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Abstract: The planktonic foraminiferal species Globorotalia truncatulinoides is widely used as a bios-
tratigraphic proxy for the Quaternary in the Mediterranean region. High-resolution quantitative
studies performed on sediment cores collected in the central and western Mediterranean Sea evidence
a significant abundance of G. truncatulinoides during the Middle Holocene. The robust chronological
frame allows us to date this bio-event to 4.8–4.4 ka Before Present (BP), very close to the base of the
Meghalayan stage (4.2 ka BP). As a consequence, we propose that G. truncatulinoides can be considered
a potential marker for the Middle–Late Holocene chronological subdivision. G. truncatulinoides is
a deep-dwelling planktonic foraminifer and their distributional pattern in the central and western
Mediterranean Sea provides a tool to monitor the onset of the regional deep vertical mixing of the
water column. During the Holocene, the significant increase in the abundance of this species is in
phase with the end of African Humid Period, which marks the transition from a more humid climate
to the present-day semi-arid climate.

Keywords: Globorotalia truncatulinoides; Meghalayan stage; 4.2 event; vertical mixing; Mediterranean Sea

1. Introduction

The identification and characterization of bio-events are fundamental in recognizing
the stratigraphic units contributing to the reconstruction of Earth history. Specifically,
different species of planktonic foraminifera have been extensively used to determine the
biostratigraphical chronology of deep-sea sediments. Among these, Globorotalia truncat-
ulinoides, recently renamed Truncorotalia truncatulinoides in the phylogenetic review by
Aze et al. (2011) [1], is one of the most common planktonic species used for the chronologi-
cal characterization of Mediterranean stratigraphical sequences during the Quaternary [2].

The Holocene Epoch represents the uppermost chronostratigraphic unit within the
geological time scale and covers the time interval from 11.7 ka Before Present (BP) until the
present day [3]. The Holocene is characterized by significant climate variability [4–10] that,
in recent centuries, has also been influenced by anthropogenic activities [11–13].
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In 2018, the Holocene Epoch was formally subdivided into three stages/ages: the
Greenlandian (starting at 11.7 ka BP), Northgrippian (8.2 ka BP) and the Meghalayan (4.2 ka
BP). The two former stages/ages are supported by Global Boundary Stratotype Section and
Points (GSSPs) from Greenland ice cores, whereas the Meghalayan GSSP was obtained from
a speleothem located in the Mawmluh Cave in northeastern India [14]. The Meghalayan
age begins on 4.2 ka BP, corresponding to the so-called abrupt-change event characterized
by dry climatic conditions in many parts of the world [15] from North America, through
the Middle East to China, and from Africa, parts of South America, and Antarctica [16–18].

However, this event is only documented in a few marine and continental records in
the Mediterranean region [5,19–26]. In marine sediments from the western Mediterranean
Sea, the base of the Meghalayan stage is identifiable by oxygen-stable isotopes and SST
records [27], but it is necessary to find possible bio-events that could be used to approximate
the base of this chronostratigraphic unit.

Recent studies from the central and south Tyrrhenian Sea and the Sicily Channel
evidenced a significant increase in the abundance of the planktonic foraminifer left-coiled
(l.c.) G. truncatulinoides at roughly 4.4 ka BP [5,28,29]. These results suggest this bio-event
can be considered as a potential candidate to approximate the base of the Meghalayan stage
in the Mediterranean region.

Nowadays, G. truncatulinoides is indicative of deep vertical mixing during the winter
season [5,30], warranting further exploration on the potential significance of this species as
indicative of new oceanographic conditions close to the base of Meghalayan stage in the
Mediterranean Sea.

This work aims to (1) evaluate the applicability of the planktonic foraminifer l.c. G.
truncatulinoides as a potential tool for the chronological subdivision of the Middle–Late
Holocene Epoch and (2) explore the distribution of l.c. G. truncatulinoides as proxy for late
Holocene paleoenvironmental conditions.

For this research, we combine new and previous literature data obtained from marine
sediment cores collected across the central–western Mediterranean Sea sub-basins.

2. Oceanography of the Study Area: Present-Day Conditions

The semi-enclosed and elongated Mediterranean Sea is characterized by an anti-
estuarine circulation, meaning that it is forced by a net evaporation that occurs over its
surface, which induces a marked salinity difference with the Atlantic Ocean [31]. The
surface water coming from the Atlantic enters the Gibraltar Strait, and spreads throughout
the entire Mediterranean Sea. The Atlantic Water (AW) occupies the upper part (100–200 m)
of the water column, but the depth range changes regionally. The net evaporation and
the mixing with adjacent water masses contribute to the progressive modification of the
AW salinity, which increases from ~36.5‰ at Gibraltar to approximately 38.0–38.5‰ in the
western Mediterranean and >39‰ in the easternmost part of the basin [32,33] (Figure 1). As
the modification of the surface water continues, a number of saltier Mediterranean Waters
are formed in different areas of the basin due to intense air–sea interactions. Between the
Sardinian and Sicily Channels, the path of the AW splits into two branches [34]: one enters
the Tyrrhenian Sea, while the remaining branch flows into the eastern Mediterranean as the
Atlantic Tunisian Current and the Atlantic Ionian Stream (Figure 1). The Tyrrhenian Sea is
characterized by anticyclonic and cyclonic eddies [35] and pronounced oligotrophy [36].
Surface and intermediate waters exit the Tyrrhenian Sea through both the southern opening
and the relatively shallow Corsica Channel (Figure 1). The resultant Eastern Corsica
Current flows along the Ligurian coast, where it is joined by the Western Corsica Current
and becomes the Northern Current (NC). The path of the NC is observed along the entire
northern boundary of the Western Mediterranean Sea, passing offshore the Gulf of Lion
and towards the Balearic Sea [37] (Figure 1).
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Figure 1. Geographical distribution of G. truncatulinoides abundance (%) in core top samples of the
Mediterranean Sea [38]; MARGO database from Kucera et al. (2005) [39] was modified in this work
with additional core top samples from Nextdata Project. The orange circles that divide the study area
into three sectors are used for the oceanographic discussions in the text.

During winter, the northwestern part of the basin (i.e., Gulf of Lion) is subjected
to intense cooling and evaporation, instigating episodes of vertical convection that may
reach the seafloor at depths >2500 m in specific winters, e.g., [40]. In general, this area is
characterized by a much deeper mixed layer than other areas of the Mediterranean Sea.
Neither the area between the Sardinia Channel and the Sicily Channel nor the Tyrrhenian
Sea have these characteristics, even though the mixed layer depth (MLD) shows a clear
seasonal cycle.

3. Material and Methods

This study was based on 11 marine sediment cores collected in the western part
of the Mediterranean Sea (Figure 1) covering the geographical area where the present-
day presence of l.c. G. truncatulinoides is well documented [41,42] (Figure 2). The main
information for each study site is summarized in Table 1; however, the foraminiferal
assemblage of ten marine sediment cores of this study were from papers already published
(Table 1), while only one (MD99-2343) was reported in this paper for the first time (Table 1).
The MD99-2343 core comes from the northern part of the Balearic Sea [43] at 2391 m of
water depth. The micropaleontological content of this core is abundant and well-preserved
and the age model is improved from that originally published by Frigola et al. (2007) [43],
with nine new 14C AMS dates by Català et al., 2019 [27].

A robust chronology of each core already exists: M40/4-82-2SL [44], MD99-2343 [27],
ODP 975B [44], CET1 [45], C33 [46], C08 [47], ODP 974B [44], M40/4 80 SL [44], C90 [29],
ND11 [30], and NDT6_2016 [10].

All samples were washed using a 63 µm size sieve; then, quantitative planktonic
foraminiferal analysis was carried out on splits containing at least 300 specimens. Unfortu-
nately, the different authors did not carry out analyses on the same sediment size fraction:
the analyses performed on core C90 were based on the size fraction >90 µm, counts in
cores M40/4-82-2 SL, ODP 975B, OPD 974B and M40/4 80 SL were performed on >150 µm,
whereas in the remaining records the size fraction was >125 µm. However, this does not
invalidate the results, as the census counts performed in the >125 µm and >150 µm fractions
reflect a realistic spectrum of the assemblages in the Mediterranean Sea [48].

The left- and right-coiling forms of G. truncatulinoides were identified using the con-
ventional method: the test shows right coiling if, when viewed from above with the dorsal
side up, the chambers are added in a clockwise direction. In this study, we only considered
the left-coiling specimens of G. truncatulinoides as it is the most represented in all the sites
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in terms of relative abundance [41,42]. The results are reported as percentages of the total
faunal assemblage.

For this study, the MLD values of Houpert et al. (2015a) [49] were used. For more
details about the data and the methods used, see Houpert et al. (2015b) [50].

Table 1. Study sites, depths (meter water depth) and coordinates.

Core Area Water Depth (m) Coordinates References

M40/4-82-2SL Gulf of Lion (GoL) 1079 42◦18.51′ N, 03◦46.40′ E Broggy PhD thesis

MD99-2343 North Balearic (NB) 2391 40◦29.84′ N, 04◦01.69′ E This work (Català et al., 2019
age model)

ODP975B South Balearic (SB) 2415 38◦53.78′ N, 04◦30.59′ E Broggy PhD thesis

CET1 South Tyrrhenian Sea (ST) 2088 39◦54.69′ N, 14◦06.65′ E Morabito et al., 2014

C33 South Tyrrhenian Sea (ST) 2368 38◦39.48′ N, 10◦20.98′ E Di Stefano et al., 2015

C08 South Tyrrhenian Sea (ST) 2370 38◦38.53′ N, 10◦21.55′ E Budillon et al., 2009

ODP 974B Central Tyrrhenian Sea (CT) 3453 40◦ 21.36′ N, 12◦08.51′ E Broggy PhD thesis

M40/4 80 SL Tyrrhenian Sea (TS) 1881 40◦57.31′ N, 11◦00.22′ E Broggy PhD thesis

C90 South Tyrrhenian Sea (TC) 103 40◦35.76′ N, 14◦42.48′ E Lirer et al., 2013

ND11 Sicily Channel (SC) 475 37◦01′ N, 13◦10′ E Margaritelli et al., 2020

NDT6 West Sicily (WS) 1066 38◦0′ N, 11◦47′ E Trias-Navarro et al., 2021

4. G. truncatulinoides: Habitat and Ecology

Several studies describe G. truncatulinoides as a deep-dwelling planktonic foraminifer
characterized by a complex life cycle, which involves substantial vertical migration in
the water column related to its reproduction [51–57]. The reproduction of this species
occurs in late winter at depths where vertical water mixing is required for the migration
of juveniles to surface waters [56,58,59]. G. truncatulinoides continues its life cycle by
migrating down through the water column [60] at ~350 m, reaching cooler waters below
the thermocline [56,60–63].

G. truncatulinoides has been characterized by five genetically different types (types 1–4) [64]
and type 5 [65]. Types 1–4 were identified from genetic data obtained from plankton tows
in the Atlantic Ocean and the Mediterranean Sea [64]. The initial temporal events relating
to the cladogenesis of G. truncatulinoides types 1–4 was established by de Vargas et al.
(2001) [64], identifying a differentiation between warm and cold morphotypes at ~300 ka.
Renaud and Schmidt (2003) [66] indicated two warm morphotypes (types 1 and 2) at
~170 ka and two cold morphotypes (types 3 and 4) at ~120 ka. Type 5 is present in the
northwest Pacific Ocean, only with the dextral-coiling variant [65]. Type 2 and type 5 are
the only genetic types that contain the right-coiling variant. Type 5 has, to date, only been
identified in oligotrophic subtropical areas in the central water of the North-West Pacific
Ocean [65]. While all five genetic types of G. truncatulinoides are present in the southern
hemisphere, type 2 is the only morphotype that exists in the Northern Hemisphere and in
the Mediterranean Sea [64,65,67].

The left- and right-coiling chamber arrangement of G. truncatulinoides has been consid-
ered to be indicative of different water masses in terms of temperature, salinity, e.g., [52],
and depth [68]. At present, a specific study on the coiling direction of G. truncatuli-
noides in the Mediterranean and its possible connection with changes in environmen-
tal/oceanographic conditions does not exist. However, in the western Mediterranean, the
right-coiled specimens during the Holocene occur only after the chronological interval of
Sapropel layer S1 deposition [29,69] and disappear thereafter. It may be suggested that
the winter mixing is in favor of the reproductive strategy of the left-coiled form [40,70].
The plankton tow [40,71] and sediment-trap [72] data obtained in the Mediterranean
Sea indicate a high abundance of G. truncatulinoides during winter and low during sum-
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mers [30]. Further, the maximum abundances of G. truncatulinoides occur from December to
April [73]. The distribution of this species is concentrated in the central–western part of the
Mediterranean Sea (Figure 2), in areas of intense water column mixing during the winter
months [40]. In contrast, the species is absent from the majority of the eastern basin [30],
probably as a result of the ultra-oligotrophy of the easternmost part of the Mediterranean
and the inability to survive compared to other regions during winter and spring [74].

A study based on sediment traps and surface sediments highlighted that winter
cooling and convective overturning are the primary factors controlling the ecological niche
of G. truncatulinoides off the northwest African coast [63]. During winter, the surface waters
are characterized by a chlorophyll maximum reflecting a phytoplankton bloom, which
corresponds with maximum shell abundances [63]. In contrast, during spring and summer,
when the seasonal thermocline is re-established, surface waters are depleted of nutrients
and the smaller populations of G. truncatulinoides are associated with the deep chlorophyll
maximum below the mixed layer [63]. This relationship between the seasonal stability of
the water column (mixed or stratified) and the associated nutrient enrichment, and the peak
abundances of G. truncatulinoides has also been observed in the North Atlantic Ocean [54,75],
the Bermuda Sea [54], the Western North Atlantic [76], and the Caribbean Sea [52,77].

The recent Mediterranean presence of G. truncatulinoides is well documented in core
top data from Kallel et al. (1997) [38] and in the MARGO dataset [39] (Figure 2). In
particular, a high relative abundance of this species is concentrated in the area from the
Menorca basin to the Sicily Channel, while not being present in the Adriatic Sea, and shows
low abundances in the Alboran Sea and scattered areas of the Ionian Sea and in the Eastern
Mediterranean [30]. Studies on planktonic foraminiferal assemblages over the last four
millennia do not document the presence of this species in the Ionian Sea [78], the Adriatic
Sea [79], the Aegean Sea [80–83], and the Levantine Sea [74,84].

Figure 2. Map of the Mediterranean Sea with the sampling points of the study cores (yellow dia-
monds). GoL = Gulf of Lion; NB = North Balearic; SB = South Balearic; ST = southern Tyrrhenian
(1, 2, 3, 4); CT = central Tyrrhenian (1, 2); TS = Tyrrhenian Sea; SC = Sicily Channel; WS = west Sicily
(see Table 1).

5. Chronological Distribution of Globorotalia truncatulinoides

G. truncatulinoides originated 2.82 Ma in the Southwest Pacific [85–88]. The species later
appeared in the Atlantic Ocean between 2.544 and 2.525 Ma [89], before finally colonizing
other ocean basins ~2.0 Ma ago [8,86,89]. More recently, G. truncatulinoides has become
adapted to colder environments in the Southern Ocean, colonizing subpolar waters in two
successive phases of expansion at 300 and 200 kyr [90,91]. According to Cita and Gartner
(1973) [92], G. truncatulinoides occurred in the Mediterranean Sea much later than in the
major ocean basins. Biostratigraphic studies in the Mediterranean Sea have shown that
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this species appeared ~0.1 Ma below the Olduvai subchron at ca. 1.81 Ma [2] and became
common only ~0.7 Ma later [2,93]. Successively, Di Stefano et al. (1993) [94] and Caruso
(2004) [95] adjusted its first occurrence (FO) in MIS 77 with an age of 2.07 and 2.00 Ma,
respectively. Moreover, its stratigraphic distribution in younger sediments is rare up to
0.934 Ma [8] (Lirer et al., 2019). This may be due to the mechanism through which G.
truncatulinoides enters marginal basins (such as the Mediterranean and Caribbean Seas)
through shallow and narrow passages, e.g., [77], in relation to the Atlantic circulation
controlled by climatic cooling. In fact, G. truncatulinoides is able to spread through the open
ocean easier because the water column is deeper, unlike at shallow passages, where the
column stratification is not ideal for this species.

During the Late Quaternary (the last 140 ka), short peaks of right-coiling G. truncatuli-
noides were documented in the western Mediterranean Sea (Menorca regions) during the
isotopic sub-stages 1.01, 2.01, 3.2, 3.3, 5.31, 5.32, 5.4, 6, and 6.4 [96]. However, not all these
events are documented in the Levantine basin of the Mediterranean [96,97]. In the SW Pa-
cific, G. truncatulinoides has also been extensively used in a new Quaternary biostratigraphic
scheme, which adds weight to its use as a marker in the Mediterranean [98].

Later, l.c. G. truncatulinoides characterizes the climate phases of the Bølling/Allerød
(B/A), the interval between the end of Younger Dryas (YD) and the onset of Sapropel
S1 [29,46,47,69,78,79,99–101].

During the last six millennia, l.c. G. truncatulinoides has been documented only in the
central–western basin: (i) Sicily Channel [69,102,103]; (ii) Tyrrhenian Sea [5,29,45,47,104–107];
and (iii) Balearic Sea [6]. During the last 500 years, l.c. G. truncatulinoides has shown
a significant increase in abundance during the Maunder Minimum (MM) in the central
and western Mediterranean Sea; this time interval is characterized by an atmospheric
blocking event [30], which induced an intense deep vertical mixing phenomenon during
the winter season, enhancing productivity in the mixed layer. In this context, the ideal
ecological conditions for G. truncatulinoides proliferation can be produced, suggesting that
this species can be considered as an excellent bioindicator of surface water mixing and
nutrient availability in the central and western Mediterranean Sea [30].

Conversely, it was absent in the Adriatic, Ionian, and, in general, in the eastern
Mediterranean Sea. This marked difference in the geographical distribution of l.c. G.
truncatulinoides confirms the onset of the modern-day hydrographic conditions in the
western Mediterranean Sea, strongly characterized by the development of deep vertical
mixing (Figure 2).

6. Results and Discussion
6.1. Globorotalia truncatulinoides: A Bio-Chronological Indicator

Bio-events can hardly be assumed to be globally synchronous, because the strati-
graphic and geographic distribution of species is modulated by ecological preferences
exhibited by each taxon and controlled by oceanic circulation, often resulting in earlier or
delayed events in certain geographic areas.

In the central–western Mediterranean Sea, several studies have highlighted that l.c. G.
truncatulinoides temporarily disappears just before the base of Sapropel S1 [99,108].

This species shows a progressive re-occurrence in 5–4.5 ka BP up to the present day
(Figure 3). Even if the study sites used for the correlation are characterized by different
age models, both in terms of resolution and method, l.c. G. truncatulinoides distributional
patterns are the same over time in terms of relative abundances across the whole central–
western Mediterranean Sea (Figure 3). The relative abundance of the G. truncatulinodes
never reaches values in excess of 12–16%, excluding core C90 from Salerno Gulf where this
taxon reaches its highest values (25–30%) (Figure 3). However, the detected discrepancy
is probably due to the different size fraction used for quantitative analyses at this site
(>90 micron) [12,29]. In all the investigated sediment cores, the increase in the abundance of l.c.
G. truncatulinoides occurs in the Middle–Late Holocene transition at the base of the Meghalayan
stage (Figure 3), in agreement with the results reported in the Tyrrhenian Sea [5,29].
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Figure 3. Chronological comparisons of G. truncatulinoides (left-coiled) abundance percentages
(black line) between the marine records: M40/4-82-2SL [44, MD99-2343 [27], ODP975B [44], CET1 [45]
(Morabito et al. 2014), C33 [94], C08 [47], ODP 974B [44], M40/4 80 SL [44], C5 [5], C90 [29], ND11 [30],
and NDT6_2016 [10]. The gray bar represents the phase in which G. truncatulinoides begins to increase
in percentage. The red dashed line corresponds to the end of the Sapropel S1 and the green dashed
line corresponds to the end of the African Humid Period.

In the Mediterranean Sea, the Middle–Late Holocene transition is characterized by
significant paleoclimatic and paleoceanographic changes corresponding to the end of
Sapropel S1 layer (c.a. 6 ka BP) [79,108] and to the end of the African Humid climatic period
(c.a. 5 ka BP) [109]. These latter Mediterranean changes influenced the distribution pattern
of l.c. G. truncatulinoides in the central–western Mediterranean Sea.

At ~5.2 ka BP in the Gulf of Lion (core M40/4-82-2 SL), l.c. G. truncatulinoides records
an increasing trend in relative abundance, culminating in peak frequencies at 3.5 ka BP
and remaining consistent up to the present day (Figure 3). Despite the lower resolution,
it is possible to observe the same pattern in the Balearic Sea (M99 and ODP 975), starting
at 5–4.5 ka BP (Figure 3). Quantitative data detected in the sediments from the southern
Tyrrhenian Sea (cores CET1, C33 and C08) evidence an increase in l.c. G. truncatulinoides
at 5.5 ka BP (about 500 years earlier). At the moment, we do not have an explanation for
this. In fact, at 5.5 ka BP, it is possible to observe higher abundances of the species and a
continued increasing trend towards the present day (Figure 3). The records of the central
Tyrrhenian Sea (cores ODP 974, M40/4 SL) and Salerno Gulf (core C90) align with the
trend of the western Mediterranean with an increase in l.c. G. truncatulinoides, starting from
5/4.5 ka BP. Lirer et al. (2013) [29] reported the strong increase in l.c. G. truncatulinoides
abundance in the Salerno Gulf dated at c.a. 4.571 ka BP as a new bio-event useful for
western Mediterranean correlation.

Moving to the Sicily Channel (cores ND11, NDT6), this bio-event is chronologically
confirmed even in deeper sites starting at c.a. 5 ka BP.

Considering our data, we can assume that, in the central–western Mediterranean Sea
during the Middle–Late Holocene, the oceanographic conditions were characterized by
enhanced vertical mixing during winter with a strong advection of nutrients from the
nutrient-rich deeper layers. This increases the productivity levels in the mixed layer [30],
which marks the transition from a more humid climate to the present-day semi-arid climate
that is well documented by the distribution pattern of l.c. G. truncatulinoides.

6.2. Globorotalia truncatulinoides: A Palaeoceanographic Tool

The oceans have a seasonal pattern of stratification, where there is a surface well-
mixed layer, a layer where the temperature and other properties change rapidly with depth
(the thermocline), and a more uniform deep layer (Figure 4a). The variability of the ML
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has a key influence on the physics, chemistry, and biology of the upper ocean, making it
one of the influential features for Earth’s climate [110]. The base of the ML is generally
defined as the region where conditions start to change rapidly with depth (at tens of meters
below sea level), and the main driver of the ML deepening is wind, which homogenizes the
temperature and salinity of the ML. On the other hand, the warming (or cooling) of the sea
surface during the summer (or winter) contributes to the decrease (or increase) in the depth
of the ML. During summer, or in warmer regions, such as the eastern Mediterranean Sea
(with respect to the western Mediterranean), the warm water remains at the surface and the
water column becomes stably stratified; the ML is very shallow, as is the thermocline. On
the other hand, during winter, or in cooler regions, such as the western Mediterranean Sea
(with respect to the eastern Mediterranean), the surface waters are cooled; this increases
its density and makes it sink to its equilibrium depth. In the western basin, the combined
action of intense cooling and wind-induced mixing is the cause of a deeper ML. In addition
to the horizontal gradient, the depth of the ML base changes on a seasonal basis, increasing
during late autumn/winter (from late October to early March) [111] and decreasing again
in spring (from April).

Figure 4. (a) Schematic vertical temperature profile highlighting the seasonal change of the three
main oceanic layers; (b) the monthly climatological pattern of the MLD at the different sites, shown
in the three areas that are discussed in the paper (northwestern Mediterranean, upper panel; Sardinia
and Sicily Channel, central panel; and Tyrrhenian Sea, lower panel).

The study area can be divided into three main sectors (see circled groups of stations
in Figure 1) when comparing their oceanographic features and MLDs: the sites in the
Gulf of Lion and the Balearic Sea (GoL, NB, and SB), the sites enclosed in the Tyrrhenian
Sea (ST1, CT1, TS, and ST4), and the sites encompassing the Sardinian and the Sicilian
Channel (ST2, ST3, SC, and WS). The maximum values of the MLD (>100 m) are observed
in January–March in the Gulf of Lion and the Northern Balearic Sea (Figure 4b), where, due
to strong north-westerly winds, dense water formation events occur [112,113]. The fetch of
these winds is also known to reach the Sicily Channel (where the climatological depth of
the ML ranges from 60 to 80 m in winter; see Figure 4b). The present-day climatological
depths of the Tyrrhenian ML during winter range from 40 m to 60 m (Figure 4b).

Here, in these sectors, the high percentages of l.c. G. truncatulinoides are recorded.
Based on this, we speculate that the increase in l.c. G. truncatulinoides highlighted in

the Middle–Late Holocene transition is correlated to the re-establishment of the ML or to
its deepening, at least, on a seasonal scale. In particular, l.c. G. truncatulinoides would have
found a favorable habitat between 5 and 4 ka BP, as the stratification conditions, which
characterized the deposition of Sapropel S1, had ended and the climate moved towards
colder conditions, culminating with the 4.2 ka event.
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These observations compliment other recent research. Perşoiu et al. (2019) suggest
that the atmospheric blocking event induced by the strengthened Siberian High played
an important role during the 4.2 ka BP event. Cold winters in Europe are associated
with either blocking conditions over central Europe or the westward expansion of the
high-pressure cell—the Siberian High—centered over Asia [114–117]. We suggest that the
blocking conditions that occurred during the 4.2 ka event and during the MM trigged
favorable oceanographic conditions for l.c. G. truncatulinoides.

A similar scenario was also proposed in order to explain the increase in l.c. G. truncat-
ulinoides during the Little Ice Age (LIA) [30].

Furthermore, in the northwestern Mediterranean Sea, the percentage decrease in l.c.
G. truncatulinoides during the second half of the 20th century was related to the reduced
vertical mixing and lower surface productivity [118].

Therefore, we assume that l.c. G. truncatulinoides can be considered an excellent
indicator of the presence of a deep ML in paleoceanographic reconstructions in the central
and western Mediterranean Sea. In fact, prior to this time, the conditions were not adequate
to allow a breeding population of G. truncatulinoides to become established, due to the mixed
layer conditions that were ecologically prohibitive due to the complex depth migrations
that this species undergoes.

7. Conclusions

The distributional patterns of l.c. G. truncatulinoides were analyzed in 10 cores collected
from the central and western Mediterranean Sea (Gulf of Lion, North and South Balearic
Sea, Tyrrhenian Sea, and Sicily Channel) over the last 6 ky BP. In all investigated sites,
l.c. G. truncatulinoides shows a significant increase in abundance starting at c.a. 5–4 ky BP,
approximating the base of the Meghalayan age (4.2 ka BP).

The significant increase in the abundance of l.c. G. truncatulinoides coincides with
the end of African Humid Period when the Mediterranean Sea experienced a transition
from a more humid climate to the present-day semi-arid climate. This climatic transition
is likely responsible for the induction of winter intense deep vertical mixing and the
subsequent enhancement of productivity in the mixed layer, favoring the proliferation of
l.c. G. truncatulinoides. As a consequence, it is proposed that l.c. G. truncatulinoides can
be used to identify variations in the depth of the ML and, therefore, the thermocline in
paleoceanographic reconstructions in the Mediterranean Sea.

L.c. G. truncatulinoides can be also considered a potential tool for the chronological
subdivision of the Middle–Late Holocene time interval and to approximate the base of the
Late Holocene in Mediterranean marine records, linking the micropaleontological signal
to the onset of paleoenvironmental conditions that are still active today in the central and
western Mediterranean Sea.
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