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Abstract: Rainfall runoff and topography are among the major factors controlling the accuracy of
modelled riverine inundation extents. We have evaluated the sensitivity of both these variables on a
novel 1-D conceptual flood inundation model employing Height Above Nearest Drainage (HAND)
thresholds within sub-catchment units called Reach Contributing Area (RCA). We examined the
March 2021 flood extent over the Hawkesbury–Nepean Valley (HNV) with 0.05′ gridded runoff
derived from the Australian Water Resources Assessment (AWRA) modelling framework. HAND
thresholds were enforced within each RCA using rating curve relationships generated by a modelled
river geometry dataset obtained from Jet Propulsion Laboratory (JPL) and by modelling Manning’s
roughness coefficient as a function of channel slope. We found that the step-like topographic nature
of HNV significantly influences the back-water effect within the floodplain. At the same time, the
improved accuracy of the GeoFabric Digital Elevation Model (DEM) outperforms SRTM DEM-derived
flood output. The precision of HAND thresholds does not add significant value to the analysis. With
enhanced access to river bathymetry and an ensemble point-based runoff modelling approach, we
can generate an ensemble runoff-based probabilistic extent of inundation.

Keywords: flood inundation; HAND value-based threshold; Australian Water Resources
Assessment; GeoFabric

1. Introduction

Hydrological models are distilled representations of real-world systems that estimate
different components of the water cycle and water balance. They help decision-makers
make informed choices for the planning and operation of water resources while considering
the interconnections between physical, ecological, economic, and social components within
a real-world system. Traditional hydrological models involve transforming rainfall obser-
vations into runoff/streamflow and Evapo-Transpiration (ET) estimates, upon considering
catchment characteristics, including morphological features of river networks. The process
usually involves complex calibration approaches of discharge and ET measurements for
determining the weights of inherent catchment processes. Several types of hydrological
models [1] varying in complexity exist for determining discharge; however, they cannot
be used as-is in the case of flood management scenarios. This is because the discharge
measurements need to be fed into hydrodynamic models, which then calculate the in-
undation height for every pixel/grid of interest within the catchment. The inundation
units can be classified into a vector and raster-based units of inundation. The hydrody-
namic models can also be categorised into 1D, 2D, and 3D flow models, with increasing
computational costs in that order. Combining hydrological and hydrodynamic models,
such as SWAT and LISFLOOD-FP [2], respectively, in operational situations due to their
requirements for detailed information of the river system and resulting computational
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costs is thus impractical for continuous modelling of flood inundation extents. Generally,
design rainfall-runoff events are pre-processed, based on which the hydrodynamic models
evaluate the inundation extents for designing and evaluating flood disaster recovery [3].
Such event-based or library lookup scenarios do not include the effects of antecedent
climate and catchment characteristics or geomorphological processes, including erosion,
which can accentuate the magnitude of design flood extents. Thus, this study focuses
on simplifying hydrodynamic approaches without compromising flood extent accuracy.
These approaches can complement continuously executing hydrological models without
significantly increasing computational costs.

Further complexity in inundation modelling involves the data-scarce nature of river
reach geometry. Currently, satellite missions can measure drainage width and length
precisely. However, satellite signals cannot penetrate the water surface, and thus we can-
not remotely measure the river depth and subsequent profile. Consequently, we depend
on field surveys of river bathymetry to estimate the channel-carrying capacity. Several
studies have used such river geometry data at point locations across the globe to model
contiguous bankfull reach characteristics as a function of discharge [4–7]. We note that
there is significant uncertainty in the modelled channel shape and the time-varying nature
of channel morphology, which can result in divergent estimates of the bankfull carrying
capacity of such rivers. Several studies [8–11] have analysed the impact of ensemble mod-
elling approaches considering uncertainty in channel bathymetry, shape, and conveyance
capacity for hydrodynamic systems implemented for specific sub-basins and catchments.
For large-scale operational analysis of inundation extents, we need to deal with insuffi-
cient discharge measurements, unreliable drainage morphology, error-prone topographic
datasets, uniform rainfall assumptions within catchment boundaries, and computational
costs associated with the ensemble-based continuous execution of each of the processes
dealing with the same.

Conventional methods to deal with large-scale inundation include generating static
flood maps processed for designing flood rainfall events by running computationally
complex hydrodynamic models in pre-emptive mode. However, running such models
operationally across extensive spatial scales with near real-time data under the above
constraints limits the analysis to adopting conceptual inundation modelling approaches.
Height Above Nearest Drainage (HAND) is one such static topographic indicator of the
inundation potential of a location obtained from the Digital Elevation Model (DEM) [12].
HAND is a hydrologically consistent indicator of local draining potential compared to
other topographic indicators, including the Topographic Wetness Index (TWI) [13]. HAND
value-based thresholding, where raster pixels within a catchment that have HAND values
less than the observed gauge level are considered submerged, has been employed to
map inundation across different spatial scales. One example is across the entire Amazon
basin [12], subject to the quantity and quality of gauged data. Upon availability of river
bathymetry and access to large computational resources, 1D, 2D, and 3D flow routing
procedures, including Muskingham–Cunge [14], mizuRoute [15], CaMa-Flood [16], and
even Regional Flood Frequency Approach (RFFA)-based methods [17] can be incorporated
to estimate the flow rates needed for rating curve estimation of HAND thresholds.

Due to the unavailability of ground-surveyed river geometry data and the need
for rapid flood mapping, we consider the Conceptual Flood Routing and HAND-Based
Inundation Model (CFRHIM) (Unnithan et al., A novel conceptual flood inundation model
for large scale data-scarce regions, submitted to Environmental Modelling and Software,
2022, henceforth referred to as submitted manuscript). CFRHIM has a modular approach
that can be coupled with most hydrological models and executed for large time series. It
overcomes error-prone topographic information from global access DEM and considers the
modelled river bankfull width and depth estimate input. With the paucity of standardised
river geometry datasets and the need to achieve improved computational costs across large
spatial scales, we rely on the river bathymetry information from [18] to model the bankfull
discharge estimation. CFRHIM models HAND-derived probability inundation extents for
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each Reach Contributing Area (RCA) (Figure 1) as a function of synthetic rating curves that
incorporate the uncertainty in modelled river geometry datasets.

To better understand the main sources of uncertainty in the CFRHIM modelling
framework and in order to improve the overall accuracy of the CFRHIM, we evaluated the
sensitivity of HAND-derived inundation extents to:

1. The product quality of the gridded runoff datasets—AWRA V6 (baseline) and AWRA
V7 (better quality),

2. The quality of the Digital Elevation Model (DEM) datasets—Shuttle Radar Topogra-
phy Mission (SRTM—not hydrologically conditioned) and Australian Hydrological
Geospatial Fabric (GeoFabric—hydrologically conditioned), and

3. Incorporation of hydrological model processes including:

a. back-water effects,
b. modelled Manning’s roughness coefficient, and
c. precision of HAND intervals derived from synthetic rating curves.
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Figure 1. Conceptual representation of HAND index within the RCA.

A sensitivity study was performed for the Hawkesbury–Nepean Valley (HNV) catch-
ment in New South Wales (NSW), Australia. Using this case study, we performed a
sensitivity analysis to analyse the model uncertainties in mapping flood magnitudes for
HNV. Specifically, we examined the nature of fluvial flooding patterns repeatedly observed
in HNV and focused on identifying the critical datasets and model processes that control
the accuracy of simple conceptual flood inundation extents. This study aimed to ascertain
the best CFRHIM configuration, thereby evaluating the applicability of HAND-derived
inundation extents to provide downstream applications of operational flood alerts for
large-scale data-scarce regions.

2. Methodology

We used gridded runoff from AWRA-L (jointly developed by the Australian Bureau
of Meteorology (BoM) and CSIRO) as an input forcing into CFRHIM. In addition, the
GeoFabric DEM corrected from the NASA SRTM DEM at 30 m spatial resolution was used
to model the HNV catchment topography [19]. The unique topographic environment of
the HNV catchment presents the opportunity to examine the back-water effect (BE) of
downstream inundation heights on upstream catchment RCA. The model structure of
HAND value-based thresholding to derive inundation extents was subject to different
precision intervals to understand the effect of synthetic discharge–flow height relationships
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developed within each RCA (refer Figure 1). Furthermore, Manning’s channel roughness
coefficient, usually considered a constant value within a basin, was modelled as a function
of the slope of the individual reaches [20]. The modelled roughness values were used to
evaluate the probabilistic inundation extents for the 2021 HNV flood event.

2.1. Datasets Used for the March 2021 Flood over Hawkesbury–Nepean

The HNV catchment with an area of 22,000 sq km lies near Western Sydney in NSW
in southeast Australia. The catchment is home to over 130,000 inhabitants [21] and the
Wollondilly, Coxs, Grose, Colo, South Creek, and Macdonald tributaries, rich in riparian
and mangrove vegetation. The Warragamba Dam is the major dam in the catchment, in
addition to Wingecarribee, Avon, Cataract, Cordeaux, and Nepean dams, regulating flow
for the water supply of Greater Sydney [22]. The region has an annual rainfall of 75 cm, with
the January to March months over the last 100 years exhibiting high runoff and soil moisture
retention capacity (Figure 2—right panel); however, it witnessed prolonged drought even
after the Millennium Drought between 2010 and 2019 before it witnessed a 1 in 5-year
flood event in 2020 [23]. The region again experienced a major 1 in 20-year magnitude
flood event from 7–15 March 2021, causing 2 billion AUD in damages with one reported
fatality [24]. We focused on the later flood event because we could readily compare model
output with observed flood extents from Copernicus Emergency Management Services
(CEMS). CEMS regularly publishes flood extent maps from available EU Sentinel satellite
missions for different natural hazards, including flood events, volcanic activity, droughts,
and forest fires. The 2021 HNV floods are catalogued as event EMSR504, with flood extent
shapefiles publicly available [25].
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Figure 2. Hawkesbury–Nepean catchment ‘near Sydney, New South Wales, Australia.

The Australian Landscape Water Balance Model, part of the BoM’s operational Aus-
tralian Water Resources Assessment Landscape (AWRA) modelling system’s 0.05◦ × 0.05◦

gridded runoff product, Version 6 (AWRA-V6) and newer Version 7 [26,27], are used as
input forcing for the CFRHIM inundation model. The inundation performance for model
versions V6 and V7 was evaluated as part of the BoM’s mandate for improved runoff esti-
mates [26], with daily median Kling–Gupta Efficiency (KGE) and Nash–Scutcliffe Efficiency
(NSE) upgraded to 0.48/0.50 in case of V7 from 0.43/0.49, respectively, for V6, analysed
across 291 sites in Australia. Since flooding is a relatively short-duration phenomenon,
improved modelled daily runoff estimates can significantly affect inundation dynamics.
More information on version improvement is detailed in the methodology section. The
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SRTM DEM [28] and the BoM’s Australian Hydrological Geospatial Fabric (GeoFabric)
DEM [19], both at 30 m spatial resolution, were used to derive the 2021 inundation extents.
The GeoFabric DEM is derived from SRTM DEM with a stream network enforced at a scale
of 1:25,000. The GeoFabric DEM was used to examine the performance of post-processing
of native SRTM DEM to map flooding (Figure 2—left panel). Furthermore, the GeoFabric
DEM is better resolved than the SRTM DEM, to the order of 0.001 m compared to the 1 m
interval of SRTM. A step-based topography characterises the HNV catchment, as evidenced
by GeoFabric DEM in Figure 2, with steep upstream channels followed by the floodplain
in the Richmond–Windsor regions, with subsequent higher slopes further downstream.
The catchment’s stepped nature indicates the back-water effect’s influence on inundation
extents, which is explained in the following section.

2.2. Sensitivity Analysis of HAND-Based Inundation Extents

The schematic representing the process flow adopted in this study is shown below in
Figure 3.
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(HAND: Height Above Nearest Drainage, AWRA L: Australian Water Resources Assessment—
Landscape model Version 6/7) [18].

A modular approach towards mapping inundation was adopted to divide the region
of interest into smaller hydrological units called RCAs. An RCA denotes the set of pixels
that drain into a single reach of a channel network that does not branch. A HAND
terrain map for each RCA is binarised using pre-defined flow-depth threshold values, and
the corresponding extents are pre-processed and stored in a local lookup library. From
Figure 3a, using the modelled river geometry datasets from [18]—NASA JPL, we generated
the synthetic HAND-based rating curves using Manning’s equation for each RCA in the
channel network. The rating curves were generated such that overbank flow is considered
within the channel by assuming a constant bankfull wetted perimeter for flow heights
greater than bankfull depth, i.e., CFRHIM assumes the total flow occurs within the channel
and that overbank flow only inundates laterally. Furthermore, Manning’s roughness
coefficient n was modelled as a function of the slope and hydraulic radius of associated
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reaches as given by [20]. The inundation extents were compared by keeping the roughness
coefficient (n) constant at 0.03 (representative of a regular channel following the approach
introduced by (Chow, 1959)) and by using the following equation,

n = 0.39× S0.38 × r−0.16 (1)

where S denotes the reach slope and r denotes the hydraulic radius. The above rela-
tionship was obtained by [20] for stable bed conditions in main natural channels with
high slopes, even during large flow conditions. We evaluated the influence on channel
flow upon assuming constant Manning’s roughness co-efficient in data-scarce regions
and by varying the same as a function of reach geometry in contrast to calibrating rough-
ness as a function of observed inundated areas [11]. The area-weighted runoff for each
RCA was then routed using the 1-dimensional flow routing procedure approach detailed
in (Figure 3b—Unnithan et al., submitted manuscript). The approach considers the vec-
torised channel network scheme [15] used in delineating individual reaches and corre-
sponding RCAs. The discharge is routed considering a spatially constant bankfull velocity
to route runoff to the pour point (catchment outlet). Based on the rating curves derived
for the river mouth reach, the constant velocity for the routed discharge is then assigned
to all the reaches sharing the common pour point for subsequent discharge estimation.
The ensemble of inundation depths is obtained from the synthetic rating curve for a given
routed discharge. The rating curves consider uncertainty in modelled bankfull depth
values, thereby generating an ensemble of flow heights and mapping the spatial extents
and depths of inundation from the look-up library for each RCA. The flood extents derived
within each RCA are then stitched across all the RCAs, representing the entire catchment
area to obtain the comprehensive flood map.

The primary inputs to CFRHIM included the modelled river geometry datasets, the
rainfall-runoff product, and topographic information. Model sensitivity to river geometry
considers the uncertainty in river depth values affecting inundation extent to a greater
degree than bankfull width and the shape of river reaches (Unnithan et al., submitted
manuscript). In this study, we first examined the performance of HAND-derived inun-
dation extents to different gridded runoff products by forcing AWRA V6 and AWRA V7
gridded daily runoff products for March 2021. The V7 runoff product involves improved
static and dynamic inputs, including the height of the top of the vegetation canopy, spatial
maps of tree basal area indicating maximum root water uptake instead of constant spatial
value for the entire continent, and updated hydraulic conductivities [26,27]. Secondly,
model sensitivity to topography was evaluated by comparing the highly resolved, hy-
drologically consistent, and ground-truthed GeoFabric DEM-derived flood extent to that
derived from native SRTM DEM.

Thirdly, we examined the step-like topographic nature of HNV and conceptually
represented the presence of the back-water effect (BE) (Figure 3c), i.e., the build-up of
discharge in the downstream floodplain RCAs, which led to the stagnation of inundation
in the upstream RCA. We initially estimated the ensemble of flow heights through the
method described above. Consequently, the flow height at the terminal downstream reach
outlet was propagated to the immediate upstream reaches by accounting for the difference
in elevation of an upstream reach with the parent reach. This procedure was iteratively
executed upon traversing upstream until the flow height of the parent reach was less than
the elevation difference. Finally, due to the highly resolved nature of GeoFabric DEM, we
also evaluated the precision of HAND thresholds in intervals of 0.25 m as compared to 1 m
resolved SRTM DEM.

2.3. Validation

The modelled probability of inundation maps was compared with Sentinel-derived
inundation maps published by CEMS in shapefile (shp) format. Since the comparison
could be made only against available flooded/no flood (binary) observed datasets, the
modelled inundation maps were reclassified into two categories by considering pixels
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with a minimum 1% probability of inundation as being flooded. Here, the probability of
inundation is the uncertainty in modelled overbank flood discharge-based extent. The
resulting binary map was compared with the observed flood map using the confusion
matrix (Table 1), considering the overlap of model flood/no flood (Mod Positive/Mod
Negative) pixels with those of observed flood/no flood (Obs Positive/Obs Negative).

Table 1. Kappa confusion matrix used for comparison of modelled and observed flood pixels.

Confusion Matrix
Modelled Dataset

Positive Negative

Observed Dataset
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

We considered the following metrics based on the confusion matrix to evaluate the
quality or success rate of the obtained inundation maps: Critical Success Index (CSI) [29],
Youden’s Index (YI) [30], and Cohen’s Kappa (CK) (Cohen, 1960) [31], given by

CSI =
TP

TP + FN + FP
(2)

YI =
TP

(TP + FN)
+

TN
(TN + FP)

− 1 (3)

CK =
2 (TP× TN − FN× FP)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)
(4)

The CSI metric provides the relative accuracy of the model in capturing inundation
patterns as a function of observed flooded and non-flooded pixels. A heavy penalty
exists in the case of model over-estimation, wherein modelled extents exceed or do not
precisely coincide with observed inundation. Thus, we consider a more holistic indicator
in YI, which yields the optimum tradeoff between over- and under-estimation of flooding
patterns. Cohen’s Kappa is a similar spatial indicator which gives the overall agreement
between two different sources of data sets. We report CSI, YI, and CK values for different
model result comparisons to infer meaningful patterns captured by the model.

3. Results

We examine the effect of routing within the CFRHIM framework of HAND-based
inundation techniques compared to directly mapping HAND extents from the gauged
maximum flood discharge level measured at Windsor station in the Hawkesbury–Nepean
floodplain. Significant over-estimation exists in the floodplain region in the case of directly
mapping HAND-based inundation extent derived from a maximum flood level of 13.43 m
across the entire catchment, gauged on 10 March 2021, as compared to the observed
inundation for the same day provided by CEMS (Figure 4). We evaluate the flood maps in
terms of the Critical Success Index (CSI), Youden’s Index (YI), and Cohen’s Kappa (CK).
With reference to the bar plots in Figure 4, the CSI indicates high model bias showing
over-estimation. For mapping extents directly based on HAND thresholds, we report a CSI
of 0.25 for the HNV 2021 flood event. The YI is significantly higher at 0.58 since most of the
flooded pixels are captured by the maximum level-HAND extents. The CK denotes the
overall agreement between the extents, considering both flooded and non-flooded pixels;
hence, we report a significantly low CK of 0.25.
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Figure 4. HAND-derived extents compared to CFRHIM-derived extents using SRTM 30 m DEM
with AWRA V6 and V7 0.05◦ gridded runoff products.

In our first testing case, we investigate the sensitivity of SRTM DEM-based CFRHIM-
derived inundation extents to different runoff products, including AWRA V6 and AWRA
V7 (Figure 4). As demonstrated by a higher CK of 0.44 for V7 as opposed to 0.41 for V6,
the V7 product with improvements in AWRA model parameterisation related to baseflow
and reduced bias upon assigning 50% weightage to terrestrial water storage generates
more runoff for the flood event in March 2021 than the V6 product. The inundation extents
follow a similar pattern to the input runoff grids. Significant model underestimation exists
because of erroneous SRTM DEM, which cannot distinctly delineate the floodplain from
the channel pixels, resulting in a skewed channel network and, ultimately, poor modelled
inundation accuracy.

Subsequently, in the second case, we analyse the sensitivity of CFRHIM extents to
different DEM products; namely, SRTM and GeoFabric DEM at 30 m resolution with daily
gridded AWRA V7 runoff input. The channel network delineated from both DEMs, as
shown in Figure 5, indicates the improved reciprocation of channel morphology from
GeoFabric DEM as compared to that derived from SRTM DEM. The ensuing CFRHIM-
derived inundation maps depict the flood patterns following the GeoFabric-derived channel
network more accurately than SRTM-based channel network. However, the performance
evaluated by CK for CFRHIM with GeoFabric DEM and AWRA V7 runoff is significantly
lower at 0.32 than that compared to SRTM (0.44). The poorer results can be attributed to the
inability of synthetic rating curves to model flooding patterns for individual RCAs within
the floodplain. We recognise the step nature of the catchment topography and hence focus
on analysing the role of BE affecting inundation extents.
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Figure 5. CFRHIM-derived extents using GeoFabric 30 m DEM with AWRA V7 0.05◦ gridded
runoff for different model configurations, including precision of HAND threshold at 1 m intervals,
back-water effect (BE), and modelled Manning’s roughness (n).

In the third case, as explained earlier, we examine CFRHIM using GeoFabric DEM
and AWRAV7 runoff input upon including model processes—BE (back-water effect) and
modelled n (Manning’s roughness). The modelled extents including BE significantly cap-
ture observed flood extents, thereby indicating the dominant effect of BE in flat floodplain
regions that significantly affect inundation accuracy. The CK after including BE within
CFRHIM improved to 0.68, a remarkable shift from when not including BE. By relying
on more accurate DEM from the GeoFabric framework, we can reliably capture the BE on
inundation extents. As explained in the methodology section, we also incorporated the
modelled Manning’s roughness coefficient n as a function of S and r. In this case, we report
a higher CK of 0.74, thus denoting that flooding patterns are again crucially dependent
upon the channel bed roughness in floodplain regions.

In the last case, we evaluate the sensitivity of the CFRHIM framework using the
highly resolved GeoFabric DEM by considering the threshold of finer resolution in HAND
values. The inundation results presented above consider a 1 m HAND interval between
modelled extents derived from the synthetic rating curves described in the methodology
section. The CFRHIM-derived extents with and without including BE and modelled n
are as shown in Figure 6. The model results evaluated by CK show similar values and
trends, with slightly better results in the case of 1 m HAND value thresholds. The CFRHIM
model approximations in synthetic rating curve generation indicate better accuracy at
coarser threshold resolutions, thus achieving accuracy without compromising computa-
tional costs/memory costs.



Geosciences 2023, 13, 67 10 of 13
Geosciences 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. CFRHIM-derived extents using GeoFabric 30 m DEM with AWRA V7 0.05° gridded runoff 
for different model configurations, including precision of HAND threshold at 0.25 m intervals, back-
water effect (BE), and modelled Manning’s roughness (n). 

4. Discussion 
4.1. Effect of Runoff Estimations on Inundation Extents 

Riverine floods are generally influenced by inflow volume to the channel network, 
characterised in modelling systems by routing available runoff into channel discharge. 
Hydrological models that capture gridded runoff accurately, as in the case of AWRA V7 
compared to AWRA V6 [27], can help map flooding extents for large-scale data-scarce 
regions. The modelled extents can be improved with the availability of point-based dis-
charge estimates, either gauged or modelled, which can be used in the calibration of rout-
ing schemas. Although uncertainty in routed discharge is investigated extensively for sev-
eral short reaches and small-scale basins with fine-resolution river bathymetry, extensive 
discharge monitoring across large spatial scales during flood conditions might not be pos-
sible. Upon capturing associated inundation for a given flood discharge, we can more re-
liably compare with flooding patterns using remotely sensed imagery. Several conceptual 
flood mapping studies [32,33] have thus used HAND thresholds with stage–discharge re-
lationships to map inundation but were severely hampered by poor peak flow estimates. 
A practical method for improving HAND-derived extents can be carried out by incorpo-
rating distributed ensemble discharge estimates [34] across several reaches within the ba-
sin of interest. 

4.2. Topographic Conditioning of Flood Maps 
In this work, we have greatly reduced the HAND-based overestimation of sub-

merged floodplains by considering inundation within each RCA. This study provides a 
modular treatment of catchment areas, especially helpful in delta regions where even a 
minor error in flow height analysis can result in large floodplains erroneously mapped as 
inundated. The channel network delineation and ensuing RCAs are thus highly depend-
ent upon the accuracy of input DEMs, the effect of which can be seen in the modelled 
inundated extents derived from SRTM and GeoFabric DEM. Channel and catchment to-
pography can also affect flow within the catchment, evident in HNV with the back-water 
effect. In addition, the traditional D8 channel delineation [35] adopted in this study omits 

Figure 6. CFRHIM-derived extents using GeoFabric 30 m DEM with AWRA V7 0.05◦ gridded
runoff for different model configurations, including precision of HAND threshold at 0.25 m intervals,
back-water effect (BE), and modelled Manning’s roughness (n).

4. Discussion
4.1. Effect of Runoff Estimations on Inundation Extents

Riverine floods are generally influenced by inflow volume to the channel network,
characterised in modelling systems by routing available runoff into channel discharge.
Hydrological models that capture gridded runoff accurately, as in the case of AWRA V7
compared to AWRA V6 [27], can help map flooding extents for large-scale data-scarce
regions. The modelled extents can be improved with the availability of point-based dis-
charge estimates, either gauged or modelled, which can be used in the calibration of routing
schemas. Although uncertainty in routed discharge is investigated extensively for sev-
eral short reaches and small-scale basins with fine-resolution river bathymetry, extensive
discharge monitoring across large spatial scales during flood conditions might not be
possible. Upon capturing associated inundation for a given flood discharge, we can more
reliably compare with flooding patterns using remotely sensed imagery. Several conceptual
flood mapping studies [32,33] have thus used HAND thresholds with stage–discharge
relationships to map inundation but were severely hampered by poor peak flow estimates.
A practical method for improving HAND-derived extents can be carried out by incorporat-
ing distributed ensemble discharge estimates [34] across several reaches within the basin
of interest.

4.2. Topographic Conditioning of Flood Maps

In this work, we have greatly reduced the HAND-based overestimation of submerged
floodplains by considering inundation within each RCA. This study provides a modular
treatment of catchment areas, especially helpful in delta regions where even a minor error
in flow height analysis can result in large floodplains erroneously mapped as inundated.
The channel network delineation and ensuing RCAs are thus highly dependent upon the
accuracy of input DEMs, the effect of which can be seen in the modelled inundated extents
derived from SRTM and GeoFabric DEM. Channel and catchment topography can also
affect flow within the catchment, evident in HNV with the back-water effect. In addition,
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the traditional D8 channel delineation [35] adopted in this study omits the effect of deltaic
regions on branching at the river mouth area. Additional topographic features, including
hillslopes and aspect, must be considered to incorporate channel branching at river pour
points. Furthermore, flood discharge can bring considerable sediment concentrations,
altering the channel geometry. The availability of ground-surveyed reach geometry, even
at specific gauge stations, can significantly improve model efficiency. Finally, evaluating
spatial inundation extents for large-scale flood scenarios provides a more intuitive under-
standing of inherent model processes. Relying on sparsely observed discharge time series
for evaluation is unreliable, especially under flooding conditions.

4.3. Model Comparison with Observed Flood Maps

Inundation extent comparisons with flood maps obtained from CEMS do contain
inherent uncertainties in that the data fused from source satellite missions suffer from the
presence of cloud cover in case of optical imagery, and radar back-scatter geometric and
radiometric characteristics affecting inundated surface water retrievals, in case of SAR
imagery. For the evaluation of CFRHIM-derived maps, based on prior studies, we convert
the probabilistic maps into binary flood/no flood maps by considering pixels having more
than a 1% probability of inundation as flooded. Nevertheless, the accuracy metrics reported
follow the best evaluation schema currently in place for monitoring large-scale inundation
extents [36]. The observed vector flood maps were resolved and compared at the same
spatial resolution as the resultant modelled flood maps—at 30 m. Due to the lack of
observed flood depth information, the modelled inundation depths could not be validated.
The inundation model assumptions and approximations result in no improvement upon
resolving HAND thresholds to higher precision. However, varying n with S and r resulted
in an improved CSI, YI, and CK for the 2021 flood event, which needs further investigation
into other flood events over HNV and other flat catchment areas.

Based on the above inferences, we identify for HNV that AWRA V7 gridded runoff
product resulted in more accurate inundation patterns being captured than upon using
AWRA V6 and that the hydrologically conditioned GeoFabric DEM is best suited for cap-
turing inundation dynamics in comparison to SRTM DEM. Overall, the sensitivity analysis
resulted in the highest CSI, YI, and CK in the case of GeoFabric DEM-based CFRHIM-
derived modelled inundation extents incorporating the BE and varying n as a function of S
and r at a coarser 1 m HAND threshold. The CFRHIM-derived extents significantly limit
HAND-based over-estimation of floodplain inundation by considering individual RCA-
based inundation depths. Relying only on HAND-derived extents that consider sparse
water level thresholds (in this case, one gauge station) for the entire catchment during the
flooding period results in significant overestimation (CK = 0.26). The GeoFabric DEM-
based input results in a more realistic representation of floodplain inundation patterns than
using SRTM DEM. This study focused on improvement of CFRHIM framework incorpo-
rating HAND thresholds for defining inundation extents and testing against observations.
CFRHIM performance was not evaluated against the existing suite of data-intensive model
approaches, which, although useful for intercomparisons, would require an independent
study with in-depth analysis. CFRHIM model assumptions of constant flood velocity result
in no improvement in captured inundation upon resolving HAND thresholds to finer
precision, implying further scope for improvement of flood process characterisation.

5. Summary

We have evaluated the sensitivity of a HAND-based conceptual inundation model,
CFRHIM, to different input datasets, including gridded runoff products (AWRA V6 and
AWRA V7), topography (SRTM and GeoFabric DEM), and different model processes (BE,
n, and precision of HAND-based synthetic rating curves). We observe that AWRA V7
performs comparatively better than AWRA V6 in mapping inundated areas due to higher
gridded runoff values from V7. The modelled floodplain area significantly follows the river
network upon using GeoFabric DEM compared to native SRTM DEM, especially useful
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in catchments dominated by flat floodplains. The step-like topographic nature of HNV
contributes to inherent flood processes with the significant presence of the back-water effect.
Variation of channel roughness coefficient as a function of channel slope and hydraulic
radius resulted in improved modelled extents. No such improvement in model accuracy
was noticed upon adopting finer precision of HAND thresholds. We report the best CK
of 0.74 in the case of GeoFabric DEM and AWRA V7 gridded runoff input considering BE
and modelled n at 1 m HAND threshold intervals. The model performance for the 2021
HNV flood event was satisfactory, especially considering that this study did not include
any ground-observed river geometry and gauged discharge datasets. There is further scope
for incorporating an ensemble of point-based or gridded runoff products into the CFRHIM
modelling framework for specific catchment scale inundation analysis. We emphasise and
reiterate the need of the hour for the generation of an ensemble of inundation maps for
probability analysis considering uncertainty in runoff and flow depth that can identify
priority-based disaster preparedness and management policies.
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