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Abstract: Nearly 20 years ago, the observation that major earthquakes are generally preceded by an
increase in the seismicity rate on a timescale from months to decades was embedded in the “Every
Earthquake a Precursor According to Scale” (EEPAS) model. EEPAS has since been successfully
applied to regional real-world and synthetic earthquake catalogues to forecast future earthquake
occurrence rates with time horizons up to a few decades. When combined with aftershock models, its
forecasting performance is improved for short time horizons. As a result, EEPAS has been included
as the medium-term component in public earthquake forecasts in New Zealand. EEPAS has been
modified to advance its forecasting performance despite data limitations. One modification is to
compensate for missing precursory earthquakes. Precursory earthquakes can be missing because of
the time-lag between the end of a catalogue and the time at which a forecast applies or the limited
lead time from the start of the catalogue to a target earthquake. An observed space-time trade-off
in precursory seismicity, which affects the EEPAS scaling parameters for area and time, also can be
used to improve forecasting performance. Systematic analysis of EEPAS performance on synthetic
catalogues suggests that regional variations in EEPAS parameters can be explained by regional
variations in the long-term earthquake rate. Integration of all these developments is needed to meet
the challenge of producing a global EEPAS model.

Keywords: statistical seismology; earthquake precursors; precursory seismicity; earthquake forecasting
model; earthquake predictability; time-varying earthquake hazard; earthquake occurrence rate
density; precursory scale increase phenomenon

1. Introduction

Understanding the earthquake generation process and development of earthquake
forecasting models are among the main goals of statistical seismology [1,2]. Achieving
these goals requires contributions from both physical and statistical modelling. In statistical
seismology major laws, including the Omori-Utsu law for aftershock rate decay [3,4] and
the Gutenberg-Richter magnitude frequency law [5], were originally derived empirically as
statistical relations. However, it took a long time for them to be interpreted in terms of the
physics of the earthquake generation process [6–12]. The “Every Earthquake a Precursor
According to Scale” (EEPAS) model is also based on empirical statistical relations. While
we have learned a lot about these relations, we still have much to learn about their physical
origin. The same holds for other attempts at predicting earthquakes like that of natural
time analysis of seismicity [13].

EEPAS is a space-time point process model based on an increase of minor earthquake
occurrences preceding major earthquakes, the so-called “precursory scale increase” (Ψ-)
phenomenon. It employs associated predictive scaling relations of the Ψ-phenomenon
to forecast future earthquake rates [14,15]. Since its introduction in 2004, EEPAS has
been fitted and tested on the earthquake catalogues of New Zealand, California, Japan,
and Greece [16–22]. It was also tested by the Collaboratory for the Study of Earthquake
Predictability (CSEP), an international collaboration to test earthquake forecasting models
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prospectively and transparently [23]. A CSEP-compatible version of EEPAS, with three-
month updating, was submitted to several regional CSEP testing centres [20,21,24–26]. The
EEPAS model generally performs better than time-invariant models of seismicity [25,26]. It
is designed to forecast the largest earthquakes in a region in the medium term—a period
ranging from months to decades, depending on magnitude. EEPAS is not a complete model
of seismicity, because it does not consider short-term clustering. However, when combined
with short-term and time-invariant forecasting models, it has proven to provide a practical
method for forecasting earthquakes over a wide range of timescales [27–29].

EEPAS has progressively evolved both to compensate for data limitations and enhance
earthquake forecasting in combination with other models. The main motivation behind all
types of EEPAS revisions is to enhance the forecasting performance, i.e., the information
gain. Furthermore, in recent years our understanding about additional factors affecting
the information gain, other than data limitations, has developed. Consequently, we have
incorporated these aspects into the EEPAS model.

In Section 2, we discuss the Ψ-phenomenon and its associated predictive scaling
relations. In Section 3, we review the formulation of the EEPAS model and how it is
normally fitted and tested. In Section 4, we describe combinations of EEPAS with other
models and extensions to accommodate aftershocks. In Section 5, we discuss how to
compensate EEPAS forecasts for missing precursory earthquakes. In Section 6, we explore
two characteristics of the Ψ-phenomenon and their impact on the EEPAS model. These are
(i) dependence of precursor time on the earthquake rate and (ii) a space-time trade-off of
precursory seismicity. These two characteristics were originally thought to be related but
are now recognized as independent. In Section 8, we move from what we know to what
we do not know and outline existing challenges in forecasting with the EEPAS model.

2. Empirical Foundations—The Ψ-Phenomenon

The Ψ-phenomenon is an increase in the rate and magnitude of minor earthquakes
observed to occur before most major earthquakes in well-catalogued regions [14,15]. The
precursor time—the time interval between the onset of the increase and major earthquake—
can range from months to decades, depending on the magnitude of the major earthquake.
In [15], the Ψ-phenomenon was identified for 47 major earthquakes in California and
northern Mexico, Japan, Greece and northwest Turkey, and New Zealand. The onset of
precursory seismicity was identified by a minimum of a cumulative magnitude anomaly
(cumag) plot, in which all earthquakes in a region surrounding the major earthquake and its
aftershocks over an extended time period preceding the occurrence of the major earthquake
were analysed.

An identification of the Ψ-phenomenon for a recent earthquake, the M6.7 Aegean
Sea event of 30 October 2020, is shown in Figure 1. In this identification, the precursors
and aftershocks occurred within the rectangular area demarcated in Figure 1a. This is the
precursory area, AP, of 3203 km2. The onset of precursory seismicity in 1992, following
more than two decades in which no earthquakes with M ≥ 4.5 occurred, gives a precursor
time, TP, of 10,220 days (Figure 1c). The average of the three largest precursory magnitudes
is the precursor magnitude, MP, of 5.6 (Figure 1b).
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Figure 1. An identification of the Ψ-phenomenon for the M6.7 Aegean Sea earthquake of 30 October 
2020. (a) Epicenters of the precursory seismicity, mainshocks, and aftershocks, shown within the 
precursory area 𝐴  (rectangle). (b) Magnitude versus time of prior and precursory earthquakes 
with the onset of Ψ in 1992. There were no earthquakes prior to the onset. 𝑀  is the main shock 
magnitude; 𝑀  is the precursor magnitude—the average magnitude of the three largest precursory 
earthquakes. (c) Changes in cumag with time. Dashed lines show the precursory increase in 
seismicity rate. The protractor translates the cumag slope into seismicity rate in magnitude units per 
year (M.U. yr–1). 𝑇  is precursor time. Data is from the ISC catalogue of earthquakes with 
magnitude M ≥ 4.5, starting September 1972. 𝑀  = 5.6; 𝑀  = 6.7; 𝑇  = 10,220 days; 𝐴  = 3203 
km2. 

In [15], predictive scaling relations were identified from the 47 examples of Ψ. These 
are of the form: 𝑀 = 𝑎 + 𝑏 𝑀 ; log 𝑇 = 𝑎 + 𝑏 𝑀 ; and log 𝐴 = 𝑎 + 𝑏 𝑀 . (1)

The first two of these relations had been known since 1977 for the precursory swarm 
phenomenon [30–34], the forerunner and a special case of the Ψ-phenomenon. Precursory 
swarms are an example of “precursors of the second kind”, as designated by Rikitake [35–
37]. It shared this classification with numerous geophysical precursors for which the log-
arithm of precursor time was linearly related to the mainshock magnitude. The Rikitake 
relation was not predictive, since neither the precursor time nor the mainshock magnitude 
were known before the mainshock occurred. A useful feature of precursory swarms was 
that each swarm had an associated 𝑀  from which 𝑀  and 𝑇𝑃 of a future earthquake, 
or earthquakes, could be predicted (Equation (1)). It was through the learnings from ex-
tensive testing of the precursory swarm hypothesis in forecasting specific major earth-
quakes [38–46] that the more general Ψ-phenomenon was eventually recognized 

The Ψ-phenomenon, unlike the precursory swarm, could not be readily identified 
before the occurrence of a major earthquake. Consequently, the EEPAS model was created 
to produce non-specific earthquake forecasts using the Ψ predictive scaling relations. 
EEPAS provides a generic statistical framework that regards every earthquake as a pre-
cursor of subsequent larger earthquakes. The result is a non-stationary model, which bears 
some similarities to the Epidemic-type-Aftershock (ETAS) model [47,48]. However, unlike 
ETAS, there is no suggestion that one earthquake triggers another. Instead, the magnitude 

Figure 1. An identification of the Ψ-phenomenon for the M6.7 Aegean Sea earthquake of 30 October
2020. (a) Epicenters of the precursory seismicity, mainshocks, and aftershocks, shown within the
precursory area AP (rectangle). (b) Magnitude versus time of prior and precursory earthquakes with
the onset of Ψ in 1992. There were no earthquakes prior to the onset. Mm is the main shock magnitude;
MP is the precursor magnitude—the average magnitude of the three largest precursory earthquakes.
(c) Changes in cumag with time. Dashed lines show the precursory increase in seismicity rate. The
protractor translates the cumag slope into seismicity rate in magnitude units per year (M.U. yr–1).
TP is precursor time. Data is from the ISC catalogue of earthquakes with magnitude M ≥ 4.5, starting
September 1972. MP = 5.6; Mm = 6.7; TP = 10,220 days; AP = 3203 km2.

In [15], predictive scaling relations were identified from the 47 examples of Ψ. These
are of the form:

Mm = aM + bM MP; log TP = aT + bT MP; and log AP = aA + bA MP. (1)

The first two of these relations had been known since 1977 for the precursory swarm
phenomenon [30–34], the forerunner and a special case of the Ψ-phenomenon. Precursory
swarms are an example of “precursors of the second kind”, as designated by Rikitake [35–37].
It shared this classification with numerous geophysical precursors for which the logarithm
of precursor time was linearly related to the mainshock magnitude. The Rikitake relation
was not predictive, since neither the precursor time nor the mainshock magnitude were
known before the mainshock occurred. A useful feature of precursory swarms was that each
swarm had an associated MP from which Mm and TP of a future earthquake, or earthquakes,
could be predicted (Equation (1)). It was through the learnings from extensive testing of
the precursory swarm hypothesis in forecasting specific major earthquakes [38–46] that the
more general Ψ-phenomenon was eventually recognized

The Ψ-phenomenon, unlike the precursory swarm, could not be readily identified
before the occurrence of a major earthquake. Consequently, the EEPAS model was created to
produce non-specific earthquake forecasts using the Ψ predictive scaling relations. EEPAS
provides a generic statistical framework that regards every earthquake as a precursor of
subsequent larger earthquakes. The result is a non-stationary model, which bears some
similarities to the Epidemic-type-Aftershock (ETAS) model [47,48]. However, unlike ETAS,
there is no suggestion that one earthquake triggers another. Instead, the magnitude of each
earthquake is considered as a value of MP, i.e., a seismogenic process is assumed to be
taking place on the associated scales of time, magnitude, and location indicated by (1).
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The Ψ predictive scaling relations derived in [15] are plotted in Figure 2, along with
data from subsequently published identifications of Ψ for major earthquakes. As well as
the original 47 examples, the major earthquakes plotted include 24 further examples from
Italy, New Zealand, Greece, Australia, and California [49–53], as well as the Aegean Sea
2020 earthquake from Figure 1. The term “major” here is used only in a relative sense, to
compare an earthquake’s size with that of neighbouring events. It is obvious that the low-
magnitude Australian examples of intra-plate earthquakes do not conform well to the fitted
relations. This is a spur to new understandings, discussed below in Sections 6.2 and 6.3.
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Figure 2. Ψ- Predictive-scaling relations between (a) mainshock and precursor magnitudes Mm and
MP; (b) precursor time TP and MP; and (c) precursory area AP and MP, as fitted to 47 examples of
Ψ [15]. The data plotted include these original 47 examples from California and northern Mexico,
Japan, Greece and northwest Turkey and New Zealand; as well as 24 further examples, identified
in subsequent references [49–53], from Italy, New Zealand, Greece, Australia, and California. The
Aegean Sea 2020 earthquake (Figure 1) is plotted with large triangles.

3. Mathematical Description of the EEPAS Model
3.1. Initial Defining Equations

In the EEPAS model [16–18], each earthquake, with time, magnitude and location
coordinates (ti,mi,xi,yi), is assumed to contribute a transient increment λi(t,m,x,y) to the
future earthquake occurrence rate density in its vicinity at times t > ti, magnitudes m, and
locations (x,y). The scale of its contribution is determined by its magnitude mi, taken as an
instance of MP. Thus,

λi(t, m, x, y) = wi f (t|ti, mi)g(m|mi)h(x, y|xi, yi, mi). (2)
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Here wi is a weighting factor that can be used to emphasize earthquakes that are most
likely to be precursors; f, g and h are conditional probability densities for time, magnitude
and location, given mi. The magnitude density is normal and of the form

g(m|mi) =
1

σM
√

2π
exp

[
−1

2

(
m− aM − bMmi

σM

)2
]

(3)

where aM, bM, and σM are parameters, with aM and bM based on the corresponding
regression parameters in (1) and σM on the residual standard deviation of the regression in
Figure 2a. The time density is lognormal and of the form

f (t|ti, mi) =
H(t− ti)

(t− ti)σT ln(10)
√

2π
exp

[
−1

2

(
log(t− ti)− aT − bTmi

σT

)2
]

(4)

where H(s) = 1 if s > 0 and 0 otherwise; and aT, bT, and σT are parameters, with aT and bT based
on the corresponding regression parameters in (1) and σT on the residual standard deviation of
the regression in Figure 2b. The location density is bivariate normal and of the form

h(x, y|xi, yi, mi) =
1

2πσ2
A10bAmi

exp

[
− (x− xi)

2 + (y− yi)
2

2σ2
A10bAmi

]
(5)

where A and bA are parameters, with bA based on the corresponding regression parameter
in (1) and log σ2

A related to the regression parameter aA.
The probability densities in Equations (3)–(5) for precursory earthquakes with magni-

tudes 4.5 and 5.5 are illustrated in Figure 3.
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Figure 3. Probability densities of a precursory earthquake contribution to the earthquake occurrence
rate density. Joint time and magnitude density (Equations (3) and (4)) for precursor with (a) mi = 4.5,
(c) mi = 5.5; Spatial density (Equation (5)) for precursor with (b) mi = 4.5, (d) mi = 5.5. Densities are
scaled relative to their maximum values. The parameters are from the EEPAS_0F model for New
Zealand, discussed in Section 5.1 below.
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The EEPAS model can be fitted to a catalogue with ti greater than a starting time t0 and
mi greater than a minimum magnitude threshold m0. The rate density λEEPAS (t, m, x, y) of
earthquake occurrence within a chosen depth range is defined for time t, magnitude m > mc,
and location (x,y) within a region of surveillance R. It is obtained by summing over all past
occurrences, including earthquakes outside R, that could affect the rate density within R:

λEEPAS (t, m, x, y) = µλPPE(t, m, x, y) + ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y) (6)

where µ is a mixing parameter representing the proportion of the forecast contributed
by the background model component; λPPE is the rate density of a background Poisson
model with a location distribution based on proximity to the epicenters of past earthquakes
(PPE) [16,54]; t0 is the starting time of the earthquake catalogue, and η is a normalising
function. For a given magnitude v, η is defined by

η(v) =
bM(1− µ)

E(w)
exp

[
−β

(
aM + (bM − 1)v +

σ2
Mβ

2

)]
(7)

where E(w) is the mean weight of earthquakes in the catalogue; β = bGR ln 10 with bGR
being the Gutenberg-Richter b-value [5]. Normalizing over the whole fitting period and
region of surveillance ensures that the number of earthquakes expected by the model
approximately matches the actual number of target earthquakes. It also forces the fore-
casted magnitudes to approximately follow the Gutenberg-Richter relation, although the
magnitude distribution can vary locally from this relation. The background Poisson model
also conforms to the Gutenberg-Richter relation, both locally and in the whole region R.

3.2. Fitting and Testing Considerations

The parameters of the EEPAS model are fitted to a chosen catalogue using the maxi-
mum likelihood method. For a model X, the log likelihood of the target earthquakes in the
region of surveillance R is given [55,56] by:

ln LX =
N

∑
j=1

ln λX
(
tij, mij, xij, yij

)
+

x

R

mmax∫
mc

tb∫
ta

λX(t, m, x, y)dt dm dx dy (8)

where the target earthquakes are at
(
tij, mij, xij, yij

)
, j = 1, · · · , N, the fitting period is

(ta,tb), and the target magnitude range is (mc,mmax).
EEPAS is always fitted and tested with a delay (see Table 1), which in past applications

has typically been set to 50 days. This means that no earthquake is allowed to contribute to
the model until 50 days after its occurrence. This delay ensures that the model will focus
on timescales consistent with precursor times in examples of the Ψ-phenomenon. If no
delay is applied, the parameter estimates are likely to be strongly affected by short-term
clustering. Short-term clustering, such as that associated with foreshocks and aftershocks,
is a much more obvious feature in earthquake catalogues than the medium-term precursory
seismicity revealed by Ψ.
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Table 1. Terminology used for Medium-Term Forecasting by EEPAS.

Term Description Reference

Fitting Period Subset of a catalogue used for carrying out parameter fitting. [16]

Testing Period Subset of a catalogue, separate from the fitting period, used for independent testing
without further parameter adjustment. [16]

Warm-up eriod
Subset of a catalogue providing information on precursory earthquakes and earthquake
rates prior to the fitting period. This provides initial required data for the background

component, as well as the time-varying component of EEPAS.
[51]

Target Earthquakes
Earthquakes with hypocenters within the region of surveillance and time origins in the

fitting or testing periods or the future and magnitudes greater than
a chosen threshold, e.g., M > 4.95.

[19]

Precursory Earthquakes
Earthquakes with hypocenters within a search region encompassing the region of

surveillance with time origins covered by the catalogue and magnitudes greater than
the input magnitude threshold, e.g., M > 2.95.

[16]

Lead Time Length of time from start of catalogue to time of occurrence of a target earthquake. [52]

Delay Time interval between when an earthquake occurs and the earliest time at which it is
allowed to contribute to a forecast (e.g., 50 days). [16]

Time-lag
In fitting and testing: sometimes used as a synonym for “Delay”. In forecasting: the

time interval between the end of the catalogue and the time for which
a forecast is made (e.g., 5 years).

[57]

Forecasting Time Horizon Depending on context, this can mean a future time or the most distant future time for
which a forecast is made. It can also refer to the time-lag associated with such a forecast. [58]

The original method for fitting and testing the EEPAS model is illustrated in Figure 4.
The available catalogue is subdivided into three periods—a warm-up period, a fitting
period, and a testing period (see Table 1 for the definitions). The purpose of the warm-
up period is to provide information for fitting the model. This includes information on
precursory earthquakes with magnitude M > m0 for fitting the time-varying component
and on earthquakes with magnitude M > mc for fitting the background component.
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The choice of the warm-up period is crucial for the successful fitting of the model.
Ideally, the warm-up period would be long enough to include all precursors to target
earthquakes in the fitting period. This ideal cannot be realised in practice. Compromises
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must be made in subdividing the catalogue, including the choice of m0 and mc as well as
the warm-up, fitting, and testing periods. Some minimum guidelines can be stated. First,
the difference in mc − m0 should not be much less than 2.0, because the first Ψ scaling
relation shows that the largest precursors are typically one unit of magnitude smaller than
Mm and many precursors are much smaller. In some applications, m –m0 is as low as 1.8,
e.g., [16]. Secondly, the catalogue of the warm-up period should be complete for M > mc,
so as not to bias the fitting of the background component. Thirdly, the catalogue should
be complete for M > m0 throughout the fitting period, and sufficiently complete in the
warm-up period so that most precursors with M > m0 to target earthquakes in the fitting
period are contained in the catalogue. Here, judgements must be made. Larger target
magnitudes have longer precursor times, as the Ψ scaling relations show. However, how
well this guideline is met depends on the actual parameter values, which are eventually
determined by fitting the model. These fitted parameters, in turn, are inevitably affected by
the choices made in subdividing the catalogue.

4. Combinations and Extensions to Accommodate Aftershocks

EEPAS has been combined with a variety of independent earthquake forecasting
models to improve forecasting performance in terms of the information gain statistic. The
information gain per earthquake, IG, for testing pre-fitted models on an independent data
set is given by

IG(X, Y) = (ln LX − ln LY)/N (9)

where ln LX and ln LY are the log-likelihoods of models X and Y, respectively, and N is the
number of target earthquakes [59]. For a fitting period, the decrease in the corrected Akaike
Information Criterion (AICc) [60,61] rather than the increase in log likelihood can be used
to define IG. Model Y is typically a baseline model, e.g., the PPE background model.

Since EEPAS itself ignores aftershocks, it is to be expected that mixing it with aftershock
models may improve forecasting performance. Another possibility is to extend the EEPAS
model to allow for aftershocks of the major earthquakes it already forecasts. Table 2
summarizes the EEPAS major versions and corresponding references, where the reader can
find details on specific applications for several regional earthquake catalogues.

Table 2. EEPAS versions at a glance.

Version Mathematical Description Reference

Standard EEPAS

λEEPAS (t, m, x, y) = µλPPE(t, m, x, y) + ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y)

λi(t, m, x, y) = wi f (t|ti, mi)g(m|mi)h(x, y|xi, yi, mi)
λPPE(t, m, x, y): Background rate density

[16–18]

STEP-EEPAS mixture λSE (t, m, x, y) = (1− r) λSTEP(t, m, x, y) + rλEEPAS(t, m, x, y)
r : 0 ≤ r ≤ 1. [62]

EEPAS with aftershocks λEAS (t, m, x, y) = λEEPAS(t, m, x, y) + λAS(t, m, x, y) [63]

Earthquake Rate Dependent
EEPAS (ERDEEP)

aT(j) = aT − cρ log ρ(j);

σA(j) = σAρ(j)
cρ
2

where ρ(j) is rate in cell j.
[64]

Janus Model:
EEPAS-ETAS mixture

λJANUS(t, m, x, y) = (1− q) λEEPAS(t, m, x, y) + qλETAS(t, m, x, y)
q : 0 ≤ q ≤1. [58]

EEPAS Compensated for
Time-Lag (LEEPAS)

λLEEPAS(t, m, x, y) = ωλA(t, m, x, y) + (1−ω)λB(t, m, x, y).
ω : 0 ≤ ω ≤ 1. [57]

Fixed Lead Time EEPAS
(FLEEPAS) λFLEEPAS (t, m, x, y) = µλPPE(t, m, x, y) + ∑ti≥t−L,mi≥m0

η(mi)λi(t, m, x, y) [52,65]

Fixed Lead Time
Compensated EEPAS

(FLCEEPAS)

λFLCEEPAS(t, m, x, y) = ϕλA(t, m, x, y) + (1− ϕ)λB(t, m, x, y).
ϕ: 0 ≤ ϕ ≤ 1. [52,65]
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4.1. STEP-EEPAS Mixture

The Short-Term Earthquake Probabilities (STEP) [66] model is an aftershock model
based on the Omori–Utsu aftershock-decay relation [4]. The STEP model has a background
component, λSTAT, and a time-dependent clustering component, λCLUST. The expected
number of earthquakes in the jth time, magnitude, location bin (tj, mj, xj, yj) is given by

λSTEP
(
tj, mj, xj, yj

)
= max

[
λCLUST

(
tj, mj, xj, yj

)
, λSTAT

(
tj, mj, xj, yj

)]
. (10)

STEP and EEPAS were linearly combined to enhance short-term earthquake forecast-
ing in California [62]. Using the Advanced National Seismic System (ANSS) catalogue
of California over the period 1984–2004, the optimal mixture model for forecasting earth-
quakes with M ≥5:0 was found to be a convex linear combination consisting of 0.42 of
EEPAS and 0.58 of STEP. This mixture gave an average probability gain of more than
2 (i.e., information gain per earthquake, ln(probability gain), of more than 0.7) compared
to each of the individual models when forecasting ahead for the next 24 h time period.
The contribution from EEPAS can be weighted depending on magnitude to enhance the
performance at high target magnitudes. The STEP-EEPAS mixture improves short-term
forecasting by allowing for the aftershocks of earthquakes that have already occurred.

4.2. EEPAS with Aftershocks Model

The EEPAS with aftershocks model (EAS) [63] has a different purpose than the STEP-
EEPAS mixture. It allows for aftershocks of earthquakes expected to occur under the EEPAS
model, but not for aftershocks of earthquakes that have already occurred. It is aimed at
improving medium-term forecasts by including the associated aftershocks of expected
mainshocks in the forecast. The model assumes that the number of expected aftershocks
depends on the mainshock magnitude, that their magnitude distribution follows the
Gutenberg-Richter relation [67], and their spatial distribution is consistent with Utsu’s areal
relation [68]. This involves a modification of the EEPAS model to include several additional
parameters: the Gutenberg-Richter b-value for aftershocks, an aftershock productivity
parameter θ, the minimum magnitude difference γ by which a mainshock exceeds its
largest aftershock, and the proportion pM of earthquakes in the target magnitude range
that are mainshocks. The effect is to change the magnitude and spatial distributions of
the transient contributions of precursors to the rate density. Versions of the EEPAS and
EAS model with equal weights and aftershocks down-weighted were fitted to a 10-year
period and independently tested on a later 10-year period of the catalogues of California
and the Kanto region of central Japan [63]. For the testing period, the information gain of
the EAS models over their EEPAS counterparts was about 0.1 on average. This confirmed
the efficacy of the modifications. However, the expected number of aftershocks was found
to strongly depend on the assumed maximum magnitude. This creates a difficulty in the
practical application of the EAS model.

4.3. Janus Model: EEPAS-ETAS Mixture

The Janus model is an additive mixture of the EEPAS model and an Epidemic-type
aftershock (ETAS) model. From each contributing earthquake, it looks both to the larger
earthquakes expected to follow it in the medium term and mostly smaller earthquakes
expected to follow it in the short term. In [58], the Janus model was optimized for time
horizons (see Table 1 for the definition) ranging from 0–3000 days (i.e., up to more than
8 years) on the New Zealand and California earthquake catalogues. For each time horizon
of interest, EEPAS parameters were refitted with the delay set equal to the time horizon.
It was found that the ETAS model is much more informative than EEPAS for forecasting
with short-time horizons of a few days, but even with a zero-time horizon, the Janus model
outperforms it with an information gain per earthquake (IGPE) of about 0.1. For time
horizons of 10–3000 days, the Janus model outperforms both ETAS and EEPAS with IGPEs
ranging from 0.2 to 0.5. As the time horizon lengthens beyond six months in New Zealand
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and two years in California, the EEPAS model becomes more informative than ETAS and
the major component of the optimal mixture. In [58], it was concluded that both cascades
of triggering and the precursory scale increase phenomenon contribute to earthquake
predictability and that these contributions are largely independent.

4.4. Hybrid Forecasting in New Zealand

EEPAS is now used for public earthquake forecasting in New Zealand, as one of
the core elements of a hybrid forecasting tool. Public forecasting was initiated in New
Zealand as a response to the devastating Canterbury earthquake sequence. This sequence
began with the September 2010 M7.1 Darfield earthquake [69] and continued with the
22 February 2011 M6.3 Christchurch earthquake [70]. The Christchurch earthquake and
subsequent earthquakes of about M6 in the vicinity of Christchurch resulted in the death of
185 people, and over NZ40 billion dollars of damage to buildings and infrastructure [71].
The faults that ruptured during this sequence were unknown prior to the sequence and
hazard was considered to be low in Christchurch [72]. As a result of this sequence, attention
was drawn to statistical forecasting models. A model with time-varying and long-term
components was developed to forecast the following 50 years of expected earthquakes
and resulting hazard in Canterbury. This was used to inform decisions for the rebuilding
of Christchurch [28]. The time-varying component was provided by a mixture of EEPAS
and aftershock models and time-invariant component by a mixture of different smoothed
seismicity models [29,73]. Such statistical modelling can serve as a supplement to standard
probabilistic seismic hazard analysis (PSHA) (e.g., [72,74]).

Following the November 2016 M7.8 Kaikoura earthquake [75], a modified hybrid
model with three components—short-term, medium-term and long-term—was devel-
oped [27] to forecast the expected earthquakes and resulting hazard over the following
100 years. This model was used to inform decision-makers involved in the reinstatement
of road and rail networks in the northern South Island. It is a gridded model, in which
EEPAS provides the medium-term component. Figure 5 illustrates how the hybrid model
is constructed from its three components.
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Figure 5. Illustrating the Kaikoura hybrid forecasting model, with the medium-term component
supplied by EEPAS. Short-term, medium-term and long-term components and the Kaikoura hybrid
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period commencing 26 June 2017. The earthquake occurrence rate density is relative to a refer-
ence (RTR) model in which one earthquake per year is expected to exceed any magnitude m in
an area of 10m km2.

5. Compensation for Incompleteness of Precursory Earthquakes
5.1. Magnitude Completeness of Precursory Earthquake Contributions

Completeness of an earthquake catalogue is usually expressed in terms of a threshold
magnitude, MC. The threshold magnitude varies from one seismic network to another
and also with time. For a specific MC that is valid for a period of time, all the earthquakes
with magnitudes m ≥ MC are expected to be recorded in the catalogue produced by
the seismic network. The value of MC depends on the signal-to-noise ratio (SNR) of the
recorded waveforms and the density of the seismic network. The SNR varies based on the
earthquake magnitude, epicentral distances, azimuth, fault orientation, rheology, ambient
noise levels, path, and site effects [76–78].

The EEPAS model has a magnitude lower limit of m0, which is chosen so that m0 ≥ MC
during the fitting and testing period. In addition, EEPAS has a compensatory term for
the precursory earthquakes with m < m0. Because of the missing contribution from
earthquakes below magnitude m0, the rate density at magnitude m will be diminished, on
average, to a fraction ∆(m) of its actual value, given by

∆(m) = Φ

(
m− aM − bMm0 − σ2

Mβ

σM

)
(11)

where Φ is the standard normal integral, i.e., Φ(x) =
∫ x
−∞ exp

(
− u2

2

)
du/
√

2π. To com-
pensate for this deficiency, the estimated rate density λ(t, m, x, y) is inflated by a factor
of 1/∆(m) [16].

5.2. Temporal Completeness of Precursory Earthquake Contributions

A milestone in the development of EEPAS has been to compensate the forecasts for
the incompleteness of precursory information before any target earthquake. This includes
compensation for missing precursory earthquakes in the time-lag between the end of the
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catalogue and the forecasting time horizon. It also includes compensation for missing
precursors before the lead time for any target earthquake. So far, we have compensated
either for the time-lag or the lead time, but not simultaneously. A further milestone would
be to integrate these two compensations.

Compensation for the time-lag enables the forecasting horizon to be extended from
a few months to a decade or more without much loss of forecasting quality (information
gain). In public forecasting, EEPAS has sometimes been applied with long time horizons
(time-lags), e.g., up to 50 years in the Canterbury hybrid forecasting model [73] and up to
100 years in the Kaikoura hybrid model [27]. In the latter two models, the expected number
of earthquakes forecast by the EEPAS time-varying component diminishes as the time
horizon is increased. This is because no compensation is made for the missing contributions
from future earthquakes between the end of the available catalogue and the future time
horizon for which a forecast is being made.

In compensating for temporal incompleteness, the prior assumption is made that
unknown precursory earthquakes are equally likely to occur at any time and have a magni-
tude distribution that conforms to the Gutenberg–Richter relation. The total contribution
c(T, L, m) of precursory earthquakes to the rate density for a target earthquake with magni-
tude m as a function of the time-lag T and lead time L was given by [57] as:

c(T, L, m) =
∫ mu

m0

[∫ T+L

T
f (t|t− τ, v)dτ

]
η(ν)g(m|v)10−bGRvdv. (12)

It follows from the lognormal form of the time distribution (4) that

c(T, L, m) =
∫ mu

m0

[
Φ
(

log(T + L)− aT − bTν

σT

)
−Φ

(
log T − aT − bTν

σT

)]
η(ν)g(m|ν)10−bνdν, (13)

where the logarithm is to base 10 and b is the Gutenberg-Richter b-value. The completeness
of precursory earthquake contributions to a target earthquake with magnitude m when the
time-lag is T and the lead time is L is then given by

p(T, L, m) =
c(T, L, m)

c(0, ∞, m)
, (14)

in which c(0, ∞, m) =
∫ mu

m0
η(v)g(m|ν)10−bνdν.

Figure 6 illustrates the completeness function, p(T, L, m), for the EEPAS_0F model
fitted to the New Zealand GeoNet catalogue from 1987 to 2006 [58]. The EEPAS_0F model
gives equal weights to all input earthquakes. The parameters are given in Table 3.
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Table 3. EEPAS_0F model parameters for New Zealand (from [58]).

Parameter EEPAS_0F

m0 2.95 *
mc 4.95 *

mmax 10.05 *,!

bGR 1.16 †

aM 1.10 †

bM 1.0 *
σM 0.39 †

aT 1.71 †

bT 0.39 †

σT 0.60 †

bA 0.36 †

σA 1.63 †

µ 2.2× 10−4†

* Fixed. † Fitted. ! Standard threshold used for CSEP models.

In Figure 6, one can see that when the lead time is long and the time-lag is short, the
completeness is high for all magnitudes. However, the completeness at low magnitudes is
highly sensitive to an increase in time-lag T, but not so sensitive to a decrease in lead time
L. The completeness at high magnitudes is more sensitive to a decrease in lead time L and
less sensitive to an increase in time-lag T.

Given a set of EEPAS parameters, the corresponding completeness function and fixed
values of T and L, the EEPAS model can be compensated by optimally combining two
end-members, A and B. End-member A is compensated by scaling up the background
component, and end-member B by scaling up the time-varying component, by the inverse of
the completeness at each T, L and m. End-member A has rate density λA(t, m, x, y), given by

λA(t, m, x, y) = [µ + (1− µ)(1− p(T, L, m))]λ0(t, m, x, y) + ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y). (15)

End-member B has rate density λB(t, m, x, y), given by

λB(t, m, x, y) = µλ0(t, m, x, y) +
1

p(T, L, m) ∑
ti≥t0,mi≥m0

η(mi)λi(t, m, x, y). (16)
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The optimal combination can be found by optimizing the parameter ω in a convex
linear combination with rate density λC(t, m, x, y), given by

λC(t, m, x, y) = ωλA(t, m, x, y) + (1−ω)λB(t, m, x, y), (17)

where 0 ≤ ω ≤ 1.

5.3. Compensation for Time-Lag

In [57], a special case of the above method was applied to compensate for incom-
pleteness due to the time-lag (the LEEPAS model), assuming there was no significant
incompleteness due to the lead time, i.e., with p(T, L, m) replaced by p(T, ∞, m) in (15) and
(16). Three versions of EEPAS applied to the New Zealand GeoNet catalogue, with different
magnitude thresholds and weighting strategies, were considered. The mixing parameter
ω was optimised for a range of time-lags up to 15 years. The fitted ω values were used to
produce annual lag-compensated forecasts in central New Zealand out to 2030.

The method of [57] has been further applied to estimate the distributed seismic-
ity model for the 2022 revision of the New Zealand National Seismic Hazard model
(NZSHM) [79]. The NZSHM uses a version of the New Zealand earthquake catalogue
obtained by adjusting the GeoNet-preferred magnitudes to be consistent with the moment
magnitude [80]. We call this the Adjusted Magnitude (AMC) catalogue.

We have fitted EEPAS to the AMC catalogue with m0 = 2.95, mc = 4.95, t0 = 1951.01.01,
tf = 2020.12.31, a warm-up period of 1951-2005 and a fitting period of 2006-2020, within
the New Zealand CSEP testing region (Figure 7). The maximum likelihood parameters
were estimated for the EEPAS_1F model (Table 4). Unlike EEPAS_0F, the EEPAS_1F model
down-weights aftershocks as described in [16].
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Figure 7. Maps of New Zealand showing CSEP testing region (dashed inner polygon) and search
region (dotted outer polygon) with (a) earthquakes M > 2.95 from 1951 to 2020 (blue dots) and
(b) earthquakes M > 4.95 from 2006 to 2020 (red circles), including the target set of 147 earthquakes
within the testing region. Earthquakes are shallow (depth ≤ 40 km) and were extracted from the
AMC catalogue.
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Table 4. PPE (background) and EEPAS (time-varying) model parameters fitted to 2006–2020 of the
AMC catalogue.

Parameter Model Fitted Value Fitting Range

a PPE 0.55 unconstrained
d PPE 5.26 (km) >1
s PPE 2.4 × 10−12 unconstrained

aM EEPAS 1.00 1.0–2.0
bM EEPAS 1.00 * NA
σM EEPAS 0.20 0.2–0.5
aT EEPAS 1.97 1.0–2.0
bT EEPAS 0.35 0.3–0.7
σT EEPAS 0.20 0.2–0.5
bA EEPAS 0.59 0.3–0.7
σA EEPAS 0.51 0.5–10
µ EEPAS 0.36 0.0–0.5

*: Fixed parameter.

For the EEPAS_1F model, the completeness function is plotted in Figure 8. The
parameter ω (Equation (17)) was fitted for time-lags up to 20 years. For each time-lag,
ω is close to zero (Figure 9). This confirms that the optimal forecast is obtained by mostly
compensating the time-varying component.

Geosciences 2022, 12, x FOR PEER REVIEW 16 of 27 
 

 

 
Figure 8. Completeness of precursory earthquake contributions as a function of time-lag and target 
magnitude for EEPAS_1F fitted to the AMC catalogue. 

 
Figure 9. Fitted mixing parameter ω for time-lags ranging from 1 to 20 years for LEEPAS_1F model 
fitted to the AMC catalogue. 

Despite rapidly decreasing completeness for the target earthquakes with 𝑀 < 6 for 
time-lags greater than 10 years, the information gain of LEEPAS_1F over PPE changes 
only gradually with increasing time-lag (Figure 10). For example, with a time-lag of 15 
years, the completeness is about 5% for M 5 (Figure 8). However, Figure 10 shows that at 
the same time-lag, IG(LEEPAS_1F, PPE) is 0.5. This is greater than the IG at a time-lag of 
1 year. 

Figure 8. Completeness of precursory earthquake contributions as a function of time-lag and target
magnitude for EEPAS_1F fitted to the AMC catalogue.



Geosciences 2022, 12, 349 16 of 26

Geosciences 2022, 12, x FOR PEER REVIEW 16 of 27 
 

 

 
Figure 8. Completeness of precursory earthquake contributions as a function of time-lag and target 
magnitude for EEPAS_1F fitted to the AMC catalogue. 

 
Figure 9. Fitted mixing parameter ω for time-lags ranging from 1 to 20 years for LEEPAS_1F model 
fitted to the AMC catalogue. 

Despite rapidly decreasing completeness for the target earthquakes with 𝑀 < 6 for 
time-lags greater than 10 years, the information gain of LEEPAS_1F over PPE changes 
only gradually with increasing time-lag (Figure 10). For example, with a time-lag of 15 
years, the completeness is about 5% for M 5 (Figure 8). However, Figure 10 shows that at 
the same time-lag, IG(LEEPAS_1F, PPE) is 0.5. This is greater than the IG at a time-lag of 
1 year. 

Figure 9. Fitted mixing parameter ω for time-lags ranging from 1 to 20 years for LEEPAS_1F model
fitted to the AMC catalogue.

Despite rapidly decreasing completeness for the target earthquakes with M < 6 for
time-lags greater than 10 years, the information gain of LEEPAS_1F over PPE changes only
gradually with increasing time-lag (Figure 10). For example, with a time-lag of 15 years, the
completeness is about 5% for M 5 (Figure 8). However, Figure 10 shows that at the same
time-lag, IG(LEEPAS_1F, PPE) is 0.5. This is greater than the IG at a time-lag of 1 year.
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5.4. Fixing the Lead Time

The length of the warm-up period determines the minimum lead time L for earth-
quakes in the fitting period. The lead time is different for every target earthquake in the
fitting period, testing period, or a later period of forecasting. The fitting of parameters of
the time distribution f (t|ti, mi) is affected by the available lead time for target earthquakes
in the fitting period. The fitted time distribution is biased because of missing contributions
from precursors that occurred before the start of the catalogue. In particular, shorter lead
times favour smaller values of the time-scaling parameter aT . If the same catalogue start
time t0 is used, target earthquakes in the testing period have longer lead times than those in
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the fitting period, and possibly a larger optimal value of aT . Target earthquakes in a future
period of forecasting have even longer lead times.

Obviously, EEPAS forecasts are affected by not having equal lead times. To reverse this
effect, the Fixed Lead time EEPAS model (FLEEPAS) was proposed [52]. In FLEEPAS, the
lead time L is kept constant by restricting the precursory earthquakes contributing to the
time-varying component. At a given time t, only earthquakes with ti > t− L are allowed
to contribute, as illustrated in Figure 11. Thus Equation (6) is replaced by

λ(t, m, x, y) = µλ0(t, m, x, y) + ∑
ti≥t−L,mi≥m0

η(mi)λi(t, m, x, y) (18)
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In [52], FLEEPAS was fitted to the New Zealand GeoNet catalogue from 1987 to 2006
with a range of L values from 3 to 35 years. The parameters fitted for each value of L
were aT , σA, and µ. It was found that the value of aT increased as L was increased. This
confirmed the dependence of the fitted time distribution on the lead time.

A fitted FLEEPAS model can be applied with the same lead time to a subsequent
period of the catalogue, for the purpose of testing or forecasting. Then the performance
is likely to match that of the fitting period, because the parameters have been optimised
to the lead time. However, a disadvantage of the FLEEPAS model is that it disregards a
substantial portion of the catalogue, as illustrated in Figure 11. The catalogue used by
FLEEPAS may be severely lacking information on precursory earthquakes, especially for
high magnitude target earthquakes.

5.5. Compensating for the Lead Time

In [52], a special case of Equations (13) and (14) was used, with the incompleteness due
to the time-lag assumed to be negligible. Therefore, p(T, L, m) was replaced by p(0, L, m)
and ω was optimised. This is the Fixed Lead Time Compensated EEPAS model (FLCEEPAS).
In FLCEEPAS, ω was fitted for L values from 3 to 35 years for EEPAS_0F with other param-
eters as in Table 3. As shown in Figure 6c, the incompleteness was problematic for short
lead times. This was addressed by FLCEEPAS, which outperformed the original EEPAS_0F
model. The compensation redresses the underprediction due to incompleteness, especially
at the highest target magnitudes which have lowest completeness for a given L (Figure 6c).
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6. Earthquake-Rate Dependence and the Space-Time Trade-Off
6.1. An Earthquake-Rate Dependent Version of EEPAS

The Earthquake-rate dependent EEPAS model (ERDEEP) [64] was an attempt to
explain the relatively low correlation between logTP and logAP compared with other
correlations among Mm, MP, logTP, and logAP [15,81]. The hypothesis was that the
average level of seismicity in a region affects both the precursor time and precursory area in
such a way that there is an even trade-off between these two. The fitted parameters of the
EEPAS distributions for time and area were observed to vary significantly between regions,
such as Japan and California. For example, the average level of seismicity in central Japan
is about six times higher than in California. Also, the fitted values of aT and σA showed that
the scale of f (t|mi) is about six times shorter and that of g(x,y|xi,yi,mi) about six times larger
in central Japan than in California [82]. In the ERDEEP model, the estimated long-term
seismicity rate in the jth cell of a gridded smoothed seismicity model is denoted by ρ(j).
The parameters aT and σA are both made dependent on ρ(j). The values of aT and σA in the
jth cell are defined by

aT(j) = aT − cρ log ρ(j) (19)

σA(j) = σAρ(j)
cρ
2 (20)

With this definition, the product of the area-scaling factor σ2
A(j) and time-scaling factor

10aT(j) is held constant:
σ2

A(j)10aT(j) = σ2
A10aT (21)

The fitting of ERDEEP thus required the optimisation of one additional parameter cρ

along with the other EEPAS parameters. In formal CSEP testing in the New Zealand region,
ρ(j) was obtained using PPE [16,54] as in the smoothed seismicity model. ERDEEP did not
perform quite as well as standard EEPAS [26]. Therefore, the hypothesis on which ERDEEP
is based is not supported by testing. Subsequent work has clarified the misconception
underlying this hypothesis. The dependence of aT on the seismicity rate (Equation (19)) has
been shown to be well-founded, as has the space-time trade-off (implied by Equation (21)).
However, no evidence shows that the seismicity rate is linked to the space-time trade-off.

6.2. Rate Dependence of Time-Distribution in Synthetic Catalogues

The application of EEPAS to synthetic catalogues generated by physics-based earth-
quake simulators has been helpful in clarifying the dependence of aT on the earthquake
rate. The EEPAS model has been applied to synthetic catalogues generated by the earth-
quake simulators known as ARTS [83,84] and RSQsim [85]. An advantage of synthetic
catalogues is that they can span arbitrarily long time periods without any temporal vari-
ation of catalogue quality. A disadvantage is that they tend to cover a much narrower
range of magnitudes than real catalogues. In [82], an ARTS synthetic catalogue based on
the faults of the Wellington region, central New Zealand, was studied. In a generic fault
network with one major fault and numerous parallel minor faults, the performance of the
EEPAS model was found to be poor. But in a complex network of major faults at a variety
of orientations and many randomly oriented small faults, EEPAS performed better. In fact,
the performance was similar to that in real catalogues, albeit with some differences in the
scaling of time and area. Also, the precursory scale increase phenomenon could be readily
identified before most of the major synthetic earthquakes. The fault geometry therefore
affects how well EEPAS fits.

In [51], RSQsim synthetic catalogues based on the same region and faults were used.
Taking advantage of the ability of RSQsim to rapidly generate synthetic catalogues [85], the
slip rates on all faults were systematically reduced by five successive factors of 4. Fitting
the EEPAS model to these synthetic catalogues showed that the expected precursor time
is inversely proportional to the reduction in slip rate. This is consistent with cρ = 1 in
Equation (19), with the logarithm being to base 10. This result suggests that the expected
precursor times for large earthquakes in stable continental regions with very slow fault slip
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rates would go well beyond the length of available catalogues. The Australian earthquakes
in Figure 2 are from a stable continental region. It is not surprising therefore to see that the
TP values for Australian earthquakes are relatively large for a given MP compared with the
regression computed from more seismically active regions (Figure 2b).

6.3. Space-Time Trade-Off

The study of synthetic catalogues provided empirical evidence for the existence of an
intrinsic space-time trade-off in precursory seismicity. In [51]. The researchers noted that it
is possible to make multiple identifications of Ψ with very different values of AP and TP for
some major synthetic earthquakes. Similarly, we have observed multiple Ψ identifications
for real major earthquakes. Generally, larger values of AP are associated with smaller
values of TP, and vice versa. For example, an alternative identification of Ψ can be found
for the Aegean Sea 2020 earthquake (Figure 12), which can be compared to that in Figure 1.
The AP value in Figure 12 is 2.5 times larger, and the TP value 1.6 times smaller, than in
Figure 1. Such a multiplicity of AP and TP values for individual mainshocks suggests that
the space-time trade-off is an inherent feature of precursory seismicity.
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Figure 12. Alternative identification of the Ψ-phenomenon for the M6.7 Aegean Sea earthquake of
30 October 2020. (a) Epicenters of the precursory seismicity, mainshocks, and aftershocks. The
rectangle containing them is the precursory area AP. (b) Magnitude versus time of prior and
precursory earthquakes with the onset of Ψ in 2003. Dashed lines show precursory increase in
magnitude level. Mm is main shock magnitude; MP is precursor magnitude—the average magnitude
of the three largest precursory earthquakes. (c) Changes in cumag with time. Dashed lines show
precursory increase in seismicity rate. The protractor translates the cumag slope into seismicity rate
in magnitude units per year (M.U. yr–1). TP is precursor time. Data is from the ISC catalogue of
earthquakes with magnitude M ≥ 4.5, starting September 1972. MP = 5.7; Mm = 6.7; TP = 6392 days;
AP = 8091 km2.

The nature of the space-time trade-off has been further probed through fitting of the
EEPAS time- and area-scaling parameters aT and σA, respectively. In [53], aT and σA were
systematically controlled in such a way that the temporal and spatial scales varied by two
orders of magnitude. As one of the parameters was varied, the other was refitted to a
20-year period of the New Zealand and California earthquake catalogues. The starting
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point was the optimal parameter set previously fitted to these catalogues [58]. The resulting
curves of the temporal-scaling factor versus the spatial-scaling factor showed an even trade-
off between time and area (Figure 13). Moreover, the refitted models all had information
gains that were no more than 0.2 lower than that of the original optimal model, even though
they were making use of precursors from widely different scales of time and space than the
optimal model.
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the fit of the EEPAS model for New Zealand with controlled values of σA (blue triangles) and aT

(black squares). The straight line with a slope of −1 represents an even trade-off between space and
time. Taken from [53].

The space-time trade-off can be exploited to improve forecasting, by mixing models
with alternative sets of parameters chosen from points along the line of even trade-off.
In [53], using an arbitrary mixture of three models along the line was shown to increase the
information gain in a testing period by up to 0.25 compared to that of the optimal individual
model. The mixture was composed of the optimal individual model and two others formed
by arbitrarily increasing and decreasing aT by 0.5 and adjusting σA accordingly. More
research is needed to develop a formal method for systematically incorporating the space–
time trade-off into medium-term earthquake forecasts.

The space-time trade-off implies that for earthquakes with relatively long precursor
times, we should expect relatively small precursory areas. If this statement stands for the
Australian examples in Figure 2b, where TP values are large, the AP values are expected
to be small relative to the fitted regression (Figure 2c). On the contrary, AP values are
relatively large. This can be explained by interaction of three factors. These are (1) rate
dependence of TP, (2) the space-time trade-off, and (3) the short length of the catalogue.
Given the low seismicity rate in Australia, the observed TP values are shorter than expected.
This is due to the limit imposed by the length of the catalogue on the observable TP. As a
result, the TP values, although large relative to the regression, are not as large as they would
be if identified from a much longer catalogue. Finally, the existence of space-time trade-off
results in relatively large AP values corresponding to such small observed TP values.

7. Challenges in EEPAS Forecasting: A Journey from What We Know to What We Don’t

Since its introduction in 2004, EEPAS has been a successful forecasting model for well-
catalogued regions including New Zealand [16,24,26,27,57,58,79], California [16,20,25,53,58],
Japan [17,18,21,22,86], and Greece [19]. To address the limitations imposed by the input
earthquake catalogues, EEPAS has undergone many revisions. As mentioned earlier, one
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milestone in the EEPAS improvement was compensation of the forecasts for missing precur-
sory earthquakes in the time-lag between the end of the catalogue and the forecasting time-
horizon. We have also learned how to compensate EEPAS forecasts for the limited record
of precursory information before any target earthquake. Overall, the current version of the
EEPAS is much better adapted to deal with the limitations of any earthquake catalogue than
previously. However, there are still significant challenges and unknowns as outlined here.

7.1. Understanding the Physics behind the Ψ-Phenomenon

The Ψ-phenomenon and EEPAS model are empirically based. However, the Ψ-
phenomenon can be identified as easily in synthetic catalogues as in real earthquake
catalogues and the EEPAS model also works well in synthetic catalogues [51,82]. Synthetic
catalogues are based on physical components such as fault networks, slip rates on faults,
friction laws, and Coulomb stress calculations [85,87]. The earthquake generation process
of each synthetic earthquake is in principle traced through the stress transfer between neigh-
bouring faults. This leads to an eventual failure of the fault that produces the earthquake.
Ideally, the origin of the Ψ-phenomenon should be explained by a similar physics-based
concept. Such an understanding is likely to be helpful in guiding future refinements of
the EEPAS model.

7.2. Incorporating Dependence on the Long-Term Earthquake Rate

We have learned from analysis of synthetic catalogues that the scale of the EEPAS time
distribution is inversely proportional to the slip rate on faults. Slip rates are related to the
long-term rate of the earthquakes that they generate [88]. Therefore, we should expect the
scale of the EEPAS time distribution to be inversely related to the long-term earthquake rate.

If the spatial variability of the long-term earthquake rate is known, it can be incorpo-
rated into the EEPAS model using Equation (19). This is straight-forward and does not add
to the number of fitted parameters in the model. The challenge is how to best estimate
it from existing data sources [60]. The long-term earthquake rates can be estimated from
smoothed seismicity, strain rates, faults and their slip rates, the location of plate boundaries,
or some combinations of these. The main limitation is the restricted length of the available
catalogue against which to test them.

7.3. A Three-Dimensional Version of EEPAS?

The EEPAS model at present only makes use of two spatial dimensions—latitude and
longitude. All earthquakes within a chosen depth range are treated the same, regardless
of their estimated hypocentral depths. The reason for this is primarily that depth deter-
minations are often poorly constrained. In the New Zealand catalogue, many depths are
fixed by analysts, rather than directly estimated, because of the difficulty of estimating
depths using a 2D velocity model and the available seismograph network. We expect that
the seismograph network will become denser over time and a comprehensive 3D velocity
model [89] will be incorporated in the GeoNet earthquake locator. As a result, the precision
of depth determinations will improve. Then, it will make sense to shift to three-dimensional
distance determinations in the EEPAS model.

7.4. Target-Earthquake Oriented Compensation for Missing Precursors

We have shown how to compensate EEPAS for missing earthquakes with a fixed lead
time. However, applying a fixed lead time is potentially wasteful of precious earthquake
catalogue data. Ignoring the early earthquakes in a catalogue can adversely affect the
forecasting of large earthquakes, which have very long precursor times. It is the largest
earthquakes that we are ultimately most interested in forecasting, even though conformity
to the Gutenberg-Richter law limits their contribution to the information gain.

The challenge is then to use as much of the past catalogue as possible and compensate
the forecast of each target earthquake for the incompleteness of precursory contributions
at each point in time, location, and magnitude. This is what we call “target-oriented”
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compensation. Shifting from a fixed lead time to target-oriented compensation would
involve modifying Equations (13)–(16).

The incompleteness of precursory contributions for each target earthquake depends
on the completeness of the catalogue in its vicinity in the period prior to its occurrence.

7.5. Accommodating Variable Incompleteness of the Earthquake Catalogue

Completeness of an earthquake catalogue varies with time, magnitude, and location
depending on the network configuration and instrumentations [76]. Treatments of cata-
logue completeness can range from simple to elaborate. In the simplest approach, one might
choose a starting time t0 after which the input catalogue is approximately complete for
all magnitudes above a minimum threshold m0, as illustrated in Figure 4. Target-oriented
compensation could then be applied based on the lead time between t0 and the time of
each target earthquake. A more elaborate approach would be to estimate a magnitude-
dependent starting time t0(m) at which the catalogue becomes complete for magnitude
m > m0 (see Figure 14). The lead time L(m) for a given target earthquake then varies
with the input magnitude. Furthermore, one can also take into account the effect of spatial
variations on the catalogue completeness, due to time-varying coverage of the region of
interest by the seismic network.
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7.6. Optimal Use of the Space-Time Trade-Off

The space-time trade-off of precursory seismicity presents opportunities to improve
EEPAS forecasts by mixing models from points on the line of even trade-off, as previously
demonstrated [53]. However, optimally incorporating the trade-off into the EEPAS model
remains a challenge. The space-time trade-off imposes a relation between the fitted values
aT and σA. However, it may also affect other parameters, such as σT .

It is undesirable to incorporate the trade-off subjectively. Ideally, a revised fitting
process would automatically integrate contributions to the forecast from points along the
line. This would require some reformulation of the model.

7.7. Development of a Global Forecasting Model

An important goal for the future is the development of a global EEPAS model. The aim
is to forecast the largest earthquakes, e.g., M ≥ 7, expected to occur anywhere in the world,
with time horizons extending out to several decades, using a global catalogue. All factors
now known to affect the EEPAS parameters—incompleteness of precursory earthquakes,
the space-time trade-off, and dependence on long-term earthquake rates—need to be
simultaneously addressed in a coherent way to develop such a global model.
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The model would be regionally adjustable to accommodate variation in the earth-
quake rate and the space-time trade-off of precursory seismicity. It would also include
compensation for incompleteness of precursory contributions. The earthquake occurrence
rates vary by several orders of magnitude between plate-boundary regions and continental
regions. The time distribution in the EEPAS model would therefore vary over a similarly
wide range. This induces far more variability in completeness of precursory contributions
than in regional catalogues that adds to the challenge. These complexities imply there is
still some way to go to develop a global EEPAS model.

8. Conclusions

Over the past two decades, the EEPAS model has been progressively developed
through empirical observation and statistical modelling. The motivation has always been
to enhance its forecasting performance in terms of information gain. It has been tested in
combination with a variety of independent earthquake forecasting models. This has led to
the incorporation of EEPAS in public earthquake forecasting in New Zealand. Compen-
sation of the model for temporal incompleteness of precursory contributions due to the
time-lag has improved forecasting performance. For lower magnitude target earthquakes,
it can extend the effective forecasting time horizon from a few months to a few decades.
Moreover, compensation for the lead time can improve the forecasting performance for
large earthquakes.

Studies on synthetic and real catalogues have revealed some of the EEPAS charac-
teristics. One is the space-time trade-off of the precursor time and precursory area in
the Ψ-phenomenon, which is reflected in the EEPAS time and area scaling parameters
aT and σA, respectively. Another is the effect of earthquake rate dependence on the time
distribution of precursory seismicity. This was verified in the Ψ-phenomenon but has still
to be fully realized in the EEPAS model.

All the modifications made to EEPAS, together with dynamic improvement of seismic
networks and computational resources, are smoothing the path to development of a global
EEPAS model. Despite these advances, challenges remain in developing an enhanced
physical understanding of the Ψ-phenomenon, and in coherently integrating the known
effects on scaling and compensation for missing precursory earthquakes into the EEPAS
model. Addressing these challenges motivates future research in this area.
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