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Abstract: Probabilistic models for long-term estimations and deep learning models for short-term
predictions have been evaluated and analyzed for ocean wave parameters. Estimation of design
and operational wave parameters for long-term return periods is essential for various coastal and
ocean engineering applications. Three probability distributions, namely generalized extreme value
distribution (EV), generalized Pareto distribution (PD), and Weibull distribution (WD), have been
considered in this work. The design wave parameter considered is the maximal wave height for a
specified return period, and the operational wave parameters are the mean maximal wave height and
the highest occurring maximal wave height. For precise location-based estimation, wave heights are
considered from a nested wave model, which has been configured to have a 10 km spatial resolution.
As per availability, buoy-observed data are utilized for validation purposes at the Agatti, Digha,
Gopalpur, and Ratnagiri stations along the Indian coasts. At the stations mentioned above, the long
short-term memory (LSTM)-based deep learning model is applied to provide short-term predictions
with higher accuracy. The probabilistic approach for long-term estimation and the deep learning
model for short-term prediction can be used in combination to forecast wave statistics along the
coasts, reducing hazards.

Keywords: deep learning; probability distributions; design wave parameters; operational wave
parameters; numerical wave models; Indian Ocean

1. Introduction

Design and operational wave statistics, which have wide availability and higher
accuracy, are essential for coastal management and marine operations. Coastal and naval
engineering studies need reliable wave data for the construction and design of coastal
and offshore structures. Spectral ocean wave models like WAVEWATCH III [1–5] have
been extensively used for forecasting ocean wave parameters but have limitations for long-
term predictions. Probabilistic predictive models can be used to estimate long-term wave
parameters, and verification of such models against observed buoy data is a pre-requisite.
In this work, probabilistic models have been discussed to predict wave statistics, such as
the significant wave height parameter for a long period, like 100 years. The estimated wave
heights are validated against available buoy-observed data along the Indian coasts. As
early as 1952, Reference [6] stated that wave heights follow Rayleigh distribution. While [7]
provided the joint distribution of individual wave heights and periods for a narrow band
spectrum, Reference [8] discussed the same for wave records with wide band spectra.
For better accuracy, Reference [9] conducted seasonal analysis of extreme events using a
Poisson process to model the storm occurrence and a generalized Pareto distribution to
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model the extreme values above some given threshold value. Reference [10] combined the
Gumbel, Frechet, and Weibull distributions to formulate the generalized extreme value
distribution. He mentioned that in the presence of hourly or daily data, threshold models
like the generalized Pareto distribution are more useful. Reference [11] generated the
modified Weibull distribution to estimate extreme wave heights and design wave height
parameters for given return periods and showed that the new distribution gives better
results than the Weibull distribution. They conducted experiments with different ranges
of cyclonic wave heights and established the modified Weibull distribution to effectively
model the daily maximum wave heights along the Indian coasts. Reference [12] studied
buoy-measured wave height data along the Portuguese coast and fitted the data with
Rayleigh and Weibull distributions. Reference [13] evaluated non-stationary extreme value
models by critically analyzing different model parameterizations and inference schemes.
Reference [14] proposed a superior model based on the fractal properties of ocean waves for
estimating wave heights for larger return periods. Reference [15] recommended the Monte
Carlo method for estimating the return periods of wave and crest heights. In another study
to analyze the nature of the time series, daily, monthly, and annual maximum wave height
data were estimated for a 50-year return period, using generalized extreme value and
generalized Pareto distributions [16]. The Peak Over Threshold method and generalized
Pareto distribution were used to estimate sea and swell wave heights seasonally for Sri
Lanka [17]. They concluded that although return levels of the sea waves are higher than
the swell waves, both need to be considered for coastal construction and design purposes.
Reference [18] generated return period maps of wave heights for 100 years for the Bay of
Bengal region using the Peak Over Threshold method and generalized Pareto distribution.
Return value maps were generated for the Bay of Bengal region for 10, 15, 25, 50, and
100 years, and finally, the error map between the computed and actual values showed
a maximum error of 2 m. The study involves coarse-resolution data averaged over the
region, and thus, estimation involving extreme events was not performed. There are
several studies [19–24] describing the stochastic ocean parameters using joint probability
distributions, indicating the role of the probabilistic approach in future ocean and marine
research.

In this paper, three different probability distributions have been compared and utilized
to estimate the return value of wave heights and calculate operational wave parameters
like the mean maximal wave height and the highest occurring maximal wave height
using the analyzed expressions. Probabilistic models are discussed for the design and
operational wave statistics using the EV, PD, and WD, and a comparison is conducted to
test the accuracy of the model performances. To train the predictive models, wave data are
generated from a high-resolution ocean nested model configured for the Indian Ocean. To
validate the outputs, observed buoy data at Agatti, Digha, Gopalpur, and Ratnagiri stations
have been utilized. The probabilistic approach estimated wave statistics for return values
of 5, 10, 25, 50, and 100 years with efficiency. Further, for short-term predictions, like a few
days or hours, deep learning models have been applied, which have shown promising
results in various studies [25–29]. Machine learning approaches have been utilized to
improve spatial and temporal ocean and marine studies [30–34].

Reference [35] reviewed how machine learning developed in geoscience over the last
70 years. The author explored the shift from neural networks to machine learning, which
includes both shallow and deep networks. He discussed the applications and developments
of shallow and deep models in various branches of earth science. Reference [36] performed
short-term predictions (3 days) of wave parameters using neural network methods for 1
to 12 multistep ahead-time steps. Reference [37] performed similar studies for short-term
predictions (3 days) of wave parameters for cyclonic events for 1 to 12 multistep ahead-time
steps using deep network architectures with better accuracies. Another study [38] discussed
present and future trends of deep learning models in geophysics. They reviewed the
difficulties faced while applying deep models in fields like space science and atmospheric
science and showed future directions, like unsupervised learning and transfer learning.
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Reference [39] introduced deep learning network models in environmental remote sensing.
They reviewed applications, challenges, and future scopes of deep models in ocean color,
solar radiation, vegetation, hydrology, surface temperature (land and air), and many more
fields. Optimized deep learning models were proposed with better accuracy compared to
physics-based and statistical models for short-term forecasting of ocean wave energy at
different locations [40]. Spatiotemporal sea surface temperature patterns were predicted for
the next 7 days using deep learning models after mode decompositions in the South China
Sea [41]. Although the new data-driven process gives enhanced forecasts of spatiotemporal
fields, during extreme events, the error increases. Location-specific predictions of sea
surface temperatures in the Indian Ocean were compared using shallow and deep models
for 30-year time-series data [42]. The long short-term memory (LSTM)-based deep network
architecture demonstrated a 60% lessor error compared to the shallow feedforward model.
The successful application and performance of LSTM-based deep networks can be seen in
various branches of science and technology [43–47].

From the various studies discussed above, the enhanced performance of deep learning
models for short-term predictions of ocean and other geophysical parameters is obvi-
ous. In this study, the six-hourly significant wave height (SWH) parameter at the Agatti,
Digha, Gopalpur, and Ratnagiri stations along the Indian coasts have been predicted using
LSTM-based deep learning model for 1 to 4 delays corresponding to 06, 12, 18, and 24 h,
respectively. Thus, the probabilistic approach for design and operational wave estimations
for 100 years and the deep learning network model for short predictions (24 h) are assessed
for locations along the Indian Ocean coasts.

2. Materials and Methods

The WAVEWATCH III model is configured globally with a 1 × 1-degree spatial
resolution and nested for the Indian Ocean domain (65◦ E to 90◦ E and 25◦ N to 5◦ N),
having a 0.5 × 0.5-degree spatial resolution and further nested for the Bay of Bengal
(75◦ E to 90◦ E and 25◦ N to 5◦ N) and Arabian Sea (65◦ E to 75◦ E and 25◦ N to 5◦ N) regions
with a 0.1 × 0.1-degree or 10 km spatial resolution. For all the domains, input wind is
obtained from ECMWF at a 0.25-degree spatial resolution and 06 hourly temporal resolution
(ERA-Interim winds). In this work, model integrations from 2001 to 2016 are considered.
For precise location-based estimation, wave heights are considered from the model having
a 10 km spatial resolution. The stations Agatti, Digha, Gopalpur, and Ratnagiri are chosen
for validation purposes, as per the availability of buoy observed data. For significant wave
height (SWH) data, the period 2001–2006 is chosen as the training period. The probability
distributions used to generate the estimation models in this work to obtain maximum wave
return values include the generalized extreme value distribution (EV), the generalized
Pareto distribution (PD), and the Weibull distribution (WD). For the above three probability
distributions, the expressions for the maximal wave height for the specified return period,
mean maximal wave height, and highest occurring maximal wave heights have been
estimated and then compared. In the next section, the estimation of these expressions
is discussed. For the EV model, monthly maximum values are considered. For the PD
model, a value near the mean is chosen as the threshold value. For the WD model, all the
six-hourly data are obtained and fitted after replacing the 0.00 value with 0.01 since WD fit
numbers are greater than zero only.

2.1. Generalized Extreme Value Distribution

The cumulative distribution function of generalized extreme value distribution [10]
for a given random variable X is given as

F(X) =
−
(

1− (X−µ)ξ
σ

) 1
ξ

when ξ 6= 0

=
−e
(
− (X−µ)

σ

)
when ξ = 0.
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In the above expression, µ, σ, and ξ signify the position, scale, and shape parameters
in the given range—∞ < µ < ∞, σ > 0, and—∞ < ξ < ∞.

Let us consider n wave heights given by X1, X2 . . . Xn. The probability of the maximal
wave height not exceeding X is given by (F(X))n. Let us denote the nex (F(X))n = G(X).

Thus, G(X) =

(
−(1− (X−µ)ξ

σ )
1
ξ

)n

when ξ 6= 0

=

(
−e( (X−µ)

σ )

)n
when ξ = 0.

Analysis of the return period
Let X be any arbitrary random variable denoting maximal wave heights, and the

distribution function of X is given by F (X).
Let us consider N maximal wave heights given by X1, X2 . . . XN. The probability of

the largest maximal wave height not exceeding XL is given by

G(XL) =

(
−(1− (XL−µ)ξ

σ )
1
ξ

)N

when ξ 6= 0

and

G(XL) =

(
−e( (XL−µ)

σ )

)N
when ξ = 0.

The maximal wave height that can be anticipated for a prescribed period of return Tp

is described by [1− G(XL)]
−1 = Tp

or G(XL) =
(
1− 1/Tp

)
.

The maximal wave height that can be estimated for a prescribed period of return T is
given by

XL = µ + (σ/ξ)

(
1−

(
−Log

((
1− 1

T

)̂
(1/n)

))ξ
)

.

2.2. Generalized Pareto Distribution

Let X be a given random variable. The cumulative distribution function for the
generalized Pareto distribution is given as

F(X) = 1−
(

1− (X− µ)ξ

σ

) 1
ξ

, when ξ 6= 0

= 1− exp
(
− (X− µ)

σ

)
, when ξ = 0.

In the above expression µ, σ, and ξ represent the location, scale, and shape parameters.
Also,—∞ < µ < ∞, σ > 0, and—∞ < ξ < ∞.

Let X1, X2 . . . Xn be a set of n wave heights. The probability for the maximal wave
height not exceeding X is given by (F(X))n.

Let us denote the next (F(X))n = G(X).

Thus, G(X) =

(
1−

(
1− (X−µ)ξ

σ

) 1
ξ

)n

, when ξ 6= 0

=

(
1− exp

(
− (X− µ)

σ

))n
, when ξ = 0.
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Analysis of the return period
By applying the same procedure for calculating the return period, the maximum wave

height that can be anticipated for a prescribed return period T is given by

XL = µ−

(
1−

(
1−

(
1− 1

T

) 1
n
)−ξ

)
σ

ξ
.

2.3. Weibull Distribution

Let X be a given random variable. The distribution function for the Weibull distribu-
tion [11] is given as

F(X) = 1− exp

(
−
(

X
a

)b
)

In the above expression, ‘a’ is the scale parameter, and ‘b’ is the shape parameter.
Also, X > 0, a > 0, and b > 0.
Let X1, X2 . . . Xn be a set of n wave heights. The probability of the maximal wave

height not exceeding X is given by G(X) = (F(X))n

=

(
1− exp

(
−
(

H
a

)b
))n

.

Analysis of the return period
Applying the same procedure for calculating the return period, the maximal wave

height anticipated for a prescribed return period T is given by

XL = a

(
−Log

(
1−

(
1− 1

T

) 1
n
)) 1

b

.

Mean Maximal Wave height (Xmax)
The following expression gives the probability density function of Weibull distribution

for maximal wave height distribution: f (X) = d G(X)
dX .

The mean maximal wave height is given as

Xmax = ∑n
r=1

(−1)−1+rar−1/b
(
−1 + 1

b

)
!n!

b(n− r)!r!
.

Highest occurring maximal wave height (Xmode)
The highest occurring maximal wave height is the mode of the function G(X). The

parameter is estimated by solving the equation df(X)
dX = 0.

Thus, Xmode = 2(−1+b)(−1+bn)
b2(−1+n2)

.
Four locations are chosen—Digha and Gopalpur along the east coast and Ratnagiri

and Agatti along the west coast—for estimating wave return values using the expressions
discussed. Both coasts are sensitive to cyclonic conditions [48], and the chosen stations
have witnessed several extreme conditions in the past decades. For the probabilistic models
using the distributions, namely EV, PD, and WD, the period 2001–2006 is chosen as the
training period. The experiments are conducted for each of the above four locations, the
distributions are fitted, and the scale, location, and shape parameters are calculated for
the training period. The largest wave height that will be encountered for different return
periods is estimated for 5, 10, 25, 50, and 100 years and compared with the configured
ocean model (WAVEWATCH III) values and buoy-estimated values.

For accurate short-term predictions, the LSTM-based deep learning model is applied
to the six-hourly model-generated and buoy-observed SWH time-series data at the Agatti,
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Digha, Gopalpur, and Ratnagiri stations. To minimize the error, different epochs and
hidden units are tested and then fixed, and the initial learning rate and the drop learn
rate are specified in the network. For predictions related to short-term horizons, different
delays are applied from 1 to 4, corresponding to 06, 12, 18, and 24 h, respectively. To train
the model, 80% of the data is used, and the remaining 20% is the testing set. The model
performances are evaluated in terms of the root mean square error (RMSE). Expressions
related to the input, output, and hidden layers of the LSTM deep model architecture can be
obtained in detail from [49,50].

3. Results and Discussions

The multi-nested WAVEWATCH III model or WW3 model has been globally simulated
from 2001 to 2016, and SWH values for return periods till 100 years are estimated using
different probabilistic models in this work. Data obtained for the period 2001–2006 have
been deliberated as training period data. As per buoy data availability for 2016, locations
Digha and Gopalpur along the east coast are chosen, and Agatti and Ratnagiri along the
west coast are chosen. The model-computed SWH values from 2001 to 2006 at the above
stations depicted precise annual periodicity. Digha, being very near the coast with shallow
depth, recorded low wave heights, whereas Agatti and Ratnagiri, along the west coast,
measured wave heights more than 4 m.

Figures 1–4 provide a comparison between the model-computed and buoy-observed
SWH values for 2016 at Digha, Gopalpur, Agatti, and Ratnagiri, respectively. The SWH
values for Digha, which is very near the coast, are underestimated by the model compared
to buoy observations. For Gopalpur, the model mostly overestimated. Similar trends
are observed for Ratnagiri. For Agatti, which is again very near the coast, the model
underestimates the SWH values. The stations being very near the coast, the model with
25 km wind as input could not generate accurate outputs. The mean square error calculated
between the model-computed and buoy-observed values at Digha, Gopalpur, Agatti, and
Ratnagiri for 2016 is 0.24, 0.33, 0.62, and 0.83 m, respectively.
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The mean square error suggests that the model-computed and buoy-observed SWH
values are not in good agreement for 2016 along the east coast (Digha and Gopalpur) and
along the west coast (Agatti and Ratnagiri), and thus, the probabilistic predictive models
come to importance. Six years of model wave data at the given four locations are fitted with
different probability distributions. Considering the monthly maximums, EV overestimated
highly for negative shape parameters, while for the positive ones, there are constant values.
Estimations given by the PD model are the closest, except for Digha, which had a sudden
peak that is modeled better by WD.

After training the probabilistic models using model data from 2001–2006, maximal
wave heights are predicted for different return periods. The distributions are fitted, and the
scale, location, and shape parameters are calculated for the training period. Table 1 gives
the log-likelihood values for Digha. The fitting is considered good for a larger likelihood

value. The likelihood function is given by L(θ), where L(θ) =
n
∏
i=1

fi(xi|θ) . The sample

observations x1, x2, . . . xn have a probability function f (x, θ), where θ is the parameter.

Table 1. Likelihood values for Digha (training set data 2001–2006).

Distribution EV PD WD

Log Likelihood 52.8762 77.5813 10,252.5

N 72 48 8760

Table 2 provides the shape, scale, and location parameter values. Table 3 gives the
buoy-observed, WW3-computed, and probabilistic model-predicted maximal wave heights
for different periods of return. It is observed from Table 3 that the performance of WD is the
best for sudden peak values. Otherwise, PD estimates well, while EV gives excessively high
values. Thus, the entire six-hourly data set used for the WD is more effective in comparison
to the monthly maximums used in EV and above the threshold values used in PD. Table 4
computes the mean maximal wave height and the highest occurring maximal wave height
using the WD model. The values are in agreement with the model-computed ones.
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Table 2. Parameters calculated for Digha (training set data 2001–2006).

Parameter Distribution
(EV) Parameter Distribution

(PD) Parameter Distribution
(WD)

Scale (σ) 0.127231 Scale (σ) 0.0971834 Scale (a) 0.116467

Location (µ) 0.273351 Threshold (θ) 0.3
Shape (b) 1.04565

Shape (ξ) −0.404984 Shape (ξ) −0.285123

Table 3. Maximal wave heights for Digha.

Return Period
in Years

Return Period
in Months

Buoy-Observed
July SWH in

Meters

WW3 Model-
Computed July

SWH in
Meters

EV-Predicted
SWH in
Meters

PD-Predicted
SWH in
Meters

WD-Predicted
SWH in
Meters

5 (2011) 54
(July 2011) 0.43 8.85725 0.604507 1.83484

10 (2016) 114
(July 2016) 1.9352 0.36 12.0258 0.611521 1.90821

25 (2031) 294
(July 2031) 17.6883 0.619635 2.00101

50 (2056) 594
(July 2056) 23.5388 0.623044 2.06977

100 (2106) 1194
(July 2106) 31.2494 0.626061 2.13792

Table 4. Mean maximal wave height and highest occurring maximal wave height for Digha.

2001–2006 WW3 Model-Computed
in Meters

WD-Predicted in
Meters

Mean maximal wave height 0.114314 0.169868

Highest occurring maximal wave height 0.02 0.0304615

Tables 5–8 give similar estimations for Gopalpur along the east coast. Further estima-
tions are given in Tables 9–12 for Agatti and Tables 13–16 for Ratnagiri. As far as fitting is
concerned, PD fitted best for Gopalpur, Agatti, and Ratnagiri, although for Digha, WD gave
better predictions. For Gopalpur, PD and WD performed similarly in predicting maximal
wave heights, while the PD model performed better for Agatti and Ratnagiri stations.
For the operational wave parameters, WD performed with reasonable accuracy. Using
WW3 computed model data and probabilistic models, estimations of return wave height
values for 100 years for locations along the Indian coasts are performed with reasonable
accuracy. The temporal scale varies widely for the buoy-observed data and the probabilistic
model-predicted ones, and thus, a one-to-one comparison failed in this case.

Table 5. Likelihood values for Gopalpur (training set data 2001–2006).

Distribution EV PD WD

Log Likelihood −65.2102 −34.7233 −4074.67

N 72 51 8760
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Table 6. Parameters calculated for Gopalpur (training set data 2001–2006).

Parameter Distribution
(EV) Parameter Distribution

(PD) Parameter Distribution
(WD)

Scale (σ) 0.533797 Scale (σ) 1.12742 Scale (a) 1.00646

Location (µ) 1.24476 Threshold (θ) 1
Shape (b) 2.33187

Shape (ξ) −0.0893259 Shape (ξ) −0.439085

Table 7. Maximal wave heights for Gopalpur.

Return Period
in Years

Return Period
in Months

Buoy-Observed
July SWH in

Meters

WW3 Model-
Computed July

SWH in
Meters

EV-Predicted
SWH in
Meters

PD-Predicted
SWH in
Meters

WD-Predicted
SWH in
Meters

5 (2011) 54
(July 2011) 1.97 7.76266 3.48807 3.46521

10 (2016) 114
(July 2016) 0.940827 2.10 8.6309 3.51045 3.52667

25 (2031) 294
(July 2031) 9.8144 3.53292 3.60257

50 (2056) 594
(July 2056) 10.7587 3.54113 3.65756

100 (2106) 1194
(July 2106) 11.7561 3.54773 3.71108

Table 8. Mean maximal wave height and highest occurring maximal wave height for Gopalpur.

2001–2006 WW3 Model-Computed
in Meters

WD-Predicted in
Meters

Mean maximal wave height 0.888559 1.12111

Highest occurring maximal wave height 0.51 0.598255

Table 9. Likelihood values for Agatti (training set data 2001–2006).

Distribution EV PD WD

Log Likelihood −89.6849 −76.9481 −8796.47

N 72 70 8760

Table 10. Parameters calculated for Agatti (training set data 2001–2006).

Parameter Distribution
(EV) Parameter Distribution

(PD) Parameter Distribution
(WD)

Scale (σ) 0.535057 Scale (σ) 1.67673 Scale (a) 1.56261

Location (µ) 1.46356 Threshold (θ) 1
Shape (b) 2.0096

Shape (ξ) 0.536103 Shape (ξ) −0.417586
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Table 11. Maximal wave heights for Agatti.

Return Period
in Years

Return Period
in Months

Buoy-Observed
July SWH in

Meters

WW3 Model-
Computed July

SWH in
Meters

EV-Predicted
SWH in
Meters

PD-Predicted
SWH in
Meters

WD-Predicted
SWH in
Meters

5 (2011) 54
(July 2011) 3.47 2.44967 4.88603 6.55977

10 (2016) 114
(July 2016) 4.0352 3.63 2.45363 4.92087 6.69497

25 (2031) 294
(July 2031) 2.45682 4.95654 6.86246

50 (2056) 594
(July 2056) 2.45832 4.96983 6.98415

100 (2106) 1194
(July 2106) 2.45935 4.98066 7.10287

Table 12. Mean maximal wave height and highest occurring maximal wave height for Agatti.

2001–2006 WW3 Model-Computed
in Meters

WD-Predicted in
Meters

Mean maximal wave height 1.374715 1.78866

Highest occurring maximal wave height 0.87 0.503189

Table 13. Likelihood values for Ratnagiri (training set data 2001–2006).

Distribution EV PD WD

Log Likelihood −78.7948 −79.5613 −8015.56

N 72 72 8760

Table 14. Parameters calculated for Ratnagiri (training set data 2001–2006).

Parameter Distribution
(EV) Parameter Distribution

(PD) Parameter Distribution
(WD)

Scale (σ) 0.442394 Scale (σ) 1.52242 Scale (a) 1.1676

Location (µ) 1.0413 Threshold (θ) 0.5
Shape (b) 1.51565

Shape (ξ) 0.600161 Shape (ξ) −0.315281

For short-term predictions, the time series of SWH data for 2016 is considered at
the four aforementioned stations. In separate experiments, both the datasets from model
simulations and buoy observations are trained and tested. The LSTM-based deep learning
model is trained with an 80% dataset for lead times from 1 to 4. Tables 17 and 18 pro-
vide the RMSE values for the training and testing datasets from model simulations, and
Tables 19 and 20 provide the same from buoy observations. As the forecast horizon in-
creases, the error also increases. For Digha, there is a spike in the buoy-observed SWH
values, and thus, the errors are higher for the forecasts using the buoy dataset compared to
the model dataset. Considering all the deep model runs, the maximum error is approxi-
mately 0.2 m for a 24 h forecast.



Geosciences 2023, 13, 380 11 of 14

Table 15. Maximal wave heights for Ratnagiri.

Return Period
in Years

Return Period
in Months

Buoy-Observed
July SWH in

Meters

WW3 Model-
Computed July

SWH in
Meters

EV-Predicted
SWH in
Meters

PD-Predicted
SWH in
Meters

WD-Predicted
SWH in
Meters

5 (2011) 54
(July 2011) 5.43 1.77323 4.97123 7.82312

10 (2016) 114
(July 2016) 0.68 3.6 1.77512 5.04671 8.03762

25 (2031) 294
(July 2031) 1.77656 5.11972 8.30531

50 (2056) 594
(July 2056) 1.7772 5.16134 8.50115

100 (2106) 1194
(July 2106) 1.77762 5.16134 8.69328

Table 16. Mean maximal wave height and highest occurring maximal wave height for Ratnagiri.

2001–2006 WW3 Model-Computed
in Meters

WD-Predicted in
Meters

Mean maximal wave height 1.039466 1.43913

Highest occurring maximal wave height 0.49 0.303976

Table 17. RMSE values for LSTM training set (model) with different lead times.

RMSE Values

Delays Hidden Units
and Epochs Digha Gopalpur Agatti Ratnagiri

1 (06 h) 250, 500 0.049335 0.070723 0.055905 0.071619

2 (12 h) 250, 500 0.06092 0.11549 0.096463 0.11075

3 (18 h) 250, 500 0.063134 0.14338 0.12751 0.13041

4 (24 h) 250, 500 0.064954 0.1649 0.15446 0.14584

Table 18. RMSE values for LSTM testing set (model) with different lead times.

RMSE Values

Delays Hidden Units
and Epochs Digha Gopalpur Agatti Ratnagiri

1 (06 h) 250, 500 0.024988 0.068257 0.052124 0.039547

2 (12 h) 250, 500 0.03718 0.12198 0.0991 0.068863

3 (18 h) 250, 500 0.04092 0.1631 0.14182 0.092527

4 (24 h) 250, 500 0.046922 0.19624 0.18077 0.11493
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Table 19. RMSE values for LSTM training set (buoy) with different lead times.

RMSE Values

Delays Hidden Units
and Epochs Digha Gopalpur Agatti Ratnagiri

1 (06 h) 250, 500 0.075417 0.040927 0.14921 0.031102

2 (12 h) 250, 500 0.085182 0.047803 0.15635 0.038444

3 (18 h) 250, 500 0.095974 0.058306 0.16299 0.046756

4 (24 h) 250, 500 0.10611 0.06632 0.16676 0.053908

Table 20. RMSE values for LSTM testing set (buoy) with different lead times.

RMSE Values

Delays Hidden Units
and Epochs Digha Gopalpur Agatti Ratnagiri

1 (06 h) 250, 500 0.038891 0.043244 0.090862 0.037566

2 (12 h) 250, 500 0.051811 0.053535 0.088777 0.04375

3 (18 h) 250, 500 0.063706 0.065724 0.095211 0.052782

4 (24 h) 250, 500 0.07577 0.079693 0.094568 0.061184

4. Conclusions

This study combined the assessment of the design and operational wave parameters
for both long-term (100 years) and short-term (24 h) durations along the Indian coasts.
The evaluation conducted and outcomes attained will help in the long- and short-term
wave statistics prediction for locations, which may aid as a fast escort to recognizing the
most vulnerable seaside areas. The stations, Digha and Gopalpur along the east coast and
Agatti and Ratnagiri along the west coast, were chosen as per buoy data availability and
witnessed several extreme events in the past decades. For most of the cases, PD fitted
better, followed by WD for particular extreme events. It is observed that Digha and WD
estimated the design and operational wave parameters most effectively in the case of a
sudden peak value. For the other stations, PD performed better, followed by WD. Each
distribution had its own benefits and inadequacies. The probabilistic models, along with
WW3 model data used for training purposes, performed satisfactorily for long-term wave
height return value estimation. Considering short-term predictions using less data and
fewer computations, the LSTM-based deep model predicted SWH values for different lead
times with high accuracy for all four stations. In the future, similar vulnerable locations
along the coast may be subjected to such probabilistic and deep models to reduce hazards.
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