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Abstract: In tunnel excavation with boring machines, the tunnel face is supported to avoid collapse
and minimise settlement. This article proposes the use of reinforcement learning, specifically the deep
Q-network algorithm, to predict the face support pressure. The algorithm uses a neural network to
make decisions based on the expected rewards of each action. The approach is tested both analytically
and numerically. By using the soil properties ahead of the tunnel face and the overburden depth
as the input, the algorithm is capable of predicting the optimal tunnel face support pressure whilst
minimising settlement, and adapting to changes in geological and geometrical conditions. The
algorithm reaches maximum performance after 400 training episodes and can be used for random
geological settings without retraining.

Keywords: tunnelling; tunnel boring machine; support pressure; face stability; reinforcement
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1. Introduction

Face stability is critical in shallow tunnels to avoid collapse. In mechanised tunnels,
the face support is provided by the tunnel boring machine (TBM), e.g., slurry (SPB), or
earth pressure balance (EPB) shields. An estimate of the support pressure is required for
safe and efficient construction.

The problem of face stability can be solved with analytical, numerical, and experimen-
tal approaches. The analytical methods are mainly based on the limit state analysis. Either
the lower and upper bound theorems of plasticity in non-drained [1] and drained [2] condi-
tions or the limit equilibrium method for SPB [3] and EPB [4] based on the original failure
mechanism developed in [5] are used. These formulations have been recently considered
in the design guidelines [6].

Face stability can also be investigated by numerical analysis. The finite element [7–9]
and finite element limit analysis [10] methods have been used to obtain design equations.
Alternatively, the problem can be studied experimentally at 1 g [8,11–15] or with centrifuge
model tests [16–18]. Compared to 1 g tests, centrifuge model testing offers the advantages
of stress and strain scaling due to the increased gravity field, thus increasing the accuracy
in simulating complex soil-structure interactions.

Recently, machine learning has emerged as a promising technique for predictive assess-
ment in geotechnical engineering, in general [19–21], and in tunnelling, in particular [22–25].
Some promising research domains for machine learning in tunnelling are the geological
prognosis ahead of the face, the interpretation of monitoring results, automation, and main-
tenance [22]. At present, however, research appears to be focussed on the following top-
ics: prediction of TBM operational parameters, penetration rate, pore-water pressure [26],
ground settlement [27–29], disc cutter replacement [30–32], jamming risk [33,34], and ge-
ological classification [35–38]. Mainly due to the significant amount of data that is auto-
matically collected by modern tunnel boring machines, the prediction of their operational
parameters is a popular research topic. The researchers sought to reduce the misestimation
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of the parameters [39], as well as to automatically determine the operational parameters
based on geology [40] and to avoid trajectory deviations [41]. The prediction of the pen-
etration rate is generally performed with respect to the geological and geotechnical site
conditions. Ref. [42], by using, e.g., the cutter rotation speed, torque, and thrust force as
input parameters [43], as well as the rock mass parameters and hydrogeological survey
data [44,45]. Data filtering proved to improve the accuracy of the predictions [46]. Few
authors estimated the face support pressure of TBMs with machine learning [24,47].

The previous studies developed models that are trained after tunnel construction and
thus pertain to the domain of supervised learning, the machine learning paradigm where
the predictions are based on labelled datasets [48]. This study proposes a method to deter-
mine the face support pressure of TBMs with reinforcement learning. In the field of artificial
intelligence, reinforcement learning is a paradigm for addressing control problems where
the actions taken by the algorithm are based on prior decisions. Reinforcement learning al-
gorithms are taught by providing incentives to reach a goal. Although the study of reinforce-
ment learning is still in its early stages, there have been some remarkable advancements,
particularly those demonstrated by Google’s DeepMind research team [49–53], including
the ability to excel at playing Atari video games and board games, such as chess and go.
The adoption of reinforcement learning from academia to industry is increasing. Notable
examples include scheduling dynamic job shops [54], optimising memory control [55,56],
personalising web services [57,58], autonomous vehicles [59], algorithmic trading [60], nat-
ural language processing [61] and healthcare applications such as dynamic treatment plans
and automated medical diagnoses [62]. Industrial applications of reinforcement learning
include Google Translate, Apple’s Siri, and Bing’s Voice Search [63].

Unfortunately, only a few of such studies are found in geotechnical engineering,
especially in tunnelling. In particular, Erharter and Marcher presented a framework for
the application of reinforcement learning to NATM tunnelling in rock [64] and to the TBM
disc cutter replacement [30]. Zhang et al. [65] employed reinforcement learning to predict
tunneling-induced ground response in real time.

In this study, the capability of the reinforcement learning algorithm to choose the
best sequence of face support pressures is investigated by adapting the algorithm used
by the DeepMind research group [51] and testing it on random geologies. The novelty of
our method resides in the reinforcement learning approach, where the machine has no
previous knowledge of the environment which it explores and is educated through the
rewards defined by the user, as well as in the simulation of the environment with the finite
difference method (FDM). This study shows that our model is capable of optimising the
face support pressure, provided that a sufficient number of episodes are played.

The proposed method is outlined in the next section. The method is tested in environ-
ments of growing complexity, from analytical calculations to numerical analysis (Section 3).
Its performance, limitations, and possible improvements are discussed in Section 4. Finally,
Section 5 concludes the paper.

2. Methods

In this section, the reinforcement learning algorithm is described. It is implemented
with the interpreted high-level general-purpose programming language Python [66]. The
algorithm is tested against analytical calculations (Section 2.1) and numerical analysis
(Section 3.4).

One of three basic machine learning paradigms alongside supervised and unsuper-
vised learning, reinforcement learning involves learning optimal actions that maximise
a numerical reward [67]. In other words, reinforcement learning deals with the way (the
policy) an intelligent agent (an algorithm) takes the actions that maximise a user-defined
reward in a particular setting (the state of the environment).

The policy defines how the algorithm behaves in a certain situation. More precisely,
it connects the states of the environment to the actions to be taken. As such, the policy is
the core of a reinforcement learning agent, given that it determines its behaviour [67]. The
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well-established “epsilon greedy strategy”, one of the oldest policies [67], is selected in this
study. An action is considered “greedy” if it is expected to return the maximum reward for
a given state. However, since the environment is unknown a priori, an initial exploration
of the environment is necessary to determine these actions. This exploration begins with
the first TBM excavation where the face support pressure is randomly chosen at every
round. The randomness decreases after every episode as the environmental knowledge is
exploited.

At each excavation round i, the agent chooses a random action na with probability ε
and the action associated with the highest expected reward Qmax(Si+1, a) with probability
1− ε. ε is initialised at 1, which corresponds to a completely random selection, and is
decremented by 1/N after each episode, where N is the total number of excavations
(the episodes). For N episodes, ε decreases by 1/N per episode until it reaches 0. In
mathematical terms, let r ∈ R∩ (0, 1) be a random number and ε = 1− j/N at episode j,
the agent takes the action Ai at the state Si according to Equation (1), where na ∈ N∩ (0, 4)
is a random integer.

Ai :=

{
Qmax(Si, a) if r ≥ ε

na if r < ε
(1)

Hence, the random choice of the face support pressure is initially the dominant pattern
that is slowly, but steadily, abandoned over time as the agent gains some experience of the
environment in which it operates. In other words, the face support pressure pf becomes
more of a “conscious” choice based on the rewards collected and represented by the value
function Q(s, a), which returns the reward expected for action a in the state s.

The rewards are user-defined and determined by the support pressure, the excavation
rounds, and the surface settlement. They reflect the definition of efficient construction: a
safe process (consisting of the minimisation of surface settlement) executed with the least
possible effort (determined by the lowest possible support pressure). The actual reward
values are irrelevant, as long as the algorithm can maximise the expected reward, given the
input data. The relative weight of the rewards, however, has an impact on the results [68].

A +1 reward is collected at each excavation round. The lower the face support
pressure applied by the TBM, the lower the building effort. Hence, a reward corresponding
to − pf

200 kPa is assigned to every action. The surface settlement at every round causes
a −1 reward for each mm of additional settlement. A −100 reward is assigned if the
surface settlement is larger than 10 cm (in the analytical environment) or if the calculations
diverge (in the finite difference environment). These outcomes terminate the episode. The
premature episode termination is called “game over” in reinforcement learning parlance. A
+100 reward is assigned at excavation completion. Each completed or terminated tunnel
excavation defines an episode. The rewards are listed in Table 1.

The “playground” of the agent is named environment [69]. The actions are chosen
and the rewards are received by the agent in the environment. In the present case, two
classes of environments are created. First, an environment consisting of simple analytical
calculations of the required face support pressure and expected settlements is considered
(Section 2.1). The second environment is simulated numerically via the FDM as described
in Section 3.4.

Table 1. Summary of the rewards associated with the outcomes of the actions.

Group Outcome Reward Episode Termination

Excavation Round completed +1 No
Tunnel excavation completed +100 No

Support pressure Choice of the support pressure − pf
200 kPa No

Settlement Additional settlement −1/mm No
Surface settlement > 10 cm −100 Yes

Numerical stability Divergence of the calculation −100 Yes
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2.1. Analytical Training Environment

In the following, the initial training environment of the algorithm is described. For
a tunnel with diameter D = 10 m, a random 2000 m long geological profile is generated
(Figure 1). The pseudorandom number generator is set with a fixed seed to enable repro-
ducibility of results. The 2000 m length corresponds to the break-even point for the choice
of mechanised over NATM tunnelling [70]. At first, this geology is kept constant and is thus
the same for all 100 training episodes. In the second instance, different random geological
profiles are created at each episode (Section 3.2). The soil cover C is randomly initialised in
the interval (0.5, 3)D. The soil’s cover-to-diameter ratio is capped at C/D = 3. At every
2 m (the excavation step or round length), a random slope is selected from the interval
(−1,+1), corresponding to the interval of slope angles (−45◦,+45◦). The soil unit weight
γ, friction angle ϕ, cohesion c, and Young’s modulus E are randomly initialised in the
intervals shown in Table 2. The soil property values slightly change from their initial values
at every excavation step. This means that, e.g., the unit weight at step i + 1 is calculated
from the unit weight at step i as γi+1 = γi(1 + rv) where rv is a random number in the
interval (−1.25%,+1.25%). The soil properties are re-initialised with a 1% probability at
every 2 m to simulate soil stratification.

As the agent navigates through the states of these environments, it gathers rewards
and records them in the value function Q(s, a). The state representation is described in the
next section.
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Figure 1. Random soil property values of the analytical environment with constant geology: (a) Unit
soil weight. (b) Cohesion. (c) Friction angle. (d) Young’s modulus.
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Table 2. Range of the intervals of soil properties and their coefficient of variation for every 2 m
excavation step.

Soil Parameter Symbol Unit Minimum Value Maximum Value % Variation/m

Unit weight γ (kN/m³) 11 24 ±1.25%
Cohesion c (kPa) 0 20 ±10%

Friction angle ϕ (◦) 20 40 ±6%
Young’s modulus E (MPa) 10 100 ±1.25%

2.2. State Representation

The state represents the crucial and pertinent information needed to take an action.
It is not the actual physical state of the environment, but rather a representation of the
information used by the algorithm to make a decision [71].

Since there are no rules to determine the state variables, domain knowledge, i.e.,
“the knowledge about the environment in which the data is processed” [72], must be
used. According to the literature [2,6,9,16,73], face stability primarily depends on the soil
unit weight, cohesion, friction angle, and the depth of the overburden. Furthermore, soil
settlement depends on the soil Young’s modulus E and the stress release [74]. Hence, the soil
properties γ, c, ϕ, E directly ahead of the tunnel face and the overburden C are normalised
by dividing them by their maxima γmax, cmax, ϕmax, Emax, Cmax (Table 2) and selected as
the state variables. The stress release is determined by the choice of the support pressure.

Generally, TBMs cannot estimate the soil properties ahead of the tunnel face [75].
However, boreholes are retrieved prior to soil excavation and analysed in the laboratory
to obtain the material properties for the engineering design. Unfortunately, due to the
soil heterogeneity, the property values cannot perfectly match reality but are rather mean
values that can be nonetheless used as a first approximation.

2.3. Face Support Pressure and Settlement

TBMs provide face support pressures up to approximately 200 to 300 kPa in soft
soils [76]. At every excavation step, the proposed model searches the optimal support
pressure within the interval (50, 250) kPa. According to the guidelines [6], based on
a limit equilibrium approach for drained conditions, the required support pressure is
calculated with

pf,req =
1
A
(G + PV)(sin ϑ− cos ϑ tan ϕ′)− 2T − c′ D2

sin ϑ

sin ϑ tan ϕ′ + cos ϕ′
(2)

where A = π D2

4 is the cross-sectional area of the tunnel, G is the self-weight of the sliding
wedge, PV is the vertical load from the soil prism, and T is the shear force on the vertical slip
surface (Figure 2). The critical value of the sliding angle ϑ that maximises pf,req is searched
iteratively with the Python package scipy [77]. Note that the guidelines differentiate
between c′1 and ϕ′1 above the tunnel and c′2 and ϕ′2 at the level of the tunnel. In this
simulation, however, c′1 = c′2 = c′ and ϕ′1 = ϕ′2 = ϕ′.
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pf,req
pf,req + D/2

D G

T

PV

ϑ

c', φ', γ

pf,req – D/2

C

Figure 2. Tunnel face failure mechanism and forces acting on the sliding wedge according to [6].

The proposed model estimates the support pressure pf at every step to maximise the
expected outcome according to the following criteria and compares it with the required
pressure pf,req. In this simplified environment, the surface settlement occurs if pf < pf,req
and the stress release λ is calculated as the ratio of the provided to the required tunnel
face support pressure, so that λ = 1− pf

pf,req
. The corresponding soil settlement u is then

calculated as follows [74].

u =
λγ

E

(
D
2

)2
(3)

In reality, the settlement occurs not only due to the stress release at the tunnel face
but also due to other factors, such as the overcutting and ring gap [74]. Furthermore, an
experience factor K < 1 depending on ground stress and conditions, and tunnel geometry
is generally considered in Equation (3).

Since the model has no prior information about the required support pressure pf,req, the
support pressure is chosen randomly during the first episode. Then, the model learns the
optimal support pressure based on the rewards collected, as explained in the next section.

2.4. Deep Q-Network

In this section, the algorithm to maximise the rewards collected during the TBM
excavation is elucidated. Since the material properties have continuous values, the number
of possible states as described in Section 2.2 is infinite. The model lacks complete knowledge
of the expected rewards of actions at each state. Therefore, the knowledge of the value
function is incomplete. To address this issue, the deep Q-network (DQN) is used.

DQN is a deep neural network that approximates the Q(s, a) value function [78]. This
algorithm, developed by Google research group DeepMind, was able to play six Atari
games at a record level [49,51–53,79]. DQN is a specific approach to Q-learning, a method
of learning optimal actions by predicting the expected reward associated with the state–
action pairs, comparing the prediction to observed rewards, and updating the algorithm’s
parameters to improve future predictions. Formally, Q-learning algorithms are described
by the following equation

Q(Si, Ai) = Q(Si, Ai) + λr[Ri+1 + Γ ·Qmax(Si+1, a)−Q(Si, Ai)] (4)

where Q(Si, Ai) is the reward associated with the state Si and actions Ai, λr is the learning
rate, Ri+1 is the reward collected in the state Si+1, Γ is the discount factor, and Qmax(Si+1, a)
is the maximum reward in state Si+1. The DQN is trained to choose the best tunnel face
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support pressure based on state variables. It takes the state vector Si as input and outputs
the expected rewards for each action. After the agent takes an action Ai, the observed
reward Ri is used to update the algorithm and improve future predictions. The algorithm is
re-run using Si+1 as its input and returns the action with the highest value Qmax(Si+1, a) of
all the actions a. Afterwards, the learning algorithm is adjusted based on the actual reward.
This is achieved by minimizing the mean squared error between the predicted and target
prediction of Q(Si, Ai) + λr[Ri+1 + Γ ·Qmax(Si+1, A)−Q(Si, Ai)].

In Equation (4), λr and Γ are the hyperparameters that influence the algorithm learning
process, namely the learning rate and the discount factor. Small updates are made by the
algorithm at each step with a low value of λr and vice versa. The discount factor determines
the extent to which the agent considers future rewards when making a decision. The higher
is Γ, the more future rewards are taken into consideration.

The deep neural network architecture shown in Figure 3 is implemented with the
PyTorch library [80] of the Facebook AI Research lab using the higher-level interface nn,
based on [81]. The input layer is the state vector whose elements are γi/γmax, ci/cmax,
ϕi/ϕmax, Ei/Emax and Ci/Cmax. The support pressure pf is expressed in increments of
50 kPa in the range of natural integers (50, 250) kPa. This results in an output layer
with five elements, representing the five possible support pressures (50, 100, 150, 200 and
250 kPa) corresponding to the pressures typically provided by TBMs. The first and second
hidden layers contain 50 neurons each. Although there are no strict rules on the optimal
architecture of neural networks, a high number of neurons in each layer does not typically
impair the performance, albeit requiring more computation. Moreover, the performance is
generally better if the same number of neurons in all layers is used and if this number is
higher than the size of the input layer. [82] The design of the neural network in this study
was chosen based on these findings and on the previous applications to slope stability and
tunnelling [25,83].

However, DQNs are known to suffer from training instability [49]. To address this, two
common techniques, experience replay [84] and target memory [49], are used to stabilise
the network as described in the following sections

Input layer Hidden layer 1 Hidden layer 2 Output layer
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Figure 3. Architecture of the Deep Neural Network used for the choice of the support pressure based
on the expected rewards and given the state of the TBM in the environment.
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2.4.1. Experience Replay

Due to the varying soil properties, the algorithm cannot rely on memorizing a set
sequence of support pressures pf. It must determine the maximum support pressure
that minimises the surface settlement, regardless of the geological conditions. However,
reinforcement learning is a process that involves experimentation and can result in unstable
solutions. This instability is particularly evident when rewards are “sparse”, causing slow
learning and leading to what is known as “catastrophic forgetting” [85]. This problem
occurs in online training when backpropagation is performed after each state and is a
common issue with gradient descent-based training methods. The root cause of catastrophic
forgetting is the conflict between very similar state–action pairs, which hinders the ability
to train the algorithm.

To improve the stability of the learning process in reinforcement learning, experience
replay can be used. Experience replay accelerates the learning process by adding batch
updating to online learning. The algorithm stores each experience, including the state,
action taken, the resulting new state, and the reward in the list (s, a, si+1, ri+1), until it
reaches the specified “memory size” (sm). Then, a random subset of the stored experiences,
with a defined batch size (sb), is selected for training. The algorithm calculates the value
updates for each subset and stores them in target Y and state arrays X, which are then used
as a mini-batch for training. Finally, the experience replay memory is overwritten with new
values when it is full. Target memory is a further improvement of this technique.

2.4.2. Target Memory

The DQN instability is also caused by updating the parameters after each action,
leading to a correlation between subsequent observations. To overcome this issue, the
value function Q(s, a) is updated only after a set number of episodes, rather than after each
action, as suggested by [49].

In this scenario, the rewards are “sparse” and mostly higher at the end of each episode
than after individual actions. To handle this, a duplicate of the Q-network, referred to as
the target Q̂-network, is created with its parameters lagging behind the original Q-network
as described in [49]. The target memory is implemented by initialising the parameters
θQ for the Q-network. The Q̂-network, a copy of the Q-network, is created with distinct
parameters θT that are, at first equal to θQ. Action a is selected with the Q-values of the
Q-network by employing the epsilon-greedy strategy. The reward ri+1 and new state si+1
are observed. The Q̂-values of the Q̂-network are set to ri+1 at the end of the episode
or to ri+1 + λr · Q̂max(Si+1) otherwise. The Q̂-value is not back-propagated through the
Q̂-network, but through the Q-network. The parameters θT are updated to θQ after a certain
number of iterations, called synchronisation frequency ( f ). Up to this point, all the features
of the algorithm have been presented. The complete workflow of the algorithm is depicted
in Figure 4. In the next section, the results of the analytical environment are presented.
The values of the hyperparameters λr, Γ, f , sm, and sb are chosen based on the sensitivity
analysis of Section 3.1.
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Figure 4. Workflow of the reinforcement learning algorithm.

3. Results of the Analytical Environment

In this section, the results of the analytical environment are presented. The cumulative
reward collected at every episode is shown in Figure 5a. The orange line represents the
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moving average of 10 episodes and the orange band is the range of the ±1 standard devia-
tions. Since the algorithm is trained on the geology of Figure 1 only, the reward increases
steadily, barely oscillating around the moving average. In Figure 5b, the cumulative re-
wards obtained from the 1th, 25th, 50th and 100th episodes are highlighted. As expected,
the reward increases more rapidly for the last episodes. Moreover, approximately at the
“chainages” x = 200 and 700 m, slight drops in the cumulative reward occur due to the
abrupt changes in geology (Figure 1).
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Figure 5. Rewards of the analytical environment with constant geology: (a) Cumulative reward vs.
no. of episodes; moving average and interval of range ±one standard deviation of ten episodes
(orange band). (b) Cumulative reward vs. excavation step for all episodes.

The support pressures and the resulting settlement in episodes 1, 50, and 100 are
shown on the left and right sides of Figure 6, respectively. As the support pressure is
randomly chosen at the first episode, Figure 6a exhibits chaotic behaviour.
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Figure 6. Required and provided support pressure and settlement in the analytical environment with
constant geology at episodes (a,b) 1, (c,d), 50, and (e,f) 100.
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As the agent learns the optimal support pressures, this behaviour is mitigated and
the support pressure becomes more stable (Figure 6c). Figure 6c also proves that the
algorithm is able to choose the support pressure in such a way that it almost encases the
required pressure. Furthermore, even when pf < pf,req, the resulting settlement is negligible
(Figure 6f). The model sensitivity to changes in the values of the hyperparameters is studied
in the next section.

3.1. Sensitivity Analysis

Contrary to the parameters of the deep neural networks depicted in Figure 3 that are
learned by the algorithm, hyperparameters are set by the user. In Section 2, a number of
hyperparameters have been introduced, such as the discount factor Γ, learning rate λr,
synchronisation frequency f , the memory sm, and batch sb sizes.

The model sensitivity to these hyperparameters is summarised in Table 3. The analysis
is performed starting from Γ = 0.15, λr = 10−3, f = 5, sm = 10, sb = 2, and changing one
hyperparameter at a time to lower and higher values. In doing so, the original combination
of hyperparameters is shown to be the optimal one. Obviously, the results are not very
sensitive to the discount factor and Γ = 0.15 returns the highest cumulative reward. A
low value of Γ implies that the action taken at one state has little impact on the actions
taken in the following states. This seems plausible for tunnelling where the settlement
caused by an excessively low support pressure cannot be possibly offset by a later support
pressure increase. The optimal learning rate is a matter of numerical stability. In this study,
λr = 0.001 appears to be the optimal value and, if the learning rate is set at λr = 0.01, the
cumulative reward cannot be properly maximised. The cumulative reward is not very
sensitive to the synchronisation frequency where the optimal value is 5 episodes. The
memory size has a more pronounced effect and the optimal value is 10. Finally, the batch
size of 2 episodes provides the best results.

In summary, the proposed model is not very sensitive to the discount factor and the
synchronisation frequency, it is starkly affected by the learning rate and the memory size in
this particular problem. After the hyperparameters are optimised, the algorithm is tested
against random geologies in the next section.

Table 3. Results of the analysis of sensitivity to the hyperparameters.

Hyperparameter Values Max. Reward

Discount factor Γ 0.01 621.0
0.15 657.2
0.2 622.2

Learning rate λr 10−4 637.1
10−3 657.2
10−2 536.3

Synchronisation frequency f 5 657.2
10 644.2
15 652.1

Memory size sm 5 647.3
10 657.2
15 562.8

Batch size sb 5 630.0
2 657.2
1 609.3

3.2. Random Geologies

Prompted by the initial success in optimising the cumulative reward with constant
geology, the algorithm is further tested against random geologies. Hence, the depth of the
overburden and the material properties are no longer fixed as depicted in Figure 1, but
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change at every episode. Figure 7 exemplarily shows the profiles of the cohesion values at
episodes 2, 3, 4, and 5.
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Figure 7. Cohesion values of the analytical environment with random geologies. (a) Episode 2.
(b) Episode 3. (c) Episode 4. (d) Episode 5.

Clearly, since the environment changes at every episode, the cumulative reward shown
in Figure 8a does not increase steadily as in Figure 5a, but swings markedly. The model is
able to forecast the support pressure increases to accommodate for larger pf,req in different
settings (Figure 9). Furthermore, even when the support pressure provided fall below the
required one, the resulting settlement is lower than about 4 mm.

The previous results are obtained with no additional model training. This means
that the initial value of ε is set to zero. By starting from different values of ε, it is shown
in the following that no additional exploration is needed. Note that, strictly speaking,
even if ε0 = 0 the Q-value is slightly updated as rewards are collected along the way. The
agent, however, would perform the same action, given a certain state, until its expected
rewards fall below those of other actions. The results of this analysis are shown in Table 4
where the mean cumulative reward and standard deviation are listed for different ε0. The
highest mean cumulative reward and the lowest standard deviation are achieved for ε0 = 0.
Therefore ε0 = 0 is selected as the optimum value, meaning that no additional exploration
is required to optimise the algorithm performance in the random analytical environment.
The numerical environment is described in the next section.



Geosciences 2023, 13, 82 13 of 23

20 40 60 80 100
Episodes

200

0

200

400

600

800

To
ta

l r
ew

ar
d

Total reward
Moving average and st.dev.

(a)

0 250 500 750 1000 1250 1500 1750 2000
x (m)

200

0

200

400

600

800

To
ta

l r
ew

ar
d

Episode 1
Episode 25
Episode 50
Episode 75
Episode 100

(b)

Figure 8. Rewards of the random environment: (a) Cumulative reward vs. no. of episodes; moving
average and interval of range±one standard deviation of ten episodes (orange band). (b) Cumulative
reward vs. excavation step for all episodes.
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Figure 9. Required and provided support pressures and settlement in the analytical environment
with random geologies at episodes (a,b) 1, (c,d), 50 and (e,f) 100.

Table 4. Mean rewards and standard deviation of the random environment for different values of ε0.

ε0 Mean Reward Standard Deviation

0.00 458.1 124.9
0.25 453.6 130.1
0.50 315.8 138.4
0.75 326.2 169.5
1.00 221.2 212.0
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3.3. Effect of the Number of Episodes

When more episodes are played, the environment is explored more thoroughly. Hence,
it is expected that the maximum cumulative reward increases with the number of episodes.
Figure 10 shows that the maximum cumulative reward grows asymptotically up to ap-
proximately 683 after 400 episodes. It also shows that the maximum cumulative reward
obtained after 50 episodes already represents approximately 90% of the maximum reward
achieved after 400 episodes.
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Figure 10. Effect of the number of episodes on the maximum cumulative reward.

3.4. Finite Difference Environment

Due to the simplified analytical formulations, the previous environment is not very
realistic. It is, however, useful to demonstrate the capability of the model and to optimise
its hyperparameters. Tunnels are often simulated with numerical analysis [86–89]. Hence,
a more realistic finite difference environment is outlined in the following based on the
finite-difference program FLAC3D [90].

The mesh grid is 100 m wide, between 27 and 44 m high, and 100 m long. The tunnel
diameter is 10 m and the distance between the tunnel axis and the bottom is 15 m. The soil
surface slope changes at every 10 m of projected distance. The grid consists of 16,932 grid
points and 15,300 elements with target dimensions of 2× 2× 1.5 m (Figure 11). The linear
elastic material law with Mohr–Coulomb failure criterion is considered. The soil properties
are assigned within the intervals of Table 2 to randomly inclined layers. The property
values are listed in Table 5. The displacements are fixed in the horizontal direction at the
vertical boundaries and in the vertical direction at the bottom. The excavation is performed
by removing the elements corresponding to the excavated soil. The support provided by
the tunnel lining is simulated by fixing the displacement at the excavation boundaries.
The support pressure is provided by applying a linearly increasing external pressure onto
the tunnel face (Figure 12). This pressure is equal to 50, 100, 150, 200, or 250 kPa at the
tunnel axis and increases linearly with depth according to the unit weight of the support
medium γsm = 12 kN/m³. The support medium consists of excavated soil and additives
for EPB machines or slurry suspension for SPB and mix-shield machines [91]. The surface
settlement is measured at the grid points situated on the surface every 10 m.
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Figure 11. FLAC3D three-dimensional model. The colours represent the randomly generated soil
layers 1 (yellow), 2 (green), and 3 (orange). Units in metres.

Figure 12. Detail of the linearly increasing support pressure at the tunnel face and the resulting
horizontal displacement at a randomly selected excavation step.

Table 5. Soil property values assigned to the soil layers 1 (yellow), 2 (green), and 3 (orange) of
Figure 11.

Soil parameter Symbol Unit Layer 1 Layer 2 Layer 3

Unit weight γ (kN/m³) 23.0 13.7 15.9
Cohesion c (kPa) 14 1 11

Friction angle ϕ (◦) 25 23 34
Young’s modulus E (MPa) 11 32 13

In the analytical environment, the surface settlement is calculated at every excavation
round. In reality, the cumulative surface settlement depends on the previous excavation
steps. Hence, the settlement increase is considered in the finite difference environment
to account for the effect of the tunnel face support pressure at each step. The settlement
reward for state t is, thus, expressed as the maximum settlement difference between the
excavation steps max(∆ut,j) of all of the j-th measuring points along the soil surface.

Finally, the game-over condition is not triggered by excessively large settlements, such
as in the analytical environment, but by the divergence of the numerical solution.
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Within the framework of transfer learning, the application of a machine learning
model to a similar but unrelated problem [92], it is worth studying if and to what extent
the algorithm used for the analytical environment can be deployed on the finite difference
environment. The cumulative reward of 64.5 is obtained in this environment if the support
pressure is predicted with the algorithm trained in the analytical environment. This result
is compared by retraining the model with ε0 = 1 in the finite difference environment. As
it takes approximately 30 min to complete one episode, this training is computationally
costly. Therefore, the model is trained only for 50 episodes or about 90% of the expected
peak cumulative reward according to Figure 10.

The cumulative reward obtained at each episode is shown in Figure 13. For the first
20 episodes, the cumulative reward oscillates across approximately 65, corresponding to the
reward obtained by using the model trained in the analytical environment. The cumulative
reward oscillates across 75 between episodes 20 and 37 and stabilises at about 90 from
episode 40.
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Figure 13. Rewards of the finite difference environment. Cumulative reward vs. no. of episodes;
moving average and interval of range±one standard deviation for the last ten episodes (orange band).

Figure 14 shows the support pressures chosen along the chainage at each episode.
This visualisation shows how the initial randomness begins to vanish at episode 20 where
the first patterns start to emerge. In particular, the agent learns that the optimal support
pressure between chainage 65 and 100 m is 250 kPa. It is also interesting that, between
episodes 20 and 37, the agent preferably chooses a support pressure of 150 kPa between
chainage 0 and 65 m. Starting from episode 37, it is evident that the optimal support
pressure for the first 65 m is 100 kPa. This is consistent with Figure 13, where the cumulative
reward starts increasing after episode 20 and increases again after episode 37.
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Figure 14. Support pressure chosen by the agent along the chainage for every episode.

Figure 15 shows the settlement after the last episode is completed. The surface
settlement is up to 1 cm in the first 65 m of excavation and up to 2 cm in the last 35 m. Hence,
it is evident that the actions chosen by the agent keep the settlement within reasonable
limits.

From the previous analysis, it seems that the model developed in the analytical
environment can be transferred to the finite difference environment provided that the
model is retrained. These results are discussed in the next section.

Figure 15. Computed settlement at the last episode (in metres).

4. Discussion

The results show that our model can optimise the support pressure by simultaneously
controlling the surface settlement within a reasonable threshold in both analytical and finite
difference environments. Implementing model training in an analytical environment is
relatively simple and a large number of episodes can be completed fairly fast. Moreover, this
class of environments allows for hyperparameter tuning. On the other hand, reinforcement
learning training in the finite difference environment (or, more generically, in numerical
environments) is rather costly, see also [25]. Therefore, transfer learning is employed for
hyperparameter tuning. As shown in the previous section, the model architecture and
hyperparameters can be generally transferred to the finite difference environment, on the
condition that retraining is performed starting from ε0 = 1.0.

Some limitations of this study can be highlighted and a strategy to amend them is
outlined in the following. Firstly, albeit its use in engineering design, the finite difference
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environment cannot completely match reality. This is especially true in light of the simplifi-
cations considered in this study, such as the linear-elastic material law with Mohr–Coulomb
failure criterion, the simulation of the tunnel lining as a zero displacement boundary con-
dition, the absence of the ring gap and mortar, and the deterministic soil property values.
These limitations can be overcome as follows:

1. The adoption of more advanced constitutive models, the simulation of the lining with
shell elements, and the simulation of the ring gap and mortar [93,94]. It is perhaps
worth noting that different types of segments (in terms of concrete class and reinforce-
ment) and ring gap mortar pressures are chosen in practice. Hence, two additional
agents could be implemented to predict the segment types and mortar pressures.

2. The consideration of the spatial variability of soil properties with random fields, by
varying the soil properties according to certain statistical distributions and correlation
lengths [95]. Since random fields further complicate the environment, more advanced
reinforcement learning algorithms might be adopted, such as the 51-atom agent
(C51) [96]. Moreover, the definition of the state variables can be improved, e.g., by
considering the soil properties at more than one point at each epoch.

The results match the expectation that the agent can be trained to predict the tunnel
face support pressure. However, it is striking that the agent does not appear to need any
additional training when deployed on random geologies (Section 3.2). This feature could be
also theoretically tested with the finite difference environment. However, hyperparameter
tuning in this environment is still computationally costly.

The results show that the DQN algorithm can be successfully used to control the
tunnel support pressure and adapt to changes in the soil properties, such as variations in
unit weight, cohesion, friction angle, and Young’s modulus. One added value of the DQN
in this context is that it can be used to develop more efficient and effective control strategies
for maintaining tunnel face stability compared to traditional methods. The DQN has the
capability to generalise to new situations, which can be useful in the case of changes in
soil properties or overburden height. Furthermore, the DQN algorithm allows for efficient
use of the available data as it is not heavily dependent on its quality, which is a common
problem with traditional methods.

5. Conclusions

In this study, the deep Q-network reinforcement learning algorithm was applied to
control the tunnel face support pressure during excavation. The algorithm was tested
against analytical as well as numerical environments. The analytical environment was used
for hyperparameter tuning. The optimised model was used in the numerical environment.

It was found that:

1. The algorithm is capable of predicting the tunnel face support pressure that ensures
stability and minimise settlements among a prescribed range of pressures. The algo-
rithm can adapt to geological (soil properties) or geometrical (overburden) changes.

2. An analytical environment is used to optimise the algorithm. The optimal hyperpa-
rameters are found as Γ = 0.15 (discount factor), λr = 10−3 (learning rate), f = 5
(synchronisation frequency), sm = 10 (memory size) and sb = 2 (batch size). These
hyperparameter values are effective also in the numerical environment.

3. Although the algorithm is trained in a static environment with constant geology,
it is also effective with random geological settings. In particular, it is found that
using the algorithm trained with constant geology can be used for random geologies
without retraining.

4. The maximum cumulative reward plateaus after 400 training episodes and about 90%
of the peak performance is reached after 50 episodes.

5. The algorithm proves effective both in the analytical and in the more realistic numeri-
cal environment. Training is more computationally costly in the numerical environ-
ment. However, the hyperparameter values optimised in the analytical environment
can be efficiently adopted.
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Future research studies can consider more refined environments (in terms of constitu-
tive models, simulation of the lining, ring gap, mortar, and random fields), provide more
advanced state definitions (by considering the soil property values of various points), and
use more refined reinforcement learning algorithms.

In spite of some limitations of this method, this study shows that the tunnel face
support pressure can be estimated by an intelligent agent for design and possibly even
during building operations. In regard to this, a roadmap for field validation can be en-
visioned. First, the neural network can be pre-trained with monitoring and operational
data. Secondly, a scaled model can be constructed and tests conducted either at 1g or in a
geotechnical centrifuge. Thirdly, a pilot project with a small TBM, such as those used in
microtunelling, can be carried out.
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AI artificial intelligence
DQN deep Q-network
EPB Earth pressure balance shield
FDM finite difference method
NATM New Austrian Tunnelling Method
SPB slurry pressure balance shield
TBM tunnel boring machine

List of symbols
A Cross-sectional area of the tunnel (m²)
Ai Action taken at state i
C Soil cover (m)
D Tunnel diameter (m)
E Soil Young’s modulus (MPa)
Emax Maximum value of the soil Young’s modulus (MPa)
G Self weight of the sliding wedge (kN)
K Experience factor
N Number of episodes
PV Vertical load from the soil prism (kN)
Q(s, a) Value function
Q̂(s, a) Target value function
Qmax(Si+1, a) Maximum reward in state Si+1 for actions a
Ri Reward at state i
Si State of the environment
T Shear force on the vertical slip surface (kN)
a Action vector
c Soil cohesion (kPa)
cmax Maximum value of the soil cohesion (kPa)
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f Synchronisation frequency
j Episode counter
na Random action
pf Tunnel face support pressure (kPa)
pf,req Tunnel face support pressure required for stability (kPa)
r Rewards vector
s State vector
sb Batch size
sm Memory size
t State counter
u Soil settlement above the tunnel (mm)
x Tunnel chainage (m)
Γ Discount factor
∆ut,j Settlement difference between excavation steps (mm)
ε Probability of a random action
ε0 Initial probability of a random action
γ Soil unit weight (kN/m³)
γmax Maximum value of the soil unit weight (kN/m³)
γsm Unit weight of the support medium (kN/m³)
λ Stress release due to tunnel construction
λr Learning rate
ϕ Soil friction angle (°)
ϕmax Maximum value of the soil friction angle (°)
θQ Parameters of the value function
θT Parameters of the target value function
ϑ Sliding angle (°)
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