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Abstract: The investigation of mass movements is of major interest in mountain regions as these
events represent a significant hazard for people and cause severe damage to crucial infrastructure.
The torrential rainfall event that mainly occurred on the 14 July 2021 in western Central Europe not
only led to severe flooding catastrophes (e.g., Meuse, Ahr and Erft rivers) but also triggered hundreds
of mass movements in the low mountain range. Here, we investigate a hillslope debris flow that
occurred in Biersdorf in the Eifel area (Rhenish Massif, Rheinland-Pfalz) using a comprehensive
geomorphological–geophysical approach in order to better understand the triggering mechanisms
and process dynamics. We combined field studies by means of Electrical Resistivity Tomography
(ERT), Direct Push Hydraulic Profiling (HPT) and sediment coring with UAV-generated photogram-
metry, as well as debris flow runout modelling. Our results show that for the Biersdorf hillslope
debris flow, the geomorphological and geotectonic position played a crucial role. The hillslope debris
flow was triggered at a normal fault separating well-draining limestones of the Lower Muschelkalk,
from dense weathered clay and sandstones of the Upper Buntsandstein. The combination of a large
surface runoff and strong interflow at the sliding surface caused a transformation from an initial
translational slide into the high-energy and widespread hillslope debris flow. We further created and
validated a stand-alone model of the debris flow on a local scale achieving promising results. The
model yields a 97% match to the observed runout area as well as to deposition spreads and heights.
Thus, our study provides a pathway for analyzing hillslope debris flows triggered by torrential
rainfall events in low mountain ranges. General knowledge on hillslope debris flows, risk assessment
and hazard prevention were improved, and results can be transferred to other regions to improve
risk assessment and hazard prevention.

Keywords: torrential rainfall event of 14 July 2021; Eifel flood; mass movement; hillslope debris flow;
multi-methodological approach; runout modelling; MABEIS-project

1. Introduction

The devastating torrential rainfall event over western Central Europe in July 2021,
among others entailing the catastrophic flood in the Ahr valley (Rheinland-Pfalz, Ger-
many), also triggered various slope-related mass movements [1–3]. As such, numerous
hillslope debris flows with a major hazard potential, occurred in this area [2]. According
to [4], hillslope debris flows are defined as unconfined flows of unconsolidated granu-
lar soil material at steep slopes. They normally originate from shallow failures whereby
the rainfall-induced water content and pore water pressure of the unconsolidated slope
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deposits critically increase due to infiltration and interflow processes. Although exact
trigger mechanisms are still under debate and require validation case by case, the common
estimation is that high infiltration rates and enhanced interflow results in a critical reduc-
tion in shear stress. In association with the loss of cohesion, granular soil material is then
suddenly mobilized [5–8]. Following a liquefaction mechanism supplied by the immense
pore water pressure and drag force of the surface runoff, the liquefied material can rapidly
evolve into high-energy downhill flows, transporting suspended mud, gravel and wooden
debris [9–12]. The exact location and extent of these phenomena are, however, difficult
to predict, leading to insufficient protective measures and severe damage to the adjacent
infrastructure in mountain ranges [4,13–16].

This study focuses on an event in the western Eifel region in Rheinland-Pfalz (near the
village of Biersdorf), as an exemplary case of heavy rain-triggered hillslope debris flows in
the low mountain range of western Germany.

Several hours of torrential rainfall during the evening from 14 to 15 July 2021 caused
the Biersdorf hillslope debris flow producing a scar of about 6 m in depth and 15 m
in width. The incipient muddy debris flow moved 150 m down the slope into a small
valley, overflowing a fortunately abandoned house and the local road with depositing fan
sediments up to 3 m thick (Figure 1).
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Figure 1. Aerial view of the hillslope debris flow of Biersdorf that occurred on 14 July 2021 with
the associated location in Rheinland-Pfalz (Photo taken on 2 February 2022). (A) View into the scar.
(B) Downhill view of the runout track. (C) Debris deposits on the municipal road (Photos taken on 15
July 2021).
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In the transitional and depositional area, large grain size differences, ranging from
fine granular soil material to large mobilized blocks and wooden material, occur. Based
on the field traces and depositional characteristics, the investigated event could also be
classified as a muddy debris avalanche [8]. The traces of the event are still visible today,
indicating long-lasting effects on the slope morphology. Although abandoned, the property
is uninhabitable and in danger of collapsing, and the road had to be secured, reflecting
noticeable economic damage.

Investigations and descriptions of similar events in alpine terrain have already been
carried out by a significant number of authors, e.g., [4,10,13,14,17,18]. These studies include,
for example, empirical analyses, the determination of rainfall thresholds, numerical mod-
elling and hazard assessment. Based on these studies, such events in the high mountain
area are relatively well understood, but for the European low mountain ranges, these phe-
nomena have not been intensively investigated so far, which is especially true for western
Germany. In recent years, however, similar events have occurred with partly high damage
to the infrastructure, which shows the need for intensified research on these phenomena in
the low mountain range [19–21].

Here, we present an approach combining geomorphological, geophysical and remote
sensing methods to investigate the composition of the shallow subsurface upslope of the
fissure zone in order to identify the trigger mechanisms of the hillslope debris flow. In
addition, we use detailed mapping of the local morphology, weather data and carried
out field investigations to determine rheological parameters as a base for a simple debris
flow runout and deposition simulation. Overall, the major objective of this study is
to find a pathway for analyzing hillslope debris flows in the context of the geological
and geomorphological conditions in low mountain ranges that favor the generation of
such events. Furthermore, we test and validate a simple and fast modelling framework
against the background of field observations. In doing so we aim to contribute to a better
understanding of such events and to set up an approach allowing the identification of
potential risk sites at an early stage in order to develop preventive measures for similar
events in lower mountain ranges.

2. Regional Setting

The small village of Biersdorf is located in the western Eifel region (Rheinland-Pfalz,
Germany). It is divided into two districts, one is located on the hillslope plateau and the
second one in the Kannenbach stream valley (Figure 2E). The stream flows into a reservoir
lake, which dams the river Prüm, the local erosional base for the Kannenbach stream.
The area around Biersdorf consists of moderately steep hills under agricultural use and
steep and deeply incised valleys. The geomorphological situation is typical of this region,
characterized by valley deepening throughout the Quaternary [22]. The hillslope debris
flow occurred on a steep (28% inclination in average), extensively used, south exposed
slope that is located directly behind a few houses near the Kannenbach stream (Figure 2E).
The study area contains the slope section with the associated catchment area upslope. Three
pathways cross parallel to the slope in its upper third and mark anthropogenic impacts on
the hillslope morphology (Figure 2E). Right underneath the second pathway, the initial scar
edge is located.
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able field capacity), blue = saturated, at the beginning of oversaturation (80 to <100%; DWD 2022, 
[24]). (D) Geological structure and lithologic distribution in the study area (upB = Upper Buntsand-
stein, lowM = Lower Muschelkalk, midM = Middle Muschelkalk, upM = Upper Muschelkalk). (E) 
Slope of the study area including downhill track of the debris flow. (F) Aerial view of the study area 
with the realized geomorphological prospects marked. 
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the Upper Buntsandstein and Lower Muschelkalk. The boundary is also visible by distinct 
color changes in the field at the scarped edge (Figure 1A). 

  

Figure 2. (A) Precipitation distribution in Rheinland-Pfalz from 14 July 2021. Derived from the
RADOLAN weather data of the DWD [23]. (B) Section of the precipitation distribution around
Biersdorf with the unit of measurement changed for visualization. (C) DWD soil saturation model
around Biersdorf from 13 July 2021 with the following units: dark blue = oversaturated (≥100% usable
field capacity), blue = saturated, at the beginning of oversaturation (80 to <100%; DWD 2022, [24]).
(D) Geological structure and lithologic distribution in the study area (upB = Upper Buntsandstein,
lowM = Lower Muschelkalk, midM = Middle Muschelkalk, upM = Upper Muschelkalk). (E) Slope of
the study area including downhill track of the debris flow. (F) Aerial view of the study area with the
realized geomorphological prospects marked.

2.1. Geological Situation

The geology around Biersdorf is dominated by Lower Triassic clay and sandstones
as well as limestones, gently dipping southeast [25]. The hillslope debris flow itself is
located on the stratigraphic boundary between the Upper Buntsandstein (upB), consisting
mainly of heavily weathered fine grained red clay and sandstones in the west, and the
Lower Muschelkalk (lowM), comprising light grey clays, marls and limestones in the east
(Figure 2D). In the south of Biersdorf, the Middle and Upper Muschelkalk (midM, upM)
follow concordantly. The geological map also shows a set of north–south striking normal
faults in the study area [25]. A normal fault dipping towards the east is located right
underneath the examined hillslope debris flow (Figure 2D) marking the boundary between
the Upper Buntsandstein and Lower Muschelkalk. The boundary is also visible by distinct
color changes in the field at the scarped edge (Figure 1A).
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2.2. Weather Situation during 14 July 2021

Low air pressure dominated the weather conditions on the days from 12 to 14 July
2021 over central Europe. In association with a high-level depression slowly approaching
from France, the tropospheric situation was stratified with increasing instability. Warm
and very humid air masses reached western Germany from the Mediterranean region in a
rotary motion around a distinctive low-pressure zone. Due to forced uplift (orographic and
dynamic) and slight damming effects in the western low mountain ranges (e.g., Sauerland,
Westerwald, Eifel, Ardennes), recurrent or persistent heavy rainfall first occurred regionally
and later extensively [26]. On the 14 July, the focus of heavy rainfall extended in an
area from southern Nordrhein-Westfalen to the southern Eifel region (Figure 2A) with
more than 100 L/m2 precipitation. Regionally, more than 150 L/m2 was recorded in
this period. The local weather station in Wiersdorf (approximately 4 km southwest of
Biersdorf) recorded 90 L/m2 on that day, by far the highest value of the year and the
highest daily precipitation value in the station’s 20-year history [27]. Figure 3 show the
hourly precipitation distribution for the 14 July 2021.
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Figure 3. Hourly precipitation distribution for the torrential rainfall event from 14 July 2021 derived
from the weather station of Wiersdorf with the approximately reported triggering time of the hillslope
debris flow [27].

Recurring precipitation events throughout Germany and in the Eifel region occurred
over three weeks before 14 July, already saturating the soil in some regions [26]. According
to the published saturation model of the German Weather Service (DWD), the soils around
Biersdorf were already heavily pre-saturated by the failure day (Figure 2C) [28]. Further
rainfall under these pre-conditions lead to a strong increase in pore water pressure and
forced surface runoff [29,30].

3. Methods

In this study, we used a comprehensive geomorphological–geophysical approach in
combination with UAV-generated photogrammetry and modelling to identify the specific
trigger and runout mechanisms of the hillslope debris flow.

3.1. UAV Photogrammetry

In order to accurately measure the runout, scarp and deposits, and calculate the
mass balance of the hillslope debris flow, we took 237 drone-supported (DJI Air 2) aerial
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photographs during 2 February 2022. These were photogrammetrically assembled using
Agisoft Metashape (www.agisoft.com/features/professional-edition accessed on 4 January
2022). Following the approach described in [31], a local high-resolution digital terrain
model with a spatial resolution of 20 cm was calculated and compared with an earlier
ALS-generated DEM from 2018 (spatial resolution 20 cm) to determine the change in slope
morphology over time.

3.2. Electrical Resitivity Tomography (ERT)

ERT measurements were conducted parallel with DP HPT logging in mid December
2021 to investigate the stratigraphic composition of the shallow subsurface using a multi-
electrode device (Syscal R1 Plus Switch 48, Iris Instruments) and a Wenner-Schlumberger
electrode array with 48 electrodes and 2 m spacing. This combination provided subsurface
penetration to approx. 10 m depth. ERT inversion was carried out in 2D by applying
Res2Dinv (Geotomo Software, [32]).

3.3. Direct Push Hydraulic Profiling Tool (DP HPT)

Direct Push techniques were applied to collect stratigraphic data with a resolution
of 2 cm using a Geoprobe K6050 HPT probe in combination with a Geoprobe 540 MT
system mounted on a Nordmeyer drill rig (RS 0/2.3). The probe is equipped with a small
screened injection port where water is pumped into the sediment through a trunk line
by an HPT controller module with a constant flow rate into the sediment. The hydraulic
pressure (HP), which is mostly influenced by grain size and bulk density, is measured by
a downhole pressure transducer (www.geoprobe.com/HPT accessed on 4 January 2022).
High permeable sediments are thus characterised by low values of hydraulic pressure and
vice versa. In addition to hydraulic screening, the probe is equipped with four electrodes
in a linear arrangement where electrical conductivity (EC) is measured at 2 cm intervals
using a Wenner electrode array [33–35]. EC values are not only dependent on grain
sizes but also on the chemical composition of the pore water and the ionic contaminants.
Thus, a combination of both parameters helps to overcome ambiguities of the logging
results [35]. During prospection, all the logging data are transferred to the FI6000 data
acquisition instrument in real-time and are displayed in the Direct Image Acquisition
software (www.geoprobe.com/software accessed on 4 January 2022).

3.4. Sediment Coring

Sediment coring was conducted at the beginning of February 2022. Cores were
retrieved in order to calibrate ERT and DP HPT measurements and to gain detailed strati-
graphic information. Three sediment cores (BIE 1, 2, 3) were drilled at the DP HPT logs
using open auger heads (80, 60 and 50 mm diameter) in combination with a handheld
percussion hammer (type Atlas Copco Cobra MK 1) (Figure 2F; 5). After cleaning and
photo documentation, cores were described according to macroscopic sedimentary and
pedogenic features following the FAO guidelines for soil description [36]. The position and
elevation of each electrode, DP HPT log and coring site were determined using a Topcon
HiPer Pro DGPS device (handheld type FC-250).

3.5. Surface Runoff Simulation

We calculated a local surface runoff model for the precipitation event using the
r.sim.water module included in GrassGis (www.grass.osgeo.org accessed on 4 January
2022, [37]). The base for the simulation was a 1 × 1 m LiDAR-DEM from 2018 and local
data from the weather station of Wiersdorf (cf. Figure 3, [27]). For the calculations, the
bivariate form of Saint Venant equations describes a 2D shallow water flow. The numerical
solution is based on the concept of duality between the field and particle representation
and solved via Green’s function Monte Carlo method, which provided the robustness
necessary for spatially variable conditions and high resolutions. The detailed mathematical
functionality of the framework can be found in [38,39]. The influence of surface runoff

www.agisoft.com/features/professional-edition
www.geoprobe.com/HPT
www.geoprobe.com/software
www.grass.osgeo.org
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associated with the hillslope debris flow is investigated by modelling the peak discharge
of the last hour before the event was triggered. By implementing the rainfall excess rate
(precipitation-infiltration) of the last hour before the reported trigger of the event and
the land use-based spatially distributed surface roughness, the simulation results can
provide information about the hydrological conditions during the failure period in the
catchment area. Normally, the infiltration rate can be estimated using constant saturated
hydraulic conductivity rates [39]. In this extreme case, however, we assume that the soil
was strongly oversaturated due to the described pre-saturation, 10 h of heavy precipitation
before the event was triggered, and in combination with siltation processes of the loamy
soil. Therefore, we used a low infiltration rate in the catchment area (Table 1).

Table 1. Crucial model input parameters used with r.sim.water.

Input Parameters Specifications/Values Data Source

DEM 1 × 1 m ALS flight mission 2018
Rainfall intensity 10.8 mm/h Wiersdorf weather data [27]
Infiltration rate 0.5 mm/h saturation model [28], estimation

Manning’s
roughness coefficient

Landcover based-
spatially distributed Orthophotography, [40]

Iterations 60 min Wiersdorf weather data [27]
Walkers 10,000 -

3.6. Debris Flow Runout Simulation

We created an initial stand-alone model of the observed debris flow that was sub-
sequently validated in the field in order to estimate the potential of hazard modelling at
local scale. Simplified numerical modelling of runout, velocity and deposition dynamics
was performed using the optimized random walk-based, two-parameter friction model
(PCM) integrated in the open source Gravitational Process Path (GPP) framework in SAGA
GIS (https://saga-gis.sourceforge.io/, accessed on 4 January 2022 [41]). The detailed
mathematical functionality of the framework can be found in [42,43]. The random walk
spreading parameters were set as suggested by [42]. To pinpoint the required initial source
areas, the hillslope debris flow disposition index (HDI) approach [44] was calculated. The
thickness of the mobilized unconsolidated material was derived from the UAV-generated
mass balance and spatially integrated into the model. The two parameters, which primarily
control the velocity and runout behaviour, the mass to drag ratio m/d (internal friction)
and the sliding friction coefficient µ (basal friction), usually have to be calibrated to model
specific flow events [42,43,45,46]. We approximated the values for the Biersdorf hillslope
debris flow based on own field investigations by means of analysing the flow length, mass
balance, significant shifts in grain size in the scar and transition track, and optimized it
by soil data provided by the Geological Survey of Rheinland-Pfalz (LGB, [40]) and the
approach presented by [43], to reach the best fitting model composition (Table 2).

Table 2. Crucial model input parameters used in GPP.

Input Parameters Specifications/Values Data Source

DEM 1 × 1 m ALS flight mission 2018
Process path model Random walk [47]

Slope threshold 40 [42]
Lateral spreading exponent 2 [42]

Persistence factor 1.5 [42]
Runout model PCM [48]
Source areas Index grid HDI [44]

Initial material thickness
source areas 3–5 m BK 50 (Soil Data, LGB [40])

and Field Investigation
SF coefficient (µ) 0.22–0.46 Field Investigation and [43,46]

Mass to drag ratio (m/d) 60 m Field Investigation and [43]
Initial velocity 0.5 m/s -

Iterations 1000 -

https://saga-gis.sourceforge.io/
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4. Results
4.1. Photogrammetry and Mass Balance

The photogrammetrically calculated model of the hillslope debris flow is shown in
Figure 3. The model allows measuring the precise runout and displaced masses (Figure 4b).
Since photogrammetrically-created DEM cannot be effectively filtered for vegetation,
densely vegetated areas were discarded in order to solely compare real ground points
(Figure 4a; vegetation marked in grey). Security measures and clean-up work were carried
out at various locations compared to the in situ photos immediately taken after the debris
flow (Figure 1). Nevertheless, the fissure, runout and deposits were mostly unaltered and
are clearly recognizable in the model, showing a lasting effect on slope morphology.
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The total length of the hillslope debris flow from the initiation point to the outermost
deposition layer is 184 m. The resulting scar in the initiation area is 15 m wide on average
with a maximum depth of 6 m. This widely exceeds the assumed depth for unconsolidated
parent material (or sediment cover) at this location. Such underestimated sediment covers
are a typical feature that was observed to be associated with numerous mass movements
triggered by the torrential rainfall event of 14 July 2021 in the Eifel region [2].

Based on a comparison with the airborne LiDAR Survey (ALS) from 2018, we can
show that approximately 1350 m3 of material moved downslope in the scar. In order to
stabilize the forest path, an earth wall with a height of 2.50 m was built at the end of the
scar, partially using debris flow material. Below the path, material was re-dumped into the
erosion channel on an area of 87 m2.

The runout track is 130 m long with a maximum incision of 1.5 m (Figure 4C; cf
Figure 1B). For an event of this magnitude, this incision throughout the runout track is
relatively low and could be attributed to a moderate flow velocity. The deposition area
behind the affected house is 238 m2 in size. In the course of shoring works, it was leveled
up to 2 m above the original ground surface. In total, the mass balance of the whole debris
flow runout suggests that 1090 m3 of material was relocated during the event, including
post-event anthropogenic measures.

4.2. Results of Combined ERT, DP HPT and Sediment Coring

To gain detailed information on the stratigraphic composition of the shallow subsur-
face, we conducted ERT measurements followed by DP HPT logging. To finally calibrate the
geophysical and DP results and to receive stratigraphical sequences, we retrieved sediment
cores at the DP positions. ERT transect BIE ERT 1 (Figure 5) was conducted 25 m above the
scar of the hillslope debris flow on a total length of 94 m in a southwest–northeast direction.
Overall, apparent resistivity values range from 18 to 364 ohm.m. The inversion model
shows a tripartite structure. The first part ranges from 0 to c. 40 m with high resistivities at
the top followed by generally lower values and a further high resistivity unit below log
location BIE HPT 1. A second part is visible until 64 m, characterised by higher values
reaching the greatest thickness at DP site BIE HPT 2, intercalated by a unit of significantly
lower resistivity emerging upward towards the northeast. The third part from 64 m until
the end of the transect is characterised by high resistivities at the top followed by low
values towards the base.

All the DP HPT logs and sediment cores were drilled as deep as possible (Figures 6 and 7).
Overall, 10 sediment units (SU) were described (Table 3). All cores show colluvial and/or
periglacial slope deposits of different characteristics below the topsoil and above strongly
weathered bedrock material. While reworked and weathered clay and sandstones dominate
BIE 1 and BIE 2, BIE 3 contains reworked and weathered limestone material.

DP log BIE HPT 1 is characterised by very low EC values in SU Ia and II, which slightly
increase towards SU III. The weathered bedrock of SU IVa, which we reached by sediment
coring, could not be penetrated with the HPT probe. HPT values show a distinct increase
from SU II to SU III. In BIE HPT 2 and BIE 2 we reached the greatest depth with 5.58 m
and 5.00 m, respectively. Both EC and HPT data trace coarser or more porous layers in the
sedimentary sequence by low EC and low HPT values. The most significant decrease in
EC occurs in SU VI, which is accompanied by the lowest HPT values of all three DP HPT
logs. In sediment core BIE 2, SU VI is characterised by a dominance of sand and sandstone
debris in a silty matrix. Towards the base, EC and HPT increase again. Compared to BIE
HPT 1 and BIE HPT 2, BIE HPT 3 shows significantly differing characteristics. EC values
show intensive fluctuations between 0 and 30 mS/min; HPT values are constantly low
apart from some clayey layers in SU VII.
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Table 3. Sediment units described for the Biersdorf sediment cores.

Sediment Unit (SU) Description

Ia topsoil, clayey silt, dark brown, soft, non-calcareous, humous,
charcoal and root fragments, sand- and claystone debris

Ib topsoil, clayey silt, greyish brown, soft, non-calcareous, weakly
humous, charcoal and root fragments, sand- and limestone debris

Ic topsoil, clayey silt, dark greyish brown, soft, non-calcareous, humous,
root fragments

II periglacial slope deposits, clayey silt to silty clay, reddish brown,
slightly hard, non-calcareous, rich in sandstone debris

III periglacial slope deposits, clayey silt to silty clay, reddish brown, hard
(dense), non-calcareous, including little sandstone debris

Iva weathered bedrock, clay, reddish brown, extremely hard,
non-calcareous

Ivb weathered bedrock, clay, purple grey, extremely hard, slightly
calcareous, solid limestone at its base

V
colluvial deposits, clayey silt, reddish grey-brown, soft,
non-calcareous, weakly humous, including little sandstone debris,
charcoal and root fragments

VI periglacial slope deposits, clayey to silty sand, reddish grey, loose to
slightly hard (porous), non-calcareous, sandstone debris

VII
periglacial slope deposits, limestone debris (yellowish-grey) and
intercalated, thin clayey silt layers (brown), loose (porous) to slightly
hard (clayey silt layers), slightly calcareous

4.3. Simulation Results and Field Evidence

The modelled hillslope debris flow runout and deposition behavior are shown in
Figure 8. We use photos taken by local residents immediately after the event and our terrain
surveys as reference to compare the simulation results with real conditions. The initial
source areas in the upslope position, determined by the hillslope debris flow disposition
index, represent plausible locations with nearly identical dimensions compared to the
actual scar. For the modelling framework we estimated the mass to drag ratio (m/d) based
on a combination of field observations. We integrated the relatively large mobilized mass
(~1350 m3) calculated by the mass balance of the DEM difference, the high amount of
fine material as observed in the scar and, based on stratigraphical evidence derived from
sediment coring, the relatively low incision rate in the runout track as an indication of a
moderate flow rate as well as the measured flow length. The sliding friction coefficient µ is
highly dependent on the land cover, and therefore we used spatially distributed friction
values based on the land cover type in comparison with the literature values [42,43,45,46].
The downstream flow calculated from these input parameters (c.f. Table 2) is largely
consistent with the real runout behavior (Figure 8).

The accordance between the generated model and the observed runout is about 97%.
In agreement with the real event, the model shows moderate erosion along the slope and
high deposition rates (up to 3 m, anthropogenically leveled after the event) at the foot slope,
where the house functions as a barrier. In addition, the accumulation of material on the
road coincides with the real event as documented (Figure 8).
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5. Discussion
5.1. Debris Flow Trigger Mechanism

ERT measurements in combination with DP HPT logging and sediment coring have
provided detailed insights of subsurface structures upslope of the fissure zone. We assume
that the potential interflow lens at a 3 m depth below the surface that is characterized
by significantly low resistivity values (Figure 5, lower) plays a crucial role for the trigger
mechanism of the event. At a comparable depth, DP log BIE HPT 2 shows the lowest
HPT values of all the logs, indicating high permeability in sand-dominated SU VI (blue
shading in Figure 6) framed by significantly higher pressure values, indicating dense,
clayey (impermeable) periglacial slope deposits (base of SU III) and weathered bedrock
(SU IVa), respectively. In addition, slope deposits reach their greatest thickness of 4.9 m
within the investigated transect. In comparison to DP log BIE HPT 1, where permeability
significantly decreases in 0.8 m b.s., DP log BIE HPT 3 shows an overall higher permeability
related to lose limestone debris in SU VII. These observations are in accordance with reports
from the late evening of 14 July by local residents who observed disappearing water masses
in the field upslope to the northeast of the scar and a concentration of surface runoff in the
depth line where site BIE HPT 2/BIE 2 is located. In addition, during sediment coring in
February 2022, we observed continuous water discharge within the scar at a depth that
corresponds to the position of the assumed interflow (Figure 9).
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Figure 9. Spring water discharge in the scar of the hillslope debris flow at the depth and assumed
location of the observed interflow lens.

The described phenomena of different permeability and surface runoff are directly
connected to the normal fault, separating the Lower Muschelkalk in the east from the
Upper Buntsandstein in the west, which is also indicated in ERT transect BIE ERT 1 (cf.
Figure 5). The hillslope debris flow was triggered exactly in the position of the normal fault.
One may assume that the material in this tectonic position was already characterized by
less stability.

Overall, we hypothesize that the strongly increased pore water pressure and the
enhanced interflow during the tremendous rainfall event led to a severe loss of cohesiveness
and, finally, to a sudden movement of the substrate as an initial landslide movement with
the sliding surface below the interflow layer. In addition, strong surface runoff with the
associated drag force further liquefied and mobilized the initial landslide mass, accelerating
the downslope movement. The surface runoff modelled with r.sim.water is shown in
Figure 10, indicating that the largest amount of surface runoff was concentrated in the
depth line prior to the mass movement. To sum up, all factors lead to a development from
an initial translational slide into the high-energy and widespread hillslope debris flow.

As well as the described potential trigger mechanisms, one has to assume that the
forest path just upslope of the scar also played an important role (Figure 2e). Compaction
in the course of such infrastructural measures reduces the infiltration capacities and rates.
In addition, the morphological change between the path and slope leads to the formation
of an artificial convex embankment in a downslope direction. The risk of hillslope debris
flows increases if the surface runoff concentrates on these embankments with significantly
steep artificial slopes [49].

5.2. Modelling Hazard Potential and Transferability

The proposed modeling concept based on source zone identification and runout cal-
culation is a common and valuable approach for predicting the hazard of debris flow
prediction [10,13,14,43,50]. The plain open source approach presented here yields promis-
ing results simulating the hillslope debris flow in Biersdorf at a local scale (Figure 7). The
modelling results yield a 97% match to the observed runout area as well as true-to-life de-
position spreads and heights. The required input parameters were determined using open
sources in combination with geophysical measurements and UAV-generated photogram-
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metry. This allows for the quick (one to two days of fieldwork) and accurate acquisition
of subsurface and morphometric slope composition. Our model correctly identified the
sliding area along the slope, while correctly disregarding the numerous others in the area as
possible source and hazard zones. This is probably due to the accuracy of the surface runoff
simulations and the corresponding identification of the initial debris flow starting points.
The simulation of the runout and deposition behavior by the GPP enables simple and fast
modeling for different scenarios. The consistent modelling results are strongly related to
the high resolution of the input DEM. The success of the deposition modeling also depends
on the appropriate determination of the initial thickness of the unconsolidated material
incorporated into the mass movement.
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Figure 10. Comparison of the observed debris flow runout with the results of surface runoff modeling
for the study area. The heavy rain simulation is based on weather data from the Wiersdorf station [27]
during the hour before the mass movement occurred. The time of the triggering was assumed by
local residents’ reports.

In general, the transferability of hazard models from local to regional spatial scales is
of great importance. In this context, [43] presented promising results for regional modeling
in higher mountain ranges by optimizing the model parameters and estimation of the input
data of the GPP. We have already partially included the optimized sliding friction and the
mass to drag ratio, and their effect for the local modelling behavior is visible in the realistic
results (cf. Figure 8). Overall, we are striving to implement our approach at the regional
scale for further cases in the Central European low mountain ranges.

6. Conclusions

The torrential rainfall event of 14 July 2021 did not only lead to the devastating floods
of several western Central European rivers but also to hundreds of mass movements in the
low mountain range. Here, we investigated one of such mass movements, the Biersdorf
hillslope debris flow, using a multi-methodological approach combining remote sensing
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with geophysical measurements, DP techniques and sediment coring. We examined the
geomorphological slope structure and the composition of the shallow subsurface around
the fissure zone in detail to determine the specific triggering mechanism.

Based on the photogrammetric model, we quantified geomorphological changes and
the mass balance of the hillslope debris flow. Along with the geophysical measurements in
combination with DP HPT logging and sediment coring, the following main conclusions
can be drawn:

1. The Biersdorf hillslope debris flow was generated in the area of a normal fault separating
the Upper Buntsandstein in the west from the Lower Muschelkalk in the east.

2. Unconsolidated slope deposits reach their greatest thickness above the fault zone.
3. In the same position, DP HPT logs clearly show a layer of enhanced permeability

framed by overlying impermeable periglacial slope deposits and underlying weath-
ered bedrock.

4. Based on ERT depth sections, an interflow zone was detected, which is characterized
by high infiltration rates east of the fault zone.

5. The combination of heavy rainfall, increasing pore water pressure and strong interflow
led to destabilization of the sediment cover.

6. Surface runoff additionally liquefied the material, transforming the initial translational
slide into a widespread hillslope debris flow.

Based on the results of our study, we created an initial stand-alone model of the
observed debris flow, which we subsequently validated in the field. The modeling results
yield a 97% match to the observed runout area as well as true-to-life deposition spreads
and heights, while rightly disregarding other possible source and hazard zones. The model
results indicate a possible transferability to a larger spatial scale and a potential use for
hazard zoning at the regional level.

Finally, our case study provides a pathway for analyzing hillslope debris flows trig-
gered through heavy rain events in low mountain ranges. Our findings increase our
knowledge concerning hillslope debris flows and may contribute to improved risk assess-
ment and hazard prevention measures for other regions.
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