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Abstract: Composite piles have emerged as a popular alternative to conventional piling materials for
deep foundations and have gained significant traction as a specific type of pile due to their potential
to mitigate durability issues often associated with standard piling materials. A new type of composite
piles can improve structural behavior and extend service life. This research uses an inclusive review
methodology to evaluate the geotechnical and structural behaviors of fiber-reinforced polymer (FRP)
composite piles. Scopus was utilized to address the relevant keywords and state-of-the-art documents,
and VSOviewer software was adopted to spot recurring patterns in the data using scientometric maps.
Low-stiffness composite materials are a concern, according to the research work. Thus, researchers are
working on confined concrete-filled FRP piles to improve the structural and geotechnical properties
used in various load-bearing conditions. However, more research is required to comprehensively
understand the behaviors of the studied types of composite piles. Indeed, there is a need for large-
scale lab and field studies to determine how axial and lateral loads influence composite piles. This
could help create guidelines for constructing the reviewed types of composite piles.

Keywords: composite piles; systematic review; standard piling materials; VOSviewer software

1. Introduction

Pile foundations are essential for supporting superstructures such as bridges, piers,
and offshore platforms. However, damages to piles are unavoidable because piles are
subjected to overloading or over-extended periods in complicated environments. Piling
with steel, concrete, and timber is widely employed today. Using these materials in harsh
soil marine settings can lead to several problems, some of which include the deterioration
of timber, steel corrosion degradation, and marine borer attack on concrete. Conventional
piling materials subject to severe exposure can lead to short service life and substantial
maintenance expenses [1,2]. Figure 1 shows examples of conventional pile structures that
have deteriorated due to corrosion. The oldest and most common methods for protecting
piles from deterioration and corrosion involve using treated timber or spraying steel with
a thick conductive layer [3]. However, these pile protection strategies are expensive and
negatively impact the marine environment. Because of these problems, researchers around
the globe have been searching for long-lasting and efficient replacements that can withstand
harsh environments. In recent years, composite piles have begun to replace traditional piles
in deep foundations due to their many advantages, including stronger corrosion resistance
and an improved strength-to-weight ratio [4–6].

Researchers have developed a novel structural system using a composite tube filled
with concrete [7]. While the concrete contributes to an increase in the system’s overall
stiffness, the tube is molded to encase the material of the whole structural element. In
addition, other authors have demonstrated that the suggested system performs better than
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similar prestressed and reinforced concrete structural elements when subjected to combined
axial and lateral loads [8]. The lack of knowledge on the history of composite piles as
geotechnical concerns is one of the main concerns that prevents their widespread usage
in the industries of the United Kingdom. Few references can be accessed; this knowledge
deficiency is a primary challenge [4,9].
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Figure 1. Traditional piles have several issues when placed in marine and other corrosive environ-
ments. (A) Degradation of concrete piles, and (B) corrosion of steel piles.

To improve the performance of composite piles, it is crucial to study the research
that has already been done on the subject. A wide range of methodologies can be used
to study the research concerned with composite pile development. Research metrics and
data mining are leading methods for understanding and exploring research conducted
about a subject. They are becoming increasingly popular techniques to assess articles
already written about the subject and estimate their value based on the times the work
has been referenced in other academic publications. This practice is known as bibliometric
analysis. Scientometric evaluation is used in mapping a particular domain of knowledge
and assesses the degree to which an article or body of research meets its objectives [10].
The primary purpose of the scientometric analysis is to evaluate the influence of nations,
publications, authors, and organizations, and understand how each factor relates to the
others. Combined with specialized software, these datasets can be shown in a way that
demonstrates how they are connected.

To improve composite piles and narrow the gap between research and large-scale
industrial implementation, this paper aims to better understand their capabilities and
primary research characteristics that affect their behavior. A scientometric approach and an
in-depth discussion have been utilized.

2. Data and Sources

This study provides a review of the previous research in the field of composite piles
foundation. It was carried out in two stages: first, a quantitative stage, during which the
data was retrieved from a bibliometric database, and second, a qualitative step, during
which the articles were filtered and grouped manually using VOSviewer software.

A mixed technique was utilized to conduct the literature review, and bibliometric
analysis combining multiple research paradigms makes it possible to investigate a topic
from multiple angles, discover new insights, and more easily formulate and test hypothe-
ses [11]. Quantitative and qualitative research approaches and the figures and explanations
that justify them are combined in mixed methods research [12]. Since sustainability is a
significant concern across disciplines and fields of study, this approach explored the deep
foundations of composite piles.

Before choosing which database to get the information from for a systematic review,
the dataset needs to be reliable and comprehensive. Scopus and Web of Science are the
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two databases that include the most exhaustive and unbiased collections of scholarly
work [13]. When “composite piles” was typed into the search bar on Scopus, it returned
474 results, more than the Web of Science core collection 432. Scopus is a citation and
abstract database created by Elsevier. The larger dataset provided by Scopus makes it
simpler to do scientometric analysis and map the findings. No time frame or language
was used to search abstracts, keywords, and titles for the term “composite piles,” although
this yielded some interesting findings. Subsequently, the findings were further filtered by
excluding articles with less than two citations. Besides, the selected papers were further
refined by only considering papers written in English. The titles and abstracts of these
papers were also skimmed. Articles whose content was directly related to the topic and
the field of composite piles and deep foundations in construction were selected, and all
other articles were excluded. Following the completion of this step, there were a total of
252 papers still in the composite pile.

3. Scientometric Review Interests
3.1. Documents Were Published According to the Year

Figure 2 shows the distribution of papers about composite piles over time. Since
1986, when the number of studies published was one per year, the number of studies on
composite piles has grown noticeably. Recycled plastic covered inside a steel pipe was
the first type to find use in marine construction. Los Angeles port, in 1987, saw the first
implementation of this design as a panel pile in the United States [14]. After 2012, however,
there was a noticeable increase in research conducted on composite piles. It is a rising trend,
particularly in recent years, despite the fluctuations in certain years. The growth may be
attributed to the inventory of barriers that impede progress in the composite pile, such as
the long-term behavior of the material in the composite.

Geosciences 2023, 13, x FOR PEER REVIEW 3 of 14 
 

 

Before choosing which database to get the information from for a systematic review, 

the dataset needs to be reliable and comprehensive. Scopus and Web of Science are the 

two databases that include the most exhaustive and unbiased collections of scholarly work 

[13]. When “composite piles” was typed into the search bar on Scopus, it returned 474 

results, more than the Web of Science core collection 432. Scopus is a citation and abstract 

database created by Elsevier. The larger dataset provided by Scopus makes it simpler to 

do scientometric analysis and map the findings. No time frame or language was used to 

search abstracts, keywords, and titles for the term “composite piles,” although this yielded 

some interesting findings. Subsequently, the findings were further filtered by excluding 

articles with less than two citations. Besides, the selected papers were further refined by 

only considering papers written in English. The titles and abstracts of these papers were 

also skimmed. Articles whose content was directly related to the topic and the field of 

composite piles and deep foundations in construction were selected, and all other articles 

were excluded. Following the completion of this step, there were a total of 252 papers still 

in the composite pile. 

3. Scientometric Review Interests 

3.1. Documents Were Published According to the Year 

Figure 2 shows the distribution of papers about composite piles over time. Since 1986, 

when the number of studies published was one per year, the number of studies on 

composite piles has grown noticeably. Recycled plastic covered inside a steel pipe was the 

first type to find use in marine construction. Los Angeles port, in 1987, saw the first im-

plementation of this design as a panel pile in the United States[14]. After 2012, however, 

there was a noticeable increase in research conducted on composite piles. It is a rising 

trend, particularly in recent years, despite the fluctuations in certain years. The growth 

may be attributed to the inventory of barriers that impede progress in the composite pile, 

such as the long-term behavior of the material in the composite. 

 

Figure 2. The distribution of composite piles-related publications over time. 

3.2. Type of Document and Topic Area 

Figure 3 illustrates the different types of publications received from Scopus for the 

study. Most documents were article and conference papers, with corresponding 

percentages of 50.6% and 44.7%, respectively. Figure 4 shows the distribution of the 

subject fields for which the documents were written, with engineering corresponding to 

0

5

10

15

20

25

N
u

m
b

er
o

f 
p

ap
er

s

Year

Figure 2. The distribution of composite piles-related publications over time.

3.2. Type of Document and Topic Area

Figure 3 illustrates the different types of publications received from Scopus for the
study. Most documents were article and conference papers, with corresponding percent-
ages of 50.6% and 44.7%, respectively. Figure 4 shows the distribution of the subject fields
for which the documents were written, with engineering corresponding to 52.6%, mate-
rials science to 21.1%, and earth plants to 13.5% of all papers. Figure 4 also discusses
the three primary subfields of composite pile research and identifies the one with the
most publications.
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3.3. The Most Frequently Used Keywords

The keywords highlight the important ideas discussed in the articles and the main
areas of study that fall within the scope of the topic [15]. Further, the occurrences of the
keywords were analyzed. Only keywords that occurred at least 14 times were considered
for inclusion. Connections between frequently used keywords are shown graphically in
Figure 5. Total link strength (TLS) increases proportionally with the links connecting two
keywords. The length of space separating keywords represents how closely related the
two knowledge areas are to one another [16]. This enabled us to understand where the
term composite piles are used in scientific research. For instance, composite foundations
are frequently used around finite element, bearing capacity and numerical simulations.
However, it can be seen that composite piles are much more used around soft soil, pile
foundation, and piles. In terms of the keywords, this distance quantifies the frequency with
which they are found together. The research domain and themes that are special to the
study are reflected in the keywords [15].
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Figure 5. Visualization of frequently used keywords.

The keywords that most frequently occurred in the investigated papers are listed
in Table 1. VOSviewer software, a bibliometric mining tool, was utilized to acquire the
TLS and the occurrences. Only search terms that occurred a minimum of 20 times were
considered. Geotechnical and foundational research emerge as the most prominent when
comparing the keyword visualization to the table of the most often occurring phrases and
filtering out the keywords which do not reflect an important study subject.

Table 1. Total link strength in composite piles and the most often occurring author keywords.

S/N Keyword Occurrences Total Link Strength

1 Composite foundation 128 84
2 Settlement 48 57
3 Bearing capacity 48 40
4 Numerical simulation 37 28
5 piles 33 29
6 Composite 33 24
7 Pile 30 32
8 Pile-soil stress ratio 28 22
9 Nanoindentation 28 10

10 frp 25 29
11 Composite pile 25 31
12 Composite material 23 18
13 Mechanical properties 22 17
14 Numerical analysis 21 10
15 Microstructure 21 18
16 Cfg pile 20 25
17 soft soil 20 12
18 Fiber-reinforced polymers 20 16

3.4. Country-Wise Origin of Literature

Figure 6 is a presentation of a network analysis of nations that are actively engaged in
this topic. The node size represents the amount of work done by each country. The lines
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connecting the nodes indicate the degree to which the countries are interconnected. The
top 10 countries in terms of the quantity of research published are as follows: China, the
United States, Canada, Australia, Japan, South Korea, Russian Federation, and Turkey. This
conclusion is in line with prior research that demonstrates these countries are in the lead in
developing composite piles and deep foundations [17].
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3.5. Most Cited Institution

It was discovered that 805 different institutes had researched the performance of
composite piles. Table 2 ranks the most influential research institutions according to their
impact on the investigation. When ranking universities by how often they have been
referenced, Tongji University in China, the University of New Mexico in the United States,
and Chang’an University in China come out on top. The VOSviewer citation analysis
is used to figure out the TLS. This takes into account how often one institution links to
other institutions.

Table 2. Most prominent academic institutions based on how often their publications.

S/N Institution Citations TLS

1 Shanghai University, China 114 10
2 Tongji University, China 382 28
3 University of New Mexico, United States 252 12
4 Southwest Jiao Tong University, China 97 19
5 Chang’an University, China 149 18
6 Lanzhou University of Technology, China 81 6
7 Univ. of Illinois, United States 90 22
8 Hohai University, China 84 9
9 Istanbul technical university, Turkey 79 5

3.6. Top-Ranked Authors

The program VOSviewer was utilized to carry out the author’s co-citation analysis.
It helps determine and analyze the research area’s progress by showing the connections
between writers mentioned in the same publication. The most frequently mentioned writers
are included in Table 3, along with the TLS of each author. Han, J (203), Mirmiran (189),
and Armstrong (176) are among the authors who have been cited most frequently.
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Table 3. Top authors and their Total Link Strengths are listed.

S/N Author Citations TLS

1 Han, j. 203 977
2 li, j. 117 830
3 Mirmiran, a. 189 514
4 Armstrong, r.w 176 366
5 Poulos, h.g. 126 333
6 Randolph, m.f 149 469
7 Shahawy, m. 102 507
8 Wang, j. 165 976
9 Zhang, y. 140 755
10 Liu, h.l. 124 261

As assessed by co-citation analysis, the relationships between the most influential
authors in the area are depicted in Figure 7. The co-citation frequency is represented by the
thickness of the line connecting each researcher, and the node’s size indicates the frequency
with which researchers are cited in conjunction [18].
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4. Discussion
4.1. Composite Pile Types

This section describes the appearance and sequence of composite pile types. Most
authors’ keywords connect the composite pile type with the highest TLS. The main type
utilized in maritime construction comprised recycled plastic encased in a steel pipe. Then,
polymer matrix composites (PMCs) were suggested for employment outside reinforcement
of emergency piles [19]. This led to the development of the second type of composite piling,
which is applied in maritime structural applications: FRP piles [20–22]. Due to the success
of composite piles, fiber-reinforced polymer (FRP) piles were considered for use as fender
piles for replacing wooden piles in numerous projects in the United States [9,14].

Five composite piles are considered viable for load bearing or fendering purposes.
These are known as fiber-reinforced polymer (FRP) piles, steel core plastic (SCP) piles,
structurally-reinforced plastic (SRP) piles, plastic lumber (PL) piles, and fiberglass pul-
truded (FP) piles [7,23]. The five varieties of composite piles that are now in use can be
seen as illustrated in Figure 8.
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4.1.1. FRP Piles

Acrylic-coated FRP tube sections are typically filled with non-reinforced concrete to
create FRP piles. This composite pile has received great attention from researchers and
has been adopted frequently [24]. The primary function of the FRP tube is to serve as a
noncorroding reinforcement, to confine the concrete in compression, shield the concrete
from harsh environmental conditions, and keep the concrete in place during construction.
On the other hand, the concrete infill provides internal compression resistance, enhances
pile stiffness, and prevents FRP piles from buckling [25].

4.1.2. SCP Piles

SCP piles are made of a steel pipe with a thin wall wrapped in a thick layer of plastics.
The shell protects against corrosion, while the steel tubular core is responsible for the bulk
load-carrying ability. There are a few concerns regarding SCP piles’ structural performance
in marine conditions, namely concerning the lamination between the core and the shell.
One year after the installation date, cracks in the plastic shell revealed that the shell was
formed using plastics unsuitable for the purpose [1].

4.1.3. SRP Piles

The extruded recycled plastic grid is the primary component of reinforced plastic
piles, further strengthened by steel or fiberglass rebars. The composite pile develops into
a recyclable material when fiberglass-reinforced plastic (FRP) rods enhance the plastic
core [26]. The experimental SRP piles used in the tests displayed a large amount of deflection
under lateral loading and distinctly distorted them throughout the installation [2,14].

4.1.4. PL Piles

PL piles are made of a matrix consisting of recycled plastic and fiberglass reinforcement
randomly dispersed throughout the matrix. To reduce the overall weight, the thick hard
outer tube is connected to the outer surface of the inside plastic core, which is filled with
foam. According to the findings of the studies, Young’s Modulus (E) of this pile type
is 0.37 GPa, which is more than 40 times less than the E of concrete. As a result, most
load-bearing applications cannot use this type of pile [27].
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4.1.5. FP Piles

FP piles are another variety of structurally-reinforced FRP piles. These piles are made
of high-density polyethene (HDPE) casing and fiberglass grid to give structural strength
and limit distortion. The grid is constructed out of four plates that cross with one another,
and the spaces between the plates are filled with either HDPE, plastic lumber, or polyethene
foam fills. [5]. Because of their capacity to absorb the shock of passing vessels, they are
only used in marine environments as sheet pile walls and fender piles. According to the
findings of Lampo et al. [1], because of its poor performance under axial and lateral loads,
this type of pile should not be employed in load-bearing applications. These applications
are incompatible with this pile type.

4.2. Design Composite Piles

Bearing capacity, settlement, numerical simulation, and numerical analysis are all
associated with the design of composite piles, which led to their designation as research
clusters. In some respects, traditional pile design methods can still be applied to determine
the ultimate loads that can be supported [14]. Due to these issues, new design methods are
required to accurately calculate settlement and lateral deformation in early work [28,29]
and updated conventional design approaches to account for the composite piles’ unique
properties. Given the data in Table 3, it is not surprising that they received the most
citations because they incorporated this significant addition into the composite pile design.
The type of composite pile represented in [28] is the one that appears the most frequently
in keywords. The structural and geotechnical design of confined concrete FRP piles is
considered when determining how to improve the design of composite piles.

4.2.1. Axial Loads

If the soil fails below the pile bottoms, around the pile-soil contact, or if the pile
shafts are crushed by compression, FPR composite piles can fail under compression loads.
Therefore, the load-bearing capacity of the FRP pile is determined by the value that is less:
compressive strength and durability of the shafts or maximum load that causes soil failure
and pile-soil contact. Compression tests provide a straightforward method for calculating
the FRP pile compressive strength [28]. Naser, Hawwileh, and Abdalla [30] concluded
that FRP-restricted concrete had a greater load capacity than plain concrete. A principle
commonly acknowledged is that a pile’s ultimate compression load capacity equals the
sum of the load on the pile’s end bearing and the friction on the pile’s sides. The pile
end-bearing load is based on the soil condition and the pile foundation’s size, shape, and
depth. It is not based on the pile material.

In contrast, the shear strength of the pile interface between the pile material and the
soil depends on the pile material’s roughness and the soil’s condition. A designated design
parameter must be used for the skin friction between the FRP composite piles and the soil
to determine the ultimate bearing capacity. Three different approaches exist for calculating
pile skin friction: the (α method) and (λ method) for fine-grain soil and the (β method) for
granular soil. Commonly, skin friction, τs, values for piles in clay or sand are calculated
using the (β method), which is represented below in Equations (1)–(3):

τs = σ′r tan δp (1)

τs = k σ′v tan δp (2)

τs = β σ′v (3)

where σ′r = After installation, the horizontal functional tension acting around the pile shaft
σ′v = deep vertical functional stress.
K = coefficient of pressure in the horizontal plane.
δp = highest achievable pile-soil contact friction.
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The FRP piles’ frictional performance was tested in tank-stored clayey soil samples.
The compression bearing capacity of FRP piles was revealed to be 5–40% greater than that of
steel piles of the same size when the load transfer mechanisms of each were evaluated [25].
Giraldo Valez and Rayhani [31] conducted a comprehensive investigation analyzing the
friction properties of FRP piles when placed against the clay. The results matched the
conclusion of [25].

In addition, researchers in sand soil [31,32] conducted experimental investigations on
the shear strength of the interface between FRP and sand. Frost and Han [33] discovered
that the shear strength of the interface between FRP and sand depended on the normal
stress, the relative roughness, and the angularity coefficient of soil. Regarding coefficient of
interaction (CI), this relationship (Equation (4)) has been widely adopted to evaluate the
interface shear strength’s efficacy relative to the soil’s internal shear strength.

CI = tan δp/ tan∅p (4)

where δp = maximal surface friction at the pile material’s contact with the soil, and ∅p is
the soil angle with the greatest maximum internal friction. Figure 9 shows the coefficients
of interaction (CI) against the roughness index (Ri). The roughness index is calculated by
taking the greatest roughness of the surface of the pile material and dividing it by the mean
grain size of the soil particles, also known as D50. According to Figure 9, the interaction
coefficients for the smooth FRP material range from 0.4 to 0.5, whereas the interaction
coefficients for the rough FRP material range from 0.5 to 0.9.
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4.2.2. Lateral Loads

The maximum allowed deflection usually controls how a pile will act when subjected
to lateral loads [34]. Pile bends are affected by the horizontal load, the soil’s resistance
to lateral movement, and the pile’s bending stiffness, which is found by multiplying the
second moment of the area by Young’s modulus. The sub-grade reaction technique, the
P-y method, the elastic continuum theory, and FE-based approaches are standard methods
that may be used to analyze conventional piles when subjected to lateral stresses. Even
though these approaches describe the pile as an elastic beam, this model may no longer be
viable for composite pile types due to the relatively low shear modulus, which results in
increased shear deformation [35].

Ma et al. [36] researched the composite pile’s bearing properties and horizontal load
transmission mechanisms and revealed that the pile foundation’s lateral force against pile
head displacement curves displays a steep decrease in section (typical piercing damage).
The pile heads to one-third of the depth where stress and strain are concentrated. Con-
sequently, they claimed that the lateral bearing capacity primarily depends on the soil’s
strength at contact with the pile or the displacement of the pile head.
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Han, Frost, and Brown (2003) demonstrated that the following formula might be used
to compute the normalized lateral displacement of FRP composite piles. This was done
while taking into consideration FRP composite piles.
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tion constant for soil. Using a composite material with a higher shear modulus reduces
horizontal displacement.

The shear modulus is a product derived from the section properties, such as the
thickness and radius of the tube. By enhancing these qualities, the horizontal displacement
can be limited.

Mirmiran, et al. [37] studied two types of concrete-filled FRP piles under axial and
flexural stress. According to the investigation, over-reinforced specimens performed sig-
nificantly better as beam columns and suffered 5–50 percentage points less displacement
than their reinforced counterparts. According to the findings of Pando [14], shear defor-
mations need to be considered in calculating subsequent deflections if there is a rise in the
section’s pile modulus ratio (E/G). Zyka and Mohajerani [38] highlighted a rising demand
for more precise design approaches regarding confined concrete FRP piles’ lateral and
flexural load capability.

4.2.3. Earthquake Seismic Loads

Composite piles are designed to enhance the strength and stiffness of concrete and the
ductility and corrosion resistance of surrounding tubes, making them suitable for use in
seismic areas where soil and foundation conditions can be unpredictable. When subjected to
seismic loads, composite piles can provide improved performance compared to traditional
piles due to their unique combination of material properties. Several factors influence the
behavior of composite piles under seismic loads, including the pile’s design, the type of soil
in which the pile is installed, and the intensity and duration of the seismic loads. Hosseini
and Rayhani [39] evaluated the seismic performance of hollow fiber-reinforced polymer
piles in liquefiable sand deposits using shaking table tests. Four glass fiber-reinforced
polymer piles, four carbon fiber-reinforced polymer piles, and four aluminum piles were
tested in soil-foundation models. The tests were conducted using earthquake ground
motions. Results showed that the hollow fiber-reinforced polymer piles performed better
than the aluminum piles, and the glass fiber-reinforced polymer piles performed better than
the carbon fiber-reinforced polymer piles. The study suggests that hollow fiber-reinforced
polymer piles can be a suitable alternative in seismically prone areas due to their favorable
material characteristics. This study has been emphasized again by [40]; the authors report
on two shaking table tests that studied the seismic performance of fiber-reinforced polymer
(FRP) pile groups in saturated sand. The tests used a laminar shear box and different
types of composite pile models (CFRP, GFRP, and aluminum). The piles were subjected
to earthquake simulations from the 2010 Val-des-Bois and 1995 Kobe earthquakes. The
results showed higher levels of excitation in the foundation compared to the soil, and the
pile material affected the seismic response of the pile caps and superstructure. Aluminum
piles had the highest acceleration response, while GFRP piles provided slightly better
performance and could be a better alternative for traditional frictional piles in liquefiable
soils. Abouelmaty, Elmasry, and Abdelaziz [41] studied the behavior of FRP composite
piles under earthquakes, which introduced a dynamic model for a piles-cap system in
a nearshore bridge. The results showed that although FRP piles are durable in harsh
environments, their low modulus of elasticity reduces lateral stiffness and affects the
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foundation system’s efficiency during lateral earthquake excitation. This behavior should
be considered when designing bridges in active seismic zones.

Furthermore, despite the earthquake load, the pile foundation still benefits from lateral
support provided by the neighboring sand-tire mixture [42,43], thus safeguarding it against
buckling and fracturing. This behavior of the pile foundation is distinct from that of a
foundation supported solely by pure sand, which offers no lateral support during an
earthquake. Nonetheless, an optimal length exists for reinforcing the sand-tire mixture
beyond which its effectiveness becomes negligible.

It is discovered from this review that the limited availability of studies on composite
piles subjected to earthquake seismic loads has implications for the understanding of their
behavior and performance under these conditions. As a result, there is a need for further
research in this area to establish more comprehensive and reliable data on the behavior
of composite piles under earthquake seismic loads. This information would be useful for
designing and constructing structures in seismic regions and contribute to improving the
seismic performance of structures supported by composite piles.

5. Conclusions

The primary benefits of composite piles over conventional pilings are their low life-
cycle costs and reduced environmental impact. Review articles are limited in these major
shifts in foundation types and may be one-sided and subjective. This paper represents the
first scientometric analysis of composite piles. After filtering, 252 articles were selected from
Scopus. Keywords, countries with the highest citations, cutting-edge research institutes,
and most-cited authors in composite piles were all investigated. The research articles from
Scopus were used to create keyword clusters that helped identify historically divided types
of composite piles and structural and geotechnical design requirements for composite piles
(FRP piles).

Regarding composite piles, limited options offer extended service life and require less
maintenance. However, certain types, such as SRP piles, plastic lumber piles, and fiberglass
pultruded piles, could have a potential drawback in terms of structural performance
due to their low-stiffness material. To overcome this issue, researchers can explore new
composite piles that share service life and maintenance requirements while having better
structural performance. Additionally, this research highlights the need for standardized
testing and design principles for composite piles, as current pile design procedures are
not comprehensive. Composite piles have a low stiffness due to the reduced modulus
of compound materials, and their vertical and lateral load-settlement responses require
different design approaches. Furthermore, it is essential to understand how earthquake,
seismic, and lateral loads affect composite piles’ short-term and long-term deflection.

For future prospects, and to ensure a bright future for FRP piles, it is important to
conduct further investigations and simulations to evaluate their performance in various
soil types, including cohesive and non-cohesive soils. Furthermore, studying the impact
of combined loading conditions, especially in marine environments, on the performance
of the FRP piles under lateral and axial loads is crucial. Researchers should also explore
innovative composite pile designs with optimal structural behavior and comparable service
life and maintenance requirements. Finally, comprehensive research on composite pile
groups is necessary to gain insights into their behavior under axial and lateral loads and
their arrangement within a group.
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