement with other researchers,
each subsequent shear stage in the multi-stage test resulted in a shear stress vs. shear
displacement plot containing a poorly defined unconstrained peak shear strength due to
asperity damage and is more representative of the residual stress. Based on the test results,
it was found that multi-stage testing without repositioning is significantly more inaccurate
than multi-stage testing with repositioning. This is believed to be the result of poor asperity
interlocking and minor undulations as shear displacement progresses. Furthermore, the
results from the limited displacement multi-stage tests contain better agreement with the
undamaged results and more accurately estimate strength parameters [18].

10. Concluding Remarks

Direct shear testing is a common laboratory method used to measure geomechanical
properties of rock discontinuities, dating back to the 1950s. Currently, common practice
includes three boundary conditions, namely, constant normal load (CNL), constant nor-
mal stress (CNL*), and constant normal stiffness (CNS), and two standardized testing
procedures, namely, single-stage and multi-stage direct shear testing.
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10.1. Boundary Conditions

CNL and CNL* are presently the most often used boundary conditions for direct
shear testing and are considered to represent near-surface rock mass environments where
gravity loading dominates rock mass stability. CNL was the first type of direct shear
testing with load applied through a mechanical lever arm loaded with metal weights
of known mass [91,97]. CNL* can be achieved with servo-controlled hydraulics and
computer-programmed laboratory equipment, where the specimen contact area can be
automatically calculated throughout the test as shear displacement progresses. In this case,
the normal load is proportionately increased during a test as contact area decreases to
maintain the preset normal stress magnitude. The results from a CNL* test program are
easy to directly input into geomechanics numerical models with discrete joint elements for
rock engineering design where normal stiffness, shear stiffness, peak and residual shear
strengths, and dilation are required parameters.

The CNS boundary condition is considered to represent deep rock mass environments
near underground excavations where ground stresses control rock mass stability. CNS
boundary conditions can be achieved in laboratory direct shear tests by adding physical
springs of known stiffness to a test system, or by programming a stiffness magnitude into
servo-controlled hydraulic equipment. In dry conditions, Packulak et al. [7] demonstrated
very similar shear strength results of rough granitic joints between CNL* and CNS boundary
conditions. CNS testing is particularly relevant for understanding the evolution of dilation
and implications for fracture permeability and fluid flow from initial pre-peak to residual
post-peak shear behaviour.

10.2. Multi-Stage Test Procedures

Multi-stage direct shear testing subjects a single specimen to additional shear stages,
resulting in subsequent stages being performed on a progressively damaged surface. Thus,
the peak shear strength results measured in the subsequent stages result in values that are
lower than expected. As such, multi-stage direct shear testing has become a controversial
procedure, resulting in several studies being completed to test its validity, which are
summarized in Table 1. These studies have shown that when combining multi-stage
testing results, and following an ascending order for applied normal stress, the interpreted
Mohr–Coulomb shear strength envelope parameters underestimate friction angle and
overestimate apparent cohesion.

To overcome this issue, an alternative testing procedure has been introduced that
reduces the surface damage experienced by a specimen. This testing procedure is referred
to as the limited displacement multi-stage direct shear test (LDMDS). Additional studies
have been completed to compare the three testing procedures and conclude that LDMDS
is more accurate than multi-stage testing. Despite having shown improvements, of the
published studies comparing all three testing procedures, they are limited, as one study
only tests specimens at low normal stresses (less than 0.5 MPa) and both studies fail to
consider parameters other than peak shear strength and the associated Mohr–Coulomb
shear strength parameters. These limitations prompted additional testing by the authors
of this review to further investigate the influence that various testing procedures have on
laboratory direct shear results subject to high normal stresses and on other geomechanical
properties such as joint normal and shear stiffness, joint dilation angles, residual shear
strength, and associated failure mechanisms. The results of this experimental study by the
authors are forthcoming.
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Table 1. Summary of major findings pertaining to multi-stage direct shear testing procedures.

Major Findings/Contributions References

Suggested carrying out multi-stage direct shear testing programs using a different normal load for the first
stage. This allows the results from the first stage to be used by themselves to define peak shear strength
envelopes.

[13,14]

Developed an alternative direct shear testing procedure, referred to as the limited displacement multi-stage
direct shear test (LDMDS), in efforts to improve multi-stage direct shear testing. [11,12]

Evaluated the limitations involved with peak shear strength measurements and interpreted shear strength
parameters when following a multi-stage direct shear testing procedure with repositioning as published by the
ASTM and ISRM.
Results demonstrated a decrease in peak shear strength with subsequent stages when compared to
single-stage results. This impacts the interpreted Mohr–Coulomb shear strength parameters by overestimating
the cohesion and underestimating the joint friction angle.

[11,12,18,19]

Compared the peak shear strength and interpreted Mohr–Coulomb shear strength parameters of LDMDS vs.
multi-stage vs. single-stage direct shear testing procedures.
Results demonstrated an improvement in defining peak shear strength parameters for LDMDS testing when
compared to multi-stage testing and using single-stage results for comparative purposes.

[11,12,18,19]

Evaluated the impact on direct shear testing results when following a multi-stage direct shear testing
procedure without repositioning as published by the ASTM and ISRM.
Results demonstrated that multi-stage direct shear testing with repositioning is far more accurate than
multi-stage without repositioning.

[17,18]

Utilized the suggestions from [13,14].
Findings demonstrated that the selection of the initial normal stress along with the magnitude of normal stress
increase (or decrease) for each stage will impact the interpreted Mohr–Coulomb shear strength parameters.

[17,18]

When following a multi-stage direct shear testing procedure in a descending order (beginning with the highest
normal stress for stage 1 and decreasing with each stage), the interpreted Mohr–Coulomb failure envelope will
have a lower cohesion and higher friction angle as opposed to a higher cohesion and lower friction angle when
following an ascending order.

[17]
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