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Abstract: Anchored drapery meshes represent a worldwide adopted protective solution against
rockfall. The mechanical performance of a wire mesh is evaluated through laboratory proce-
dures in which the boundary conditions strongly differ from the ones typical of field applications.
This shows that the laboratory characterization is, in general, not representative of the field behavior.
In this work, referring to a double-twisted wire mesh, a simple approach allowing the extension
of the laboratory characteristic values to field conditions is proposed. The approach is based on
the definition of analytical relations for evaluating the effects of both the mesh’s system geometry
and the loading condition on the force–displacement response. These relations are derived from
previously calibrated laboratory tests and are extended to different configurations on the basis of
a large number of discrete element simulations. A master curve allowing the prediction of the
entire force–displacement response of a general configuration of the drapery system is then defined.
The results of this study can provide useful information for designing anchored drapery systems and
can be easily associated with standard limit equilibrium calculations to move toward a hybrid design
approach that couples forces with mesh deformations.

Keywords: anchored drapery mesh; rockfall protection; wire meshes; punch test; force–displacement curve

1. Introduction

Anchored (or reinforced) drapery meshes are among the most widely used struc-
tural mitigation measures for preventing and protecting against rockfalls or shallow in-
stability in sub-vertical rock faces directly insisting on transportation infrastructure or
structures [1,2]. These kinds of hazardous events involve the disaggregation of the sur-
face part of a slope, which can lead to local slides and/or the detachment of unstable
blocks [2]. Global warming and extreme events promote weathering of rock faces [3] and,
consequently, the adoption of effective measures that are easy to install with reduced costs,
as drapery meshes are, has become a common practice in recent decades.

These structures are mainly composed of steel wire mesh panels combined with
regular anchoring patterns (pinned systems), with the possible addition of high-strength
ropes (secured systems). The anchors prevent the detachment of single rock blocks or the
global instability of shallow layers in a slope, while the net confines granular debris or
unstable blocks into delimited mesh sections (Figure 1).

Despite anchored drapery systems being applied worldwide, their design is still
mainly based on engineers’ work experience. The few design approaches proposed in the
literature [4–7] are based on limit equilibrium computations and differ in terms of failure
mechanisms (i.e., local or global), slope type (i.e., soil-like or rock-like), and the eventual
pre-tension of the mesh. Blanco-Fernandez et al. [5] provided an overview of the existing
design methods.
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Figure 1. Reinforced drapery system on a rock slope in Sarre, Autonomous Region of Valle d’Aosta, Italy.

Attention has only recently been devoted to understanding the mechanical behaviors
of reinforced drapery systems in field conditions. Large-scale experimental tests were
conducted for applications on a rocky slope [8] and on a granular slope [9,10] in order to
define a more effective design methodology. Moreover, a laboratory-scale experimental
study was conducted to analyze the frictional interaction between the mesh and small rock
blocks at the interface [11].

In the present paper, anchored drapery meshes applied to rockfall-prone slope faces were
considered, with a particular focus on pinned systems. In this particular case, the performance
of the mesh is defined in terms of both tensile capacity and puncturing force–displacement
behavior. To date, standardized laboratory tests on single mesh panels only are used to
calculate these values [12–17]. These tests are performed with mesh panels of given sizes and
constraints, which are scarcely representative of the on-site configurations and, consequently,
of the mesh behaviors in field conditions. The major difference is related to the boundary
conditions; the local constraint imposed by the anchors in field applications strongly differs
from the laboratory case in which shackles or connecting devices link the entire panel’s outer
border to a rigid frame. This determines the overestimation of the mechanical resistance
and of the out-of-plane stiffness of the mesh (confirmed by field tests [8] and numerical
studies [18,19]). Due to technical and economical limitations related to the realization of
large-scale field tests, the adoption of numerical models represents a potential way to test
a mesh system in idealized field conditions. From a numerical perspective, both the finite
element method (FEM) [20–25] and the discrete element method (DEM) [26–30] have been
adopted to simulate mesh structures. Focusing on anchored drapery systems only, the
DEM has been recently used to analyze its interaction with a single rigid body (i.e., rock
block) [18,19,31–34] or with an unstable granular layer [18,35–38].

In previous works by the authors [18,19], a DEM approach was used to account for
the effect of moving from standard laboratory conditions to idealized field conditions.
The ideal case in which all of the mesh panels are subjected to the puncturing effect
of detached blocks has been considered (this condition will be referred to as “periodic”
loading conditions, in what follows). In this context, analytical relations allowing the
estimation of the force and deflection at the failure of an anchored mesh panel have been
proposed [34] and implemented in a simple online tool [39] to simulate the entire force–
displacement response of an anchored mesh panel.

In a field application, it is more likely to encounter isolated blocks that can eventually
detach from the slope face. The conceptual framework proposed in [34] is extended to
the case of an anchored drapery mesh system that interacts with an isolated rock block.
The 8 × 10 hexagonal double-twisted steel wire mesh with a nominal wire diameter of
2.7 mm (Maccaferri producer) is considered in the present study. The final objective is to
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define an analytical model that extends standard laboratory characterization [14–17] to
field conditions, forecasting the entire force–displacement response of the mesh system.
Equations are provided to estimate the characteristic values of force and deflection at the
point of mesh failure.

The paper is structured as follows. Section 2 provides details on the adopted method-
ology, describing the DEM model (Section 2.1) and the referenced large-scale model
(Section 2.3). The effect of the main problem variable on the mechanical response of
the mesh is discussed in Section 3. The equations used to determine both the force and dis-
placement at the rupture and the definition of a master curve and application are discussed
in Section 4. Finally, the main results are summarized in Section 5.

2. Methodology
2.1. Discrete Element Modeling of the Wire Mesh

A particle-based strategy was adopted to simulate the wire mesh system, enabling
efficient handling of the large deformations typical of the problem, allowing for “local”
(i.e., wire rupture) and “global” (i.e., tearing off the mesh) failures, and contact with external
bodies. When using a discrete element modeling approach for mesh-like structures, one
may mainly adopt three different strategies: cell-based (CB) [30,40], node-wire-based
(NWB) [19,27,28,38,41,42], and cylinder-wire-based (CWB) [29,36,37,43–45].

Here, an NWB approach was used for the numerical description of the mesh. This
choice is based on a compromise between: (i) having a faithful representation of geometrical
features of the double-twisted hexagonal wire mesh (not possible with a CB approach), and
(ii) reducing the computational cost with respect to a more refined description of the mesh
(CWB), without losing accuracy [31]. The wire mesh is modeled as a set of spherical
particles placed at the physical nodes of the real mesh (the intersection between two wires),
as shown in Figure 2a. These nodal particles concentrate the mass of the related wires and
are used to handle contact with external bodies. Nodal particles are then connected by
long-range interactions according to the geometrical patterns of the wires in the real mesh.
These interactions virtually represent the wires and are ruled by a piece-wise linear force–
displacement function in the tensile direction (referred to as the “wire” local tensile model,
see Figure 2b), while compressive forces are not accounted for. The force–displacement
behavior is computed from the stress–strain tensile relations. At each time step, starting
with the relative distance L between the two connected particles (with respect to the initial
one, L0), the current elongation (∆L) is computed and used to obtain the force acting
between the particles (see Figure 2b). A threshold value on the maximum elongation of
a wire is used to define the failure criterion for the interactions. Different stress–strain
relations (see Figure 2c) are used to describe the tensile behaviors of the single and double-
twisted wires (which are taken from [46]). The validation of the mesh for this application
was presented in previous works [18,19,38].
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Figure 2. (a) NWB description of the double-twisted wire mesh and (b) sketch of the “wire” local
tensile model. (c) Tensile stress–strain relationships between the single (SW) and double-twisted (DT)
wires (adapted from [46]).

2.2. Standardized Laboratory Tests

Despite the strong simplifications made in the standard laboratory punch test pro-
cedure [7,18,19,35], the test is global and is used in the design phases of the pinned and
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secured drapery systems. The laboratory test procedure is defined by international and
European standards [14–16], which are based on the Italian Standard UNI 11437 [17] (re-
ferred to as UNI). This standard prescribes the use of a spherical dome with a diameter
of 1 m and a curvature radius of 1.2 m as a punching element, while the curvature radius
of the dome edges should be equal to 0.05 m. A rectangular mesh panel with a nomi-
nal side of 3 m (tolerance of 20%) has to be installed on an externally fixed rigid frame.
The punching element is moved along the mesh’s out-of-plane direction at a constant
displacement rate (≤0.01 m/s) until the complete failure of the mesh. During the test, the
force acting on the punching element, as well as its displacement, are measured, providing
a force–displacement relationship.

The comparison between the results of the experimental standard UNI punch test and
the numerical one is displayed in Figure 3a. The numerical model accurately reproduces
the experimental behavior from the small deformation to the failure of the mesh. The slight
overestimation of the force at failure (∼7%) may be due to the fact that the intrinsic defects
of a real mesh (geometry and material properties of the wires) are not accounted for in the
numerical mesh description.

2.3. Large-Scale Model of a Pinned Mesh System

In order to move toward a more realistic description of the field conditions, a large-
scale pinned drapery system is considered in this work. The model consists of a pinned
mesh system with dimensions of 4lx × 4ly, where lx, ly are the horizontal and vertical
anchor spacings, respectively (lx = ly = 3 m), with a square pattern of anchors, each with a
side length of dp = 0.20 m. Anchors are simulated by blocking the degrees of freedom of the
nodal particles that are virtually intercepted by the anchor plates. Finally, periodic boundary
conditions are imposed on the border of the mesh system to simulate the presence of neigh-
boring panels, in analogy with previous works [18,19,37]. A single punching element is
located in the middle of the system to simulate the loading condition imposed by an isolated
block. To facilitate the comparison with the laboratory results, this element has the same
shape and size (dpunch = 1 m) as the one adopted in the standard UNI punch test configu-
ration. The punching element is moved normally to the mesh plane, i.e., z-direction, with a
constant displacement rate of v = 0.1 m/s (for sufficiently low displacement rates, the mesh
response is unaltered [19]). The mesh–punch contact parameters adopted in the simulations
are as follows: contact normal stiffness kn = 6.5 × 105 N/m, tangential contact stiffness
kt = 0.3kn, and a contact friction angle φc = 35◦ (these parameters were chosen accord-
ing to a previous work [19]). The time step of the explicit integration scheme is equal to
dt = 10−5 s. A graphical scheme of the numerical model is displayed in Figure 3b.

The numerical results are provided in terms of force–displacement (F − δ) and are
displayed in Figure 3a. The system is considered to fail when the mesh is no longer able
to contrast the punching element movement or when a significant tear in the mesh has
occurred. Force and displacement values at failure are denoted as Fr and δr, respectively.
In order to estimate the modification of the mesh mechanical response when moving toward
field conditions, the standard UNI F − δ curve and the one obtained from the large-scale
model described above are compared in Figure 3a. The mesh response significantly modi-
fies when moving to field conditions. A strong reduction in the force that can be supported
by the system and a significant increase in the panel’s deformability are observed. The fail-
ure mechanism also differs. In the laboratory test, the failure is observed in correspondence
with the punching element, while in the large-scale model, the failures occur at the four an-
chors of the central panel. Considering the values at failure, the maximum force is equal to
Fre f

r = 37.30 kN (= γFFUNI , γF = 0.55, and FUNI = 67.60 kN), and the associated deflection
is represented by δ

re f
r = 0.95 m (= γδδUNI , γδ = 1.67, and δUNI = 0.565 m). This clearly

points out the strong degradation of the mesh mechanical response when moving from lab-
oratory (fixed boundary) to field conditions (local anchored zones). In Figure 4a, the tensile
force values are displayed (an instant prior to the mesh failure). Force values are presented
as normalized forces f̃ = fw/ f max

w , with fw being the actual force acting on a wire and
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f max
w being the limit force for which the wire fails ( f max

w , depending on the wire type, with
values equal to 3.03 kN and 5.95 kN for the single- and double-twisted types, respectively).
The load is transmitted diagonally from the punching element to the anchors and is mostly
supported by the anchors pertaining to the central panel. The details of the strain level on
the wires surrounding the upper-right anchor plate of the central panel (an instant prior to
the mesh failure) are reported in Figure 4b. The same distribution is observed in the other
three anchors. It is worth noting that the strains localize on a few wires, from which the
failure mechanism develops and rapidly propagates in the mesh, as shown in Figure 4c.

lx
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y

(a) (b)
z

y

Figure 3. (a) Comparison of the force–displacement curve obtained from the standard UNI punch
test, displaying both the experimental and numerical results, as well as in the reference configuration
(Section 2.3). (b) Layout of the reference configuration.
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Figure 4. (a) Force distribution on the mesh wires an instant prior to the mesh failure. (b) Strain level
on wires surrounding the upper-right anchor of the central panel. (c) Propagation of the failure in
the mesh.

3. Parametric Analysis

A parametric analysis was conducted in order to estimate the effects of the geometrical
characteristics of both the anchored mesh system and the punching element on the force–
displacement response of the system. Referring to the former, the anchor spacing, anchor
plate size, and panel aspect ratio were investigated. For the latter, the punching element size
and loading direction were considered, along with the possible influence of the eccentricity
of the loading conditions. Parameters were varied in order to cover the range typical in
common practice. These are summarized in Table 1.
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Table 1. Considered layouts for the DEM analyses.

Parameter Range Normalized Range Reference Value

Length side lx (m) 2 ÷ 4 (step 0.25 m) 0.67 ÷ 1.3 3 m
Anchor plate size dplate (cm) 12 ÷ 36 (step 2 cm) 0.6 ÷ 1.8 20 cm
Eccentricity ex, ey (cm) 0 ÷ 150 (step 25 cm) 0 ÷ 0.5 0 cm
Punching element size dpunch (m) 0.2 ÷ 2.5 (step 0.1 m) 0.2 ÷ 2.5 1 m
Punching element loading direction α (◦) 0 ÷ 75 (step 5◦) - 0◦

Aspect ratio AR = lx
ly

(-) 2
4.25 ÷ 4.25

2 (step for lx, ly of 0.25 m) - 1

For each of the considered parameters, the force–displacement response of several
cases is compared in Figure 5. Values at failure Fr and δr, referred to as characteristic values,
are displayed in Figure 6, where the values are normalized with respect to the standard
UNI values, i.e., (F̃r = Fr/FUNI and δ̃r = δr/δUNI). The same notation is used for the
parameters (e.g., l̃x = lx/lx,UNI), normalized with respect to the standard UNI values, if
specified. For the anchor plate size dplate, the normalization is done on the value adopted
in the reference configuration, i.e., 20 cm. The load eccentricity is normalized on the length
of the panel’s side (e.g., ẽx = ex/lx).

The influence of the inclination α of the thrust from the punching element was observed
to have a negligible effect on the mechanical response of the mesh system and will not be
discussed (see Figure 5f).

(a)

(c)

(e)

(b)

(d)

(g)

ey

dpunch

lx

dplate

ex

ly αg

(h)

(f)

Figure 5. Effects of the system’s parameters on the F − δ response of the mesh system; (a) anchor
spacing lx, (b) anchor plate dimension dplate, (c) horizontal eccentricity ex, (d) vertical eccentricity
ey, (e) punch dimension dpunch, (f) loading angle α, (g) aspect ratio AR, (h) graphical sketch of
the parameters.
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Figure 6. Effects of the system (normalized) parameter on F̃r (dots markers) and δ̃r (triangles markers):
(a) anchor spacing lx, (b) anchor plate dimension dplate, (c) punch dimension dpunch, (d) loading angle
α. Red and magenta lines represent the considered fits. The contour plots show the effects of (e,f) the
punch eccentricity ex and ey and (g,h) the panel geometry on F̃r and δ̃r (solid red lines indicate panels
with a constant area and white dashed lines a constant AR).

3.1. Anchor Plate Size

The failure of the mesh is most frequently observed in proximity to the anchor
plates [7,47] and this has been observed in numerical analyses [18,19]. Therefore, it is
reasonable to assume that, for sufficiently large punching elements, the mesh resistance
is controlled by the available resistance at the mesh–anchor connection, which, in turn, is
a function of the number of wires intercepted by the anchor plate. In the standard UNI
punch test, the failure occurs in correspondence to the punching element and the punching
resistance is controlled by the punching element dimension [18,19].

The anchor plate side dplate varied from 12 to 36 cm, with an incremental step of 2 cm.
The effects of the anchor plate size on the F − δ trend are reported in Figure 5b. The force at
failure increases when the anchor plate size is increased (see also Figure 6b), confirming that
the available resistance at the mesh–anchor connection is mainly controlled by the anchor
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plate size in agreement with [19]. The deflection at failure is instead mostly unaffected by
the anchor plate dimension (see Figure 6b) and can, therefore, be considered independent
of dplate.

The effect of the anchor plate dimension on the characteristic value of the force at
failure Fr can be estimated with the following linear relation (determined through least
squares fit, see Figure 6b):

Fr = (0.2d̃plate + 0.33)FUNI ; (1)

3.2. Punching Element Position

The effect of load eccentricity on the mesh response was analyzed by shifting the initial
position of the punching element on a regular grid spaced by 25 cm. Different combinations
of horizontal and vertical shifts, ex and ey, respectively, were considered, assuming the
origin in the center of the panel. Configurations in which the punching element would
interfere with the anchor plates are excluded.

In Figure 5c,d, the F − δ curves obtained by shifting the punching element along one
direction (per time) are reported; this corresponds to separately analyzing the effects of ẽx
and ẽy. A negligible influence of ẽy can be appreciated, with negligible differences in the
values at failure as well as in the entire F − δ response of the system for all of the values
of ẽy considered (see Figure 5d). Conversely, the eccentricity along the x-axis affects the
mechanical response of the mesh system (see Figure 5c). As a general trend, one may notice
a reduction in both the force at failure and the associated deflection when increasing the
eccentricity ex. To appreciate the effect of a generic shift on Fr and δr, contour plots are
reported in Figure 6e-f; these were obtained from a linear interpolation of the numerical
data on the grid used for defining the punch shift. Only one-quarter of the panel is reported,
due to the symmetry of the problem. The greater influence of the eccentricity ex on the
mesh response is highlighted by the contour plots.

3.3. Punching Element Size

In previous work, the authors have shown that, depending on the relative dimen-
sion between the anchor plate and the punching element, two different failure modes
can be observed (“block-punching” and “anchor-punching”) [19]. When a relatively
small punching element is considered, the available resistance at the mesh–anchor con-
nection (which is a function of the number of wires intercepted by the plate) is higher
than the puncturing resistance of the mesh (a function of the number of wires intercepted
by the punching element), and so the mesh is expected to fail in alignment with the
punching element.

The effect of the size (and indirectly of the sharpness) of the punching element was
analyzed by rescaling the standard UNI punching element. In this framework, small
elements can represent the case of small or sharp blocks while larger elements can represent
the case of relatively large and rounded blocks. The diameter of the punching element
(dpunch) has changed in the range of 0.2–2.5 m, with incremental steps of 0.1 m, having as
lower and upper limits the opening size of the mesh and the mesh panel size.

The mechanical response of the mesh panel for different values of dpunch is reported in
Figure 5e. For a relatively large punching element, the mechanical response of the mesh is
improved both in terms of mechanical resistance and out-of-plane deformability. A strong
variation can be observed for the threshold value dpunch = 0.4 m, see Figure 6c, which is
related to a change in the failure modality from a “block-punching” to an “anchor-punching”
type. The effect of the punching element size dpunch on the characteristic value of the force
and deflection at failure can be estimated with the following relations (least squares fit,
see Figure 6c): {

Fr = (0.87d̃punch + 0.13)FUNI if d̃punch ≤ 0.4;
Fr = (0.05d̃punch + 0.49)FUNI if d̃punch > 0.4.

(2)
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{
δr = 2.02δUNI if d̃punch ≤ 0.4;
δr = (0.14d̃2

punch − 0.69d̃punch + 2.27)δUNI if d̃punch > 0.4.
(3)

For sufficiently large punching elements (dpunch > 0.4 m), the mechanical resistance of the
mesh system is mostly controlled by the anchor plate size; nevertheless, a slight increment
of Fr with dpunch is observed. This may be due to a better redistribution of the forces on the
mesh panel for larger punching elements.

3.4. Mesh Panel Geometry
3.4.1. Anchor Spacing

The anchor spacing represents one of the most relevant parameters in the design
process controlling the deformability of the mesh system [19]. Considering a square mesh
panel, the side length varied from 2 to 4 m, with an incremental step of 0.5 m (an anchor
spacing larger than 4 m is not advisable in real applications).

The force–displacement curves obtained for several values of the anchor spacing
are compared in Figure 5a. In all cases, the failure of the mesh is observed near the
anchors of the central panel. Figures 5a and 6a confirm that increasing the anchor spacing
results in an increment in the panel’s out-of-plane deformability and the deflection at failure.
A slight increment of the punching force supported by the panel is also observed (Figure 6a).
As suggested by Pol et al. [19], this may be related to a better redistribution of the stresses
on the wires for larger mesh panels. The effects of the anchor spacing on the characteristic
values can be estimated by using the following relations (least squares fit, see Figure 6a):

Fr =
(
0.23l̃x + 0.31

)
FUNI (4)

δr = (1.88l̃x − 0.23)δUNI (5)

3.4.2. Aspect Ratio

Although the use of a square anchor pattern is widespread in practice, the ability to
independently vary the lengths of the panel’s sides may be used to optimize the mechanical
response of the system while maintaining a constant number of anchors per unit mesh area.
In this perspective, the results of Section 3.4.1 are extended by considering a variation in the
panel aspect ratio (AR) in what follows. This is defined as the ratio between the horizontal
and vertical lengths of the panel’s sides (AR = lx/ly). The AR varied from 2

4.25 to 4.25
2 by

changing the panel’s sides, lx and ly, with intervals of 0.25 m.
The effects of the aspect ratio (AR) on the force and deflection values at failure are

displayed in the contour plots of Figure 6g,h. Although there is no monotonic trend, a
general tendency can be recognized: the force and the deflection at failure increase when
increasing the panel aspect ratio, i.e., for lx > ly. In particular, the characteristic values are
mostly controlled by the horizontal anchor spacing lx, a variation of the vertical spacing
has a much slighter effect on them. For a fixed AR value (white dashed lines), instead, the
trend observed when referring to square panels is confirmed (Section 3.4.1).

In order to better understand the “pure” effect related to the panel AR, we now refer
to the cases with constant panel areas. These are represented by the solid red lines in
Figure 6g,h. A comparison of the entire force–displacement response for three panels with
different AR is also displayed in Figure 5g (in the panel surface of 9 m2). The panel punching
resistance globally increases when increasing the panel aspect ratio as well as the deflection
at failure and the panel deformability. This behavior can be explained by the existence of
a preferential direction for the force transmission in the hexagonal double-twisted mesh.
Due to its peculiar wire pattern (hexagonal cell geometry and the presence of two wire
types), the force is preferentially transmitted along the direction of the double-twisted
wires [18,19] (y-direction in the present case). Adopting a panel geometry in which the ver-
tical distance between anchor rows is reduced enhances the redistribution of the punching
load on the neighboring panels. This allows for the activation of the anchors pertaining to
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the upper and lower panels and leads to an improvement in the retaining capacity of the
system. The above-described force transmission mechanism can be appreciated in Figure 7,
where the force distributions on the mesh wires for the cases AR = 1.78 and AR = 0.56 are
displayed (the F − δ response is shown in Figure 5g).

It is interesting to recall that an opposite trend regarding the maximum force is ob-
served in the case of a “periodic” loading condition (i.e., each mesh panel is equally loaded).
In such a case, the characteristic force increases as the AR decreases [19]. This behavior
has been related to the fact that when each panel is equally loaded, redistribution on
neighboring panels is not possible. Hence, the mechanical performance of a mesh panel
is enhanced when the load transmission mechanism is aligned with the double-twisted
wires. This shows that there is no optimal aspect ratio, but the choice depends on the
loading conditions. It should also be kept in mind that the effect of the aspect ratio on the
mechanical response of the mesh is strongly related to the mesh typology and the geometric
features of the mesh’s elementary cell; therefore, the results discussed here apply to the
hexagonal double-twisted wire mesh only.

0.0 >0.70.1 0.2 0.3 0.4 0.5 0.6

f=fw/fw    [-]
max~

(a)

(b)

Figure 7. Comparison of the force distribution on the mesh wires between cases (a) AR = 1.78 and
(b) AR = 0.56. The force values are normalized on the limit force of each wire type. Both force
distributions correspond to an instant prior to the mesh failure.

4. Extension to Field Conditions
4.1. Estimation of the Mesh System Characteristic Values

The relations derived in Section 3 are combined by a simple linear transformation in
order to estimate the characteristic values Fr and δr for the given geometrical and loading
configurations. This implies the assumption of non-dependence among the effects of the
system’s parameters. Coefficients γF and γδ account for the differences in the boundary
conditions between the standard laboratory characterization and field conditions. This
was estimated in Section 2.3 by considering the reference configuration of the large-scale
drapery system. The force obtained in the reference configuration is Fre f

r = γFFUNI with
γF = 0.55, while the deflection is δ

re f
r = γdδUNI with γd = 1.67. It should be noted that the

effects of the punching element eccentricity, the panel dimension, and geometry (anchor
spacing and panel aspect ratio) are accounted for in Equations (6) and (7) by means of the
coefficients ψ and χ, respectively (the contour plots of Figure 6). The analytical equations
used to derive the normalized characteristic values of the force F̃r and displacement δ̃r
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for any given plate size, punch size, punching element eccentricity, panel dimension, and
geometry, are given by:F̃r =

(
0.2d̃plate + 0.33

)(
0.87d̃punch + 0.13

)
γ−3

F ψFχF if d̃punch ≤ 0.4 ;

F̃r =
(

0.2d̃plate + 0.33
)(

0.05d̃punch + 0.49
)

γ−3
F ψFχF if d̃punch > 0.4;

(6)

{
δ̃r = 2.02γ−2

d ψdχd if d̃punch ≤ 0.4 ;

δ̃r =
(

0.14d̃2
punch − 0.69d̃punch + 2.27

)
γ−2

d ψdχd if d̃punch > 0.4;
(7)

Finally, substituting γF and γd with their numerical values:F̃r = 5.95
(

0.2d̃plate + 0.33
)(

0.87d̃punch + 0.13
)

ψFχF if d̃punch ≤ 0.4 ;

F̃r = 5.95
(

0.2d̃plate + 0.33
)(

0.05d̃punch + 0.49
)

ψFχF if d̃punch > 0.4;
(8)

{
δ̃r = 0.72ψdχd if d̃punch ≤ 0.4 ;

δ̃r = 0.35
(

0.14d̃2
punch − 0.69d̃punch + 2.27

)
ψdχd if d̃punch > 0.4;

(9)

4.2. Master Curve

In order to forecast the mechanical response of a given anchored mesh panel with
reference to the out-of-plane loading conditions, the characteristic values estimated with
Equations (8) and (9) have to be coupled with a master curve that allows for deriving
the entire F − δ response. For the definition of a master curve, the F − δ curve obtained
in each of the cases considered in the parametric analysis is normalized with respect to
the related characteristic values (Fr and δr). The results are summarized in Figure 8. The
data collapse very well on a single curve, opening up the possibility to define a master
curve. The normalized data are then fitted using a non-linear least square regression model,
obtaining the following expression for the master curve:

F̃ = 2.08δ̃4 − 1.45δ̃3 + 0.3δ̃2 + 0.07δ̃ (10)

Figure 8. Master curve (red solid line) obtained from the numerical data (cyan solid lines).

An example of an application of the above-described forecasting approach is provided
by considering four geometrical configurations of the mesh system (see Table 2). The predic-
tions of the analytical model as well as the results are compared with ex-post simulations
in Figure 9. These are computed as follows:
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• The normalized characteristic values (F̃r and δ̃r) of the mesh system considered in the
analysis are computed with Equations (8) and (9);

• The master curve (Equation (10)) is rescaled with the computed F̃r and δ̃r values;
• The F − δ curve is obtained by rescaling the normalized F̃r − δ̃r curve with the charac-

teristic values of the standard UNI punch test (FUNI and δUNI).

It should be noted that Equations (8) and (9) are valid inside of the range of the
parameters considered in the parametric analysis and cannot be directly used with reference
to other mesh types or loading configurations (e.g., retention of a granular layer). The
range considered in this analysis reasonably covers the full range of variability that can be
adopted in common practice.

Table 2. Considered layouts for the validation. The errors on Fr and δr are displayed in brackets.

lx AR dplate dpunch ex ey Fr Equation (8) δr Equation (9) FDEM
r δDEM

r
(m) (-) (cm) (m) (m) (m) (kN) (m) (kN) (m)

a 2.5 1 24 0.8 0 0 35.0 (∼0%) 0.83 (+1%) 35.0 0.82
b 3 1 20 1 0 0 34.2 (−8%) 0.94 (−1%) 37.3 0.95
c 3 1.25 24 1.2 0 0 40.8 (−4%) 0.85 (+1%) 42.7 0.84
d 3.5 1 32 1.2 1 0.3 28.2 (+4%) 0.87 (+6%) 27.2 0.82

(a) (b)

(d)(c)

DEM simulation Analytical model

Figure 9. Comparison of the F− δ response of the system between ex-post simulations and predictions
of the analytical model. The layouts parameters are reported in Table 2.

4.3. Accuracy of the Analytical Model

To estimate the accuracy of the analytical model in predicting the values of the force
and displacement at rupture, and the whole F − δ curve, 200 additional configurations
were simulated ex-post and considered as benchmarks. Each case differs from the reference
configuration for the entire set of parameters, which were selected on a random basis from a
uniform distribution in the range specified in Table 1; hence, scenarios that were even more
divergent than the reference one were considered. The predictions of the analytical model



Geosciences 2023, 13, 147 13 of 17

are compared with the results from the numerical simulations in Figure 10. As indexes
of the accuracy of the analytical model, we report the relative error of Fr and δr and the
root-mean-square error (RMSE) of the force–displacement trend. For the first two quantities,
histogram plots are shown in Figure 10a,b. Referring to Fr, 135 of the studied cases present
a relative error within ±10%, 187 cases within ±20%, while the remaining are within −25%
and +27%, with a median of −5.6% and a mean of −4.4%. Considering δr, 187 of the cases
fall within ±10%, while the remaining are included within −18% and +20%, with a median
equal to −0.35% and a mean value of 0.05%. In both cases, a slight right-skewed distribution
can be observed (0.71 and 0.74 for Fr and dr, respectively); thus, with particular reference to
Fr, a slight underestimation of the predicted value over the numerical one can be noted. To
further increase the accuracy of the analytical model, the hypothesis of non-dependence
among the effects of the system’s parameters should be relaxed in future studies. The RMSE
is instead represented through a boxplot (Figure 10c): the central mark indicates the median
and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points that are not considered outliers, which,
in turn, are plotted individually using the + marker symbol. The median of the RMSE is
0.018, while the 25th and 75th percentiles are 0.011 and 0.028, respectively.

(a) (b) (c)

Figure 10. Relative errors on (a) Fr, (b) δr, and (c) root-mean-square error (RMSE) on the
force−displacement trend.

4.4. Towards a Hybrid Design Approach

In this work, we proposed an approach to derive a simple analytical model to
forecast the response of an anchored mesh panel when loaded by an isolated block.
This represents the first step towards a more reliable design methodology for anchored
mesh structures, which in our viewpoint, may be represented by a hybrid approach [48,49].

Anchored mesh systems are nowadays designed by means of force-based approaches
(e.g., limit equilibrium methods), in which the deformation of the mesh system and
the mesh–block interaction are totally disregarded. The stabilizing action of the mesh
is accounted for with reference to its ultimate limit value only (i.e., force at failure).
This approach provides no information on the expected deformation of the mesh sys-
tem, which is increasingly becoming one of the requirements. The concept of a hybrid
design approach can be seen as an improvement of this methodology. In fact, it is possible
to use a force-based approach (LEM) to calculate the force required to stabilize the unstable
block at first, then associate this information with the expected system displacement by
means of the mesh characteristic curve, i.e., F − δ (obtained from the analytical model
of Section 4). It should be noted that the characteristic curve allows reliable estimation
of the mesh’s mechanical behavior (e.g., punching resistance), explicitly accounting for
the mesh’s system geometry and the mesh–block interaction mechanism. This represents
a great improvement with respect to the use of the characteristic values obtained from
laboratory punch tests. When using a hybrid design approach, an ultimate limit state (ULS)
is applied for the analysis of the block stability (before the intervention) and a serviceability
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limit state (SLS) for the evaluation of the mesh system behavior. This allows, on the one
hand, the verification of the punching resistance of the mesh and, on the other hand, the
estimation of the expected mesh deformation under operating conditions. In addition to
the definition of a safety factor (as in a standard force-based approach), a hybrid approach
allows for the comparison between different design choices (e.g., anchor spacing, panel
AR) in terms of the mechanical performance of the mesh system.

5. Conclusions

In this work, the conceptual framework introduced in [34] is extended to anchored
drapery mesh systems interacting with an isolated rock block. The mechanical characteri-
zation provided by the standard UNI punch test configuration, which has been shown to
overestimate the mesh resistance, has been extended to an idealized field condition.

The effects of the main problem variables (i.e., mesh panel size, punching element
position, orientation and size, anchor plate dimension, and pattern) on the system’s me-
chanical response were investigated using a large number of discrete element simulations.
The main results are summarized as follows.

• Increasing the anchor spacing results in an increment of the panel’s out-of-plane
deformability as well as the deflection at failure. A slight but systematic increment of
the maximum force supported by the panel is observed, possibly related to a better
redistribution of the stresses on the wires for larger mesh panels.

• Increasing the anchor plate dimension is reflected in an increment of the force at
failure. This shows that the available resistance at the mesh–anchor connection is
mainly controlled by the anchor plate size. The deflection at failure is instead mostly
unaffected by the anchor plate dimension.

• The eccentricity along the x-axis affects the mechanical response of the mesh system,
reducing both the force and the deflection at failure with respect to a centered case.
Conversely, the influence of eccentricity along the y-axis is negligible.

• For relatively large punching elements (larger than the anchor plate), the mechan-
ical response of the mesh is improved both in terms of mechanical resistance and
out-of-plane deformability. A strong variation is observed for the threshold value
dpunch = 0.4 m when the failure modality changes from a “block-punching” to an
“anchor-punching” type.

• The inclination of the thrust imposed by the punching element has a negligible influ-
ence on the force–displacement response of the mesh system.

• The adoption of a panel geometry in which the vertical spacing between the anchors
is reduced compared with the horizontal spacing enhances the redistribution of the
punching load on the neighboring panels. An opposite trend of the maximum force is
observed in the case of a “periodic” loading condition [19], i.e., when each mesh panel
is equally loaded.

Starting from a parametric analysis, simple analytical formulations allowing for the
estimation of the characteristic values Fr and δr for a generic system configuration were
delineated. Then, a master curve was defined in order to forecast the entire F − δ response
of the mesh system, starting from the standard UNI laboratory characterization. The
benchmark analysis highlights that in the majority of the considered configurations, the
results of the analytical formulation are within ±10% of the results of the numerical
analyses. To improve the accuracy of the proposed analytical approach, the hypothesis of
non-dependence among the effects of the variation of each parameter will be relaxed in
future studies.

Finally, the possible coupling of the proposed forecasting approach with limit equilib-
rium calculations and the concept of a hybrid design approach were discussed.
The adoption of a hybrid approach may allow practitioners to quickly estimate the ex-
pected deformations in serviceability conditions and design the system with respect to
its performance. The results presented in this work refer to a hexagonal double-twisted
mesh and should not be directly applied to other mesh types; nevertheless, the conceptual
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framework here discussed can be easily extended to other mesh types. A future step to
define a database of characteristic curves involves the derivation of analytical models for
other commonly adopted mesh typologies.
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