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Abstract: In Brazil, the development of gullies constitutes widespread land degradation, especially
in the state of South Mato Grosso, where fighting against this degradation has become a priority
for policy makers. However, the environmental and anthropogenic factors that promote gully
development are multiple, interact, and present a complexity that can vary by locality, making their
prediction difficult. In this framework, a database was constructed for the Rio Ivinhema basin in the
southern part of the state, including 400 georeferenced gullies and 13 geo-environmental descriptors.
Multivariate statistical analysis was performed using principal component analysis (PCA) to identify
the processes controlling the variability in gully development. Susceptibility maps were created
through four machine learning models: multivariate discriminant analysis (MDA), logistic regression
(LR), classification and regression tree (CART), and random forest (RF). The predictive performance
of the models was analyzed by five evaluation indices: accuracy (ACC), sensitivity (SST), specificity
(SPF), precision (PRC), and Receiver Operating Characteristic curve (ROC curve). The results show
the existence of two major processes controlling gully erosion. The first is the surface runoff process,
which is related to conditions of slightly higher relief and higher rainfall. The second also reflects
high surface runoff conditions, but rather related to high drainage density and downslope, close to
the river network. Human activity represented by peri-urban areas, construction of small earthen
dams, and extensive rotational farming contribute significantly to gully formation. The four machine
learning models yielded fairly similar results and validated susceptibility maps (ROC curve > 0.8).
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However, we noted a better performance of the random forest (RF) model (86% and 89.8% for training
and test, respectively, with an ROC curve value of 0.931). The evaluation of the contribution of the
parameters shows that susceptibility to gully erosion is not governed primarily by a single factor, but
rather by the interconnection between different factors, mainly elevation, geology, precipitation, and
land use.

Keywords: gully erosion; natural hazard; machine learning; principal components analysis; random forest

1. Introduction

The development of gullies is a major problem in Brazil, both in rural areas, where it
can result in considerable net soil loss and change river baseflow, and in urban areas, where
it threatens infrastructure and populations [1]. These are often impressive phenomena in
terms of volumes of displaced soil cover [2]. While it is recurrent to see the formation of
gullies associated with anthropic activities, some theories mention an ancient process that
had its share of contribution in the morphology of Brazilian landscapes [3,4]. Today, both
anthropic pressure and the modification of environmental conditions due to global climate
change (especially the increase in extreme events) are likely to accelerate erosive processes.
A better understanding of the role of the parameters that influence gully development is an
important challenge that should lead to the elaboration of relevant vulnerability maps of
land covers.

As this is a problem with a strong environmental and social impact, this concern in the
Brazilian earth sciences community is not new, since reference works on this topic date back
to the 1960s and 1970s with the works of Tricart [5] and Christofoletti [6], later taken up
by Ross [7]. The soil cover fragility maps developed are based on various intrinsic criteria
such as bedrock, relief, soil type, vegetation cover, land cover, and extrinsic criteria such
as precipitation (average, cumulative, and intensity of events) or anthropogenic factors
(urbanization, modification of drainage networks, road construction, etc.). Although
several authors mention a case-specific adjustment of the models [8], in the vast majority
of works, the study of gully formation and evolution is based on a uni-factorial approach,
taking into consideration the major factors of water erosion mentioned above. Thus, the
development of gullies is generally approached locally and case by case, often being limited
to a descriptive aspect of the possible causes of erosion. The major factors favoring gully
appearance or development are identified, but in the natural and anthropized environment,
these different factors are often correlated to varying degrees, correlation that is variable
in space. As a result, a complex determinism may be hidden behind a partial correlation
between the occurrence of this type of erosion and a factor or criterion studied separately
from other descriptive parameters of the environment. In this context, few works have
attempted to measure the multifactorial determinism of gully occurrence, i.e., the different
factors including the possible links between these different factors.

New environmental analysis tools such as remote sensing can provide substantial
databases that can be processed by multivariate statistical procedures [9]. In the past
decade, studies aiming at creating erosion susceptibility maps through statistical, machine
learning, data mining, or multi-criteria decision analysis methods have multiplied. Machine
learning methods such as multivariate discriminant analysis (MDA), random forest (RF),
logistic regression (LR), support vector machine (SVM), and others have recently been
implemented, for example, to understand the parameters controlling the development of
drainage network types, urban flooding, landslides, soil subsidence, snow avalanches, and
gully erosion [10–20]. These methods have demonstrated their superiority over traditional
statistical-based techniques by having the ability to model highly dimensional and non-
linear data sets, allowing complex environmental interactions to be evaluated [9,21,22].
Taking advantage of these recent tools, there are studies analyzing gully morphometry
based on their fractal dimension [23,24], but to our knowledge, such databases have only
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been slightly developed to better understand erosive systems, specifically in the case of
gullying in Brazil [25].

The aim of this work was precisely to investigate the determinism of gully devel-
opment by a multifactorial approach that could in turn be used to estimate the risk of
occurrence of this erosive phenomenon. Two approaches are combined here, including a
multivariate statistical analysis (principal component analysis (PCA)), whose objective is
to reduce the dimension of the data space, and to reveal independent macro-parameters
responsible for gully development. Susceptibility maps were drawn using various machine
learning algorithms: multivariate discriminant analysis (MDA), classification and regres-
sion tree (CART), logistic regression (LR), and random forest (RF). The selected site for
this study was the Rio Ivinhema basin in the South Mato Grosso State, an area where the
development of gullies is pronounced and displayed as a priority by decision makers.

2. Materials and Methods
2.1. Study Area

The Ivinhema River (46,689 km2), a sub-basin of the Paraná River basin, is located
in the southern part of the South Mato Grosso state in Brazil (Figure 1). It is limited to
the west by the Serras das Araras, de Camapuã, and part of the Serra de Maracajú. The
Ivinhema River (491.65 km long) springs in the municipalities of Rio Brilhante, Angélica,
and Nova Alvorada do Sul, and flows 490 km to its confluence with the Paraná River
near the city of Naviraí. The altitude of the basin varies from 800 m to 300 m a.s.l., and
three classes of relief can be distinguished, namely, alluvial plains, gentle hills, and broad
hills. The Ivinhema River is responsible for a significant part of the Quaternary alluvium
sediment load deposited in the Paraná Valley. The Ivinhema basin is fully integrated
into the geological context of the intra-cratonic sedimentary Paraná basin (1,500,000 km2),
covering part of the territories of Brazil, Argentina, Uruguay, and Paraguay [26]. Three
geological formations are found in the basin, namely, the Mesozoic formation of the Caiuá
Group, the Serra Geral formation, and Quaternary alluvial deposits. The Caiuá Group
consists of reddish quartz sandstone with a bimodal texture (very fine and coarse grains).
The thickness of this formation does not exceed 150 m and the lithology is uniform in the
whole basin. The formation is interpreted as having been deposited in a fluvial environment
at the base, and eolian at the top [27]. The Serra Geral Formation consists of magmatic rocks
related to fissural volcanism events and intrusion, whose maximum intensity occurred at
the beginning of the Cretaceous period and extended to the Tertiary. In the study area,
two main soil formations can be found: a purple latosol with clay to heavy clay texture,
developed from the basalt of the Serra Geral geological formation in the upper basin, and a
dark red latosol with clay texture, developed from the sandstone of the Caiuá formation in
the lower part of the basin. The climate is tropical (Aw in the Köppen-Geiger classification),
with an average annual temperature of 23 ◦C. The average annual rainfall ranges from
1400 mm in the northeast of the basin to 1600 mm in the southern part.

2.2. Input Variables Map
2.2.1. Gully Erosion Inventory

In Brazil, a distinction is made between ravina-type and voçoroca-type gullies. The
former present a V-shaped profile, an elongated form, and are generally not very deep
(0.5 m to a few meters). When erosion reaches the water table, the profile evolves into a
U-shape due to surface erosion combined with deep erosion, and the gully takes the name
of voçoroca. The erosion widens and may then continue in various directions and lose
its elongated shape. The ravinas often turn into voçorocas from the bottom of the slopes,
that is to say, closer to the hydrographic network where the water table is reached at lower
depth. In this study, the term “gully” includes both ravinas and voçorocas. Ravina-type
and voçoroca-type gully will be specified for their distinction when necessary. For the
compilation of the database, two location classes were considered based on the presence (G
points) or absence (non-G points) of gullies. These locations were identified based on the
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history of gully erosion incidence and the interpretation of satellite images on Google Earth
(Figure 2). Although random sampling of non-G points leads to some artefacts in the use of
machine learning modeling, it is a drawback that is almost impossible to eliminate [13]. In
total, the database includes 800 georeferenced observations (400 G points and 400 non-G
points). Figure 1 shows the location of the G points.

Figure 1. Location of the study area and distribution of gullies (G-points); the black numbers denote
some examples of gullies presented in Figure 2. Spatial references SIRGAS_2000_Brazil_Polyconic
in meters.
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Figure 2. Examples of gully erosion. See Figure 1 for their location in the Ivinhema basin.

2.2.2. Selection of Environmental Parameters

In order to take into account a wide spectrum of geo-environmental factors that
may influence the development of gullies [4,24,28,29], and more specifically under humid
tropical climate, thirteen parameters were selected. These are elevation, slope, exposure,
landform curvature, topographic wetness index (TWI), topographic position index (TPI),
land cover, geology, drainage density, distance to rivers, distance to roads, soil type,
and rainfall.

• Elevation is one of the most important factors affecting erosive phenomena with, in
general, a positive relationship between elevation and the formation of gully and rill
erosion [30]. The elevation map (Figure 3a) is derived from a 30 m resolution SRTM
digital elevation model (DEM) obtained from the USGC Earth explorer website.

• Erosion is influenced by the slope gradient, a major physiographic feature [28,31].
Slope influences flow velocity and thus vulnerability to surface erosion. The slope
map (Figure 3b) was determined using GIS from the 30 m resolution DEM.

• Exposure (frequently referred to as Aspect, Figure 3c) is defined as the direction
of maximum slope. This parameter indirectly affects gully erosion as it controls
microclimate, sun exposure time, moisture retention, evapotranspiration, weathering
rates, vegetation cover, and denudation processes [15,32,33]. This parameter has also
been calculated from the 30 m resolution SRTM DEM.

• Landform curvature is a factor in stormwater runoff [15,19,24]. Three categories
were distinguished from the 30 m resolution DEM: concave, convex, or flat surfaces
(Figure 3d).

• The topographic wetness index (TWI) represents the water accumulated in each pixel
of the study surface [15]. It reflects the effect of topography on the distribution and
zonation of saturation sources that may generate runoff (Figure 3e) [32,34,35]. TWI is
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calculated using a DEM (cell size = 30 m) and several GIS software tools to calculate
slope, flow direction, flow accumulation, and slope angle [36].

• The topographic position index (TPI) indicates the upper and lower parts of the land-
scape, represented by the difference in elevation in each DEM cell (30 m) relative to
the average elevation of surrounding cells [32]. Ridges and depressions are character-
ized by positive and negative values, respectively (Figure 3f). The TPI index results
from comparing the elevation of each cell in a DEM with the average elevation of a
specified neighborhood around that cell. The TPI is positive when the cell is higher
than its surroundings (ridges and hilltops), and negative for depressed features such
as valleys.

Figure 3. Selected input parameters: (a) elevation, (b) slope, (c) exposure, (d) landform curva-
ture, (e) topographic wetness index and (f) topographic position index. Spatial references SIR-
GAS_2000_Brazil_Polyconic in meters.

• Land cover and use can directly affect erosion [24]. The development of gullies is
sometimes analyzed as an ancient phenomenon that has had its share of contribution
to the morphology of Brazilian landscapes [3], but there are many studies that attest
to the role of anthropogenic activities in contributing to and accelerating erosive
processes [37]. Previous analysis, however, recognized that the effects are not always
significant [25]. Therefore, a land cover map was made (Figure 4a) from the Moderate-
Resolution Imaging Spectro-radiometer (MODIS) Land Cover Type 1 with a resolution
of 500 m that has been resampled to a resolution of 30 m. The coding used for the land
cover parameter is as follows: 1 = urban and built up, 2 = croplands, 3 = wetlands,
4 = grasslands, 5 = woody savannah, 6 = savannah, and 7 = forest.

• Geology is a critical parameter influencing erosive processes due to the strength of the
rocks and soil formations that develop there, and the presence of lithological disconti-
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nuities [19,24]. Geological data of the study area were obtained from CRPM [38]. The
three dominant geologic units are Quaternary alluvial deposits, basalts of the Serra
Geral formation, and sandstones of the Caiuá formation (Figure 4b). The following
code was assigned to each formation: Alluvial deposit = 1, Serra Geral formation = 2,
and Caiuá formation = 3.

• Drainage density represents the number of streams per unit area. It reflects the surface
permeability and infiltration rate, which control the intensity of surface runoff, and
may be a factor in the gully formation process [32]. The calculation was conducted
using the drainage network with the “Line density” tool in GIS software from the 30 m
resolution SRTM DEM (Figure 4c).

• The distance to rivers determines the role of the dense river network in determining
the stability of soil covers. It was calculated from the drainage network using the
“Euclidean Distance” tool on the GIS tool with a resolution of 30 m (Figure 4d).

• Distance to roads is one way to approach the influence of anthropogenic activities on
erosion development. Erosion initiated at the edge of the road network is considered
one of the major sources of soil instability and has received scientific attention in recent
decades [39–42]. Road construction can destabilize slopes and locally increase surface
runoff, requiring appropriate stabilization and drainage measures during excavation
and construction [19]. Distance to roads was calculated from the road network in
the South Mato Grosso State using the “Euclidean Distance” tool on the GIS tool
(Figure 4e).

• Soil properties, especially aggregate stability, affect surface erosion and water infiltra-
tion, and therefore influence the erosion process [43,44]. The soil type classes were
extracted from the soil map (1/1,000,000) of the South Mato Grosso State of the Brazil-
ian Geographic and Statistical Institute IBGE (Figure 4f). Table 1 shows the codes that
have been assigned to each soil type.

Table 1. Coding for soil type parameter.

Code Map Code Description WRB/FAO (Soil Taxonomy)

1 AC2 Complex association with dominance of
hydromorphic quartz sand

2 HAQa1 Hydromorphic quartz sand Arenosols (entisols)

3 HGPe7 Low humic eutrophic gley clay texture
and subdominantly eutrophic plintosol

Gleysols (entisols, alfisols,
inceptisols)

4 LEa1 Dark red latosol clay texture
(developed from sandstone) Ferralsols (oxisols)

5 LRa1 Purple latosol very clayey texture
(developed from basalt) Ferralsols (oxisols)

6 PLa1 Aqueous planosol with predominantly sandy
and moderate texture Planosols (alfisols)

7 PVa11 Damp, dystrophic yellow-red Podzolico with
moderate texture Acrisols (ultisols)

8 PVa7 Dystrophic yellow-red Podzolico Acrisols (ultisols)

9 PVa9 Wet yellow-red Podzolico Acrisols (ultisols)

10 Re4 Homogeneous eutrophic litholite soils Regosols (entisols)

• Precipitation is one of the main drivers of water-related erosion processes. The in-
fluence of precipitation on erosion depends on the duration and extent of rainfall
events [32]. Pore filling increases pore pressure and reduces the effective normal force
on a slope, potentially leading to destabilization of materials (rock or soil) [19]. We
used the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
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to calculate the average annual precipitation over a 5-year period (2015–2020) for each
sector (Figure 5g). CHIRPS is a 35+ year quasi-global rainfall dataset from 1981 to
present, with a spanning range from 50◦ S to 50◦ N (and all longitudes). CHIRPS
incorporates 0.05◦ climate CHPclim satellite imagery, together with in situ station
data to create a gridded rainfall time series for trend analysis and seasonal drought
monitoring (Figure 4g).

Figure 4. Selected parameters: (a) land cover, (b) lithology, (c) drainage density, (d) dis-
tance to river, (e) distance to road, (f) soil type, and (g) precipitation. Spatial references SIR-
GAS_2000_Brazil_Polyconic in meters.
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2.3. Data Analysis and Modeling
2.3.1. Principal Component Analysis

A principal component analysis (PCA) was performed by diagonalization of the cor-
relation matrix in order to identify and rank the different sources of variability within
the identified gully points. The principal components are linear combinations of the
13 parameters and thus behave as macro-parameters. They are orthogonal to each other
and therefore represent independent sources of variability, i.e., independent associated pro-
cesses. Taking into account the main PCs makes it possible to concentrate the information
in a reduced number of factorial axes while losing a minimum of the information contained
in the dataset, which constitutes a dimensional reduction of the data hyper-space [45–48].

2.3.2. Gully Susceptibility Prediction

Gully occurrence prediction was performed using the gully and non-gully points as
the dependent variables and the 13 parameters as independent variables and input data.
We used four machine learning algorithms, multivariate discriminant analysis (MDA),
logistic regression (LR), classification and regression tree (CART), and random forest (RF),
for susceptibility modeling. A ratio of 80 to 20 of data was considered for training and
testing the models, respectively. The models used are described as follows:

• Multivariate discriminant analysis (MDA) is a conventionally and widely used tool
to study groups of observations that may have different characteristics [45]. MDA
has shown good performance for classification and modeling in several hydrological
and hydrochemical studies [14,46,48–51]. MDA is a generalization of Fisher’s linear
discriminant, a method used in statistics, pattern recognition, and machine learning
to find a linear combination of features that characterizes or separates two or more
classes of objects or events. The resulting combination, called discriminant functions,
may be used as a linear classifier, or, more commonly, to reduce the dimensionality
between before and after the classification. The discriminant function can be defined
as follows:

F = V1W1 + V2W2 . . . + VnWn, (1)

where F, V1, and W1 represent the discriminant score, the independent variables, and
the discriminant weights, respectively.

• Logistic regression (LR) is a statistical model that can describe the relationship be-
tween the probability of a binary response variable and a set of corresponding ex-
planatory variables. It is a generalized linear model using a logistic function as a
link function [52,53]. In this study, the logistic regression algorithm has been used to
predict the probability of gully erosion to develop (value = 1) or not (value = 0) based
on the optimization of the regression coefficients and using a logit natural logarithms
model. This result always varies between 0 and 1. A threshold is selected, above which
a gully is likely to develop.

• Classification and regression tree (CART) is an effective decision tree-based algo-
rithm and has proven to be powerful technique for handling classification problems.
The CART generates a sequence of sub-trees for classification problems by growing
a large tree instead of using stopping rules. Therefore, it is able to construct com-
plex trees for solving complicated problems with large datasets. CART has been
widely used in many studies of natural hazards such as landslides, subsidence, urban
flooding, etc. [11,19,20,52]. Here, it is be applied to the prediction of gully develop-
ment following a four-step procedure: (1) building the tree, (2) stopping the building
of the tree, (3) pruning the tree, and (4) selecting the optimal tree for classifying gully
or non-gully classes [19,54]. For this method, we also deployed the Gini index method
to create binary divisions with a maximum tree depth of 4.

• Random forest is a method for learning sets of regressions and classifications based
on the construction, at the time of testing, of many uncorrelated decision trees [55],
using the Gini index of impurities [20,56]. The RF model uses bootstrap sampling, to
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be implemented in the evaluation, which allows another unused subset, also called
the out-of-bag data (OOB), to be used for validation. Therefore, for the construction of
the RF model, several tests were performed to find the best number of trees from 40 to
200 to obtain the best result. For this study, the OOB error is minimal for a number
of 60 in the prediction for a given point to belong to the gully class or not. The final
result is the class selected by most trees.

2.3.3. Validation, Performance Metrics and Evaluation Criteria

Validation techniques are valuable tools used in predictive modeling and machine
learning to assess the consistency of results [21,28,57]. Even when prediction, variable selec-
tion, or model selection are not the focus, validation can help to assess the generalizability
and reliability of results. The Hold-Out procedure is the most widely used technique in the
validation of machine learning models [58,59]. It is based on dividing the database into
two non-overlapping parts used for training and testing [60]. In this study, we used the
Repeated Hold-Out method [61]. For 10 successive times, the data were randomly parti-
tioned into 80% for training and 20% for testing. For each split, the four machine learning
algorithms were applied on the training set and validated on the testing set. The average
performance for each model was then computed using the arithmetic mean Equation (1):

P=
1
K ∑K

i=1 Pi, (2)

where P denotes the average value of a performance metric (it can be the total accuracy
of the model or another metric), K denotes the number splits (where K = 10), and Pi is the
result of the performance metric of each split.

To ensure a proper evaluation of the modeling performance of the four machine
learning models, we used four types of classification results provided by the confusion
matrix, namely, accuracy (ACC; Equation (2)), sensitivity (SST; Equation (3)), specificity
(SPF; Equation (4)), and precision (PRC; Equation (4)) [11,62]. In general, the higher the
ACC, SST, SPF, and PRC values, the better the performance of the models.

ACC =
TP + TN

TP + TN + FN + FP
(3)

SST =
TP

TP + FN
(4)

SPF =
TN

TN + FP
(5)

PRC =
TP

TP + FP
(6)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false
negative, respectively.

Model evaluation was also performed using the Receiver Operating Characteristic
curve (ROC) statistic, which is a common criterion for evaluating spatial modeling perfor-
mance [11]. The ROC curve value represents the probability that a test point is accurately
differentiated from a random point in the predetermined context of the study area. For
ROC curve values ranging from 0.5 to 0.6, 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and 0.9 to 1, models
are classified as poor, fair, good, very good, and excellent, respectively.

2.3.4. Contribution Analysis of Parameters

A Jackknife test was used to evaluate the contribution rates of the different parameters
for each model of gully erosion susceptibility [63–65]. The main approach of this procedure
is to leave out a predictor and examine the amount of bias or loss of information created
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by removing that predictor in the estimation model. The percentage decrease in overall
accuracy (DACC) was used to examine the sensitivity of each indicator.

DACCi =
ACCAll − ACCi

ACCALL
× 100, (7)

where ACCall is the calculated value of the overall accuracy of the model using all parame-
ters. ACCi denotes the ACC value of the model when indicator i is removed from the input
dataset, and DACCi is the corresponding percentage decrease in ACC.

3. Results
3.1. Principal Component Analysis and Distribution of PCs

The principal component analysis performed on the gully points showed that the first
four principal components carried 62% of the information (Table 2). PC1 alone explained
21.5% of the variance, showing high positive correlations with altitude, distance to river,
and rainfall (Figure 5a) and a negative correlation with drainage density. PC2 explains
17.6% of the variance, showing high positive correlations with TPI and curvature and a
negative correlation with TWI (Figure 5a). PC3 explained 11% of the variance, had positive
correlations with slope and land cover, and negative correlations with TWI and soil type
(Figure 5b). PC3 explained 9.2% of the variance, showing high positive correlations with
geology and distance to road (Figure 5c).

Table 2. Eigenvalues and percentage of variance explained by the first four principal components.

PC1 PC2 PC3 PC4

Eigenvalue 2.8 2.3 1.4 1.2
Variance explained (%) 21.5 17.6 11 9.2

Cumulative % 21.5 39.1 50.1 59.3

Figure 5. Distribution of parameters on the first three factorial plans (a–c).

The distribution of these four PCs is shown in Figure 6. Areas with negative values
on PC1 (blue color) were along the drainage network and downstream of the basin. They
corresponded to areas of high drainage density. The intermediate values (yellow color)
occurred on the relatively high slopes of the first-order tributaries of the drainage network,
and they indicated slightly high relief conditions with rather high precipitation. The
highest positive values (orange and red color) were at the headwaters of the basin where
precipitation is highest. The high and negative values on PC2, which reflected high values
of TWI, were concentrated in the downstream part of the basin, with some spots located in
the upstream part, indicating high soil moisture and high drainage capacities. The positive
values of PC2 that reflected high values of IPT and curvature were mostly located in the
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upstream and central part of the basin, i.e., an area characterized by rather high hills. PC3
explained a significant part of the variability in the gullying conditions that combined the
parameters slope, land cover, soil moisture (TWI), and soil type. The high positive PC3
values located mainly in the downstream regions of the basin reflected high slope, land
cover dominated by pasture, and coarse-textured red oxisols–ultisols catena. Negative
PC3 values combined gullies developing under conditions of high drainage capacity and
soil moisture (High TWI), land use dominated by field crops (sorghum–cotton–corn crops
rotations, secondarily sugarcane), and finer-textured, strongly micro-aggregated purple
oxisols–ultisols catena (Figure 6d). PC4 shows a very similar distribution to the geological
formations (Figure 6c). The high values are associated with the Sera Geral formation in the
upstream part of the study area, and secondarily with high distances to road infrastructure.
The low values are consistent with the Caiuá fine sandstone formations and very short
distance to road.

Figure 6. Distribution of the first four principal components (a–d), respectively) in the study area.
Spatial references SIRGAS_2000_Brazil_Polyconic in meters.

3.2. Machine Learning

Tables 3 and 4 show the validation results of the four machine learning algorithms
for training and test data, respectively. All statistical indices (accuracy, specificity, sensi-
tivity, and precision) are high, whatever the model, for both training and test data (from
71% to 90%).

For the training data, the performance of the procedures could be ranked as follows:
accuracy (RF > CART > LR > MDA), specificity (RF > CART > LR > MDA), and sensitivity
and precision RF > MDA > LR > CART). The results obtained on the test data showed that
the RF algorithm had the best results compared to the others. Table 5 shows the overall
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performance of the four models using the ROC curve index, with all values above 0.8. From
these data, it can be concluded that all of the models perform very well, although the RF
algorithm showed the best spatial predictive ability for gullies (RF > CART > LR > MDA).

Table 3. Predictive capability of models using training data.

Statistical Index MDA LR CART RF

Accuracy (%) 78.47 77.62 82.81 86.09
Specificity (%) 74.36 75.91 88.09 85.40
Sensitivity (%) 82.47 79.33 77.57 86.79
Precision (%) 76.78 77.05 86.76 85.45

Table 4. Predictive capability of models using test data.

Statistical Index MDA LR CART RF

Accuracy (%) 72.50 78.54 84.38 89.83
Specificity (%) 71.42 81.39 80.61 90.24
Sensitivity (%) 73.33 75.67 88.61 88.46
Precision (%) 67.56 77.78 81.39 86.61

Table 5. Models’ evaluation using the Receiver Operating Characteristic (ROC) curve statistic.

MDA LR CART RF

ROC Curve 0.850 0.861 0.920 0.931

The gully susceptibility maps produced by the four models are shown in Figure 7.
Susceptibility was divided into four classes using the natural break method [66,67]: low
(0–0.25), medium (0.25–0.5), high (0.5–0.75), and very high (0.75–1). The four models used
led to very close results and a very similar distribution of susceptibility prediction. The
areas of high and very high susceptibility were located in the eastern third of the basin as
well as on the extreme western and northern edges. The areas affected by high and very
high susceptibility were quite similar: for RF, 19.6% and 14.4%; for CART, 18.3% and 14%;
for MDA, 19% and 14%; and for LR, 20.4% and 15.5%, respectively (Figure 8).

Figure 7. Cont.
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Figure 7. Gullying susceptibility distribution maps built from (a) multivariate discriminant analysis
(MDA), (b) logistic regression (LR), (c) classification and regression tree (CART), and (d) random
forest (RF). Spatial references SIRGAS_2000_Brazil_Polyconic in meters.

Figure 8. Percentage of area occupied by each susceptibility class determined by the four models
over the study area.

3.3. Contribution of Factors to Susceptibility Mapping

Assessing the importance of the explanatory variables provides a better understanding
of the gully erosion problem, and it is a practical means for environmental managers to
allocate and plan adequate resources for natural resource management [16,20]. While the
susceptibility areas and their distributions were similar, the contributing parameters dif-
fered between models. In the case of the MDA model, the order of the top four parameters
that contribute most to the model was geology > distance to road network > distance
to river network > slope (Figure 9a). For the LR model, the contribution was geology
> distance to river network > distance to road network > slope (Figure 9b). The most
influential parameters according to the CART model were land cover > distance to road
network > precipitation > distance to the river network (Figure 9c). Finally, the RF model
identified elevation > land cover > distance to the river network > geology > precipitation
(Figure 9d). In all four models, the TPI and TWI parameters did not contribute significantly
to the susceptibility modeling.
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Figure 9. Contribution of descriptive parameters for each model (DACC %, Equation (6)) for
(a) multivariate discriminant analysis (MDA), (b) logistic regression (LR), (c) classification and
regression tree (CART), and (d) random forest (RF).

4. Discussion
4.1. Processes Associated with the Diversity of Gully Conditions

The analysis of the main factors associated with the presence of gullies highlights two
main situations favoring the development of this form of erosion in the study area. The
first situation is discriminated by positive values on the factorial axes PC1 and PC2, and
is mainly developed in the upstream part of the basin, in the western, northwestern, and
southwestern sectors. The altitudes are higher; the precipitation more important. These
two parameters showed major influence on gully development. The positive correlations
of the parameters with PC1 and PC2 teach us that these gullies develop rather far from
the hydrographic network, i.e., their development is barely influenced by this drainage
network. The erosion marks more particularly the high parts of the slopes with concave
profile, reflected by the parameter of slope curvature and the TPI index. Under these
conditions, accelerated flow and high runoff promote surface erosion [13,68]. Numerous
erosion rills can be observed leading to deep gullies. In Figure 10, the situations from 2002
to 2021 show the progressive development of an erosion ripple to a gully. This is a genetic
relationship often described in many parts of the world [69,70]. When erosion channels
appear on the soil surface, runoff concentrates, scours, carries soil particles, and rill erosion
develops. Once formed, erosion increases rapidly, and the morphology of the slope is
constantly modified. Water depth, flow velocity, and erosive force increase as the gully
develops. If the water table is reached, the mode of erosion changes drastically; the gully
profile, initially V-shaped (ravina-type gullies), turns into U-shaped (voçoroca-type gullies);
and a rapid upstream progression can be observed, mobilizing considerable amounts of
material [71]. The second case is characterized by negative values on the PC1 and PC2 axes.
These gullies develop at lower elevations, close to the drainage network, under conditions
of high drainage density and on low slopes. The negative correlation with TWI in PC2
reflects an influence of areas prone to water accumulation, i.e., high contributing surface
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area [68]. Areas with high drainage density, which is generally determined by lithology,
vegetation cover, and landform properties [46,72], reflect conditions of high runoff relative
to infiltration, favoring surface runoff erosion. These are mainly the conditions observed
in the central and downstream part of the Ivinhema basin. In contrast to the previous
case, erosion rills are absent, and gullying starts at low points near the drainage system
(Figure 11), i.e., areas of the landscape where the water table is close to the topsoil, and
leading mainly to voçoroca-type gullies. These areas are generally valorized with pasture.
These two above-mentioned cases represent 39% of the variance on the whole dataset and
are clearly discriminated by positive or negative coordinates on PC1 and PC2, i.e., the
processes responsible for this diversity are distinct.

Figure 10. Evolution from an erosional rill to an erosional gully.
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Figure 11. Gully erosion in the eastern parts of the study area.

The first significant contribution of soil type and land cover is observed on the PC3
factorial axis in correlation with slope and TWI. Such an association of parameters suggests
that PC3 reflects soil moisture conditions, its infiltration, and surface runoff potential [72].
The distribution of PC3 values clearly divides the basin into two parts. To the east, the
gullies are associated with slopes in the pasture zone. These characteristics are in agreement
with the conclusions of Castro and Queiroz Neto [37], who mention that the paths created
by the trampling of livestock converging on water tanks, as observed in Figure 12, or
plot corridors favor runoff and cause gullying. In addition, several detailed soil studies
carried out on sandstone formations, mainly used for livestock production, have shown
the development of a Bt horizon progressing up the slopes, shifting the drainage from
vertical to lateral and sub-surface, favoring a piping phenomenon that eventually leads
to the formation of gullies [73]. The development and functioning of typical soil covers,
representative of large regions, constitute crucial information, much more useful than a
soil map, and should be taken into consideration in future multiparameter analysis of
erosion patterns [74–76]. In the western part of the basin, gullies assigned to negative
values on PC3 are associated with the presence of field crops and high TWI indexes.
Sorghum–cotton–maize crop rotations require intense and continuous mechanization while
being developed, from seeding to harvest time, weakening the surface condition of the soil,
generating a deep compacted layer that causes decreased infiltration of rainwater, thereby
increasing surface runoff, and favoring linear erosion likely to evolve into gullies. Thus,
PC3 represents the relationship between exploitation and water erosion in areas that are
not suitable for such activities [37,77–79].

The influence of human activity only appears on the factorial axis PC4, through the
parameter of distance to the road network, and itself coupled with the geology. This factorial
axis is responsible for 9.2% of the variance, which suggests that the coupling between the
lithology and human activity influences the development of gullies, but to a much lesser
extent than the factors of relief, climate, drainage network, and land characteristics. The
strong positive correlations of PC4 with the geology parameter and the distance to the
road network suggest that the influence of human activity on the development of gullies
depends on the lithology of the area. This PC4 reflects the gullies developed on the Caiuá
sandstone formations (i.e., in the southeastern region of the Ivinhema basin) and near
the road network. Thus, in this area, it appears crucial to be vigilant in the construction
of the road network and the trails of access to the plots, likely to activate the formation
and development of gullies (Figure 13). If this factor does not appear as a major factor in
our analysis, it is largely due to the prevailing rurality and low population density (about



Geosciences 2022, 12, 235 18 of 25

0.5 inhabitants per km2) in our study area. The information related to this specific context is
somewhat buried in the larger amount of information related to the whole study area. Such
gullies are located on the periphery of urban areas where the pressure on the environment
is stronger. These results agree with those of Guerra et al. [80], who mention that irregular
habitat and inadequate land cover on a lithology of low erosion resistivity play major
roles in the formation and evolution of gullies. The coordinates of the parameters on
PC4 highlight that the gullies that are not influenced by human activity are located to the
west and northwest of the study area, represented by the negative values of PC4. In this
sector, the urban areas are rare and modest in size, but the analysis of satellite imagery
reveals traces of convergence of the cattle towards the artificial water points (small dams
locally called “Açudes”). These pathways can give rise to erosion rills likely to evolve
into ravina-type and voçoroca-type gullies, as shown in the satellite images (1) and (3) in
Figures 2 and 12. This is a parameter of anthropic pressure on the environment that has not
been taken into account in our study.

Figure 12. Examples of gullies originating near artificial reservoirs.
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Figure 13. Examples of gullies affecting urban areas.

4.2. A Multi Parameter Contribution to Gully Formation

The four models used to map gully erosion susceptibility performed well. The ROC
curve statistic indicates that all models have excellent performance (0.850–0.931) and exhibit
high capability (ROC curve > 0.8) in predicting gully erosion susceptibility. This level of
performance is in line with previous work conducted on gully erosion in other regions of the
world and reflects the strength of the machine learning models adopted and the relevance
of the geo-environmental parameters chosen for the susceptibility mapping [10,21,22].

However, the RF algorithm shows the best performance, confirming the advantage of
decision tree-based models over linear models (Tables 3 and 4). These results are in agree-
ment with several studies that aimed at the application of machine learning approaches
for susceptibility mapping of different types of natural hazards, such as landslide, soil
subsidence, and flooding [11,52,81–84]. In a recent publication on gully erosion, Lana
et al. [25] found that the tree-based ensemble outperformed other algorithms used in the
development of gully erosion predictive models on a regional scale. These authors also
found that decision tree models (especially the RF algorithm) often outperform linear
models, being able to meet statistical assumptions such as independence and statistical
distributions of variables. These models can detect complex non-linear relationships, which
is not the case with linear approaches [20,85–87]. However, although the RF algorithm
is accurate and efficient, it is known to compromise interpretability for discrimination
efficiency [88–90], a major constraint that limits the identification of the processes behind
the phenomenon under study [91–93].

Parameter contribution analysis is of practical interest to environmental managers in
charge of allocating and planning funds, often limited, for natural resource management [20,94].
In previous studies related to other types of natural hazards (snow avalanches and land-
slides), this analysis usually highlights the dominance of one or two major factors in the
susceptibility to the studied hazard, with contribution proportions ranging from 15% to
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50% or even 80% [14,15,20,94]. In our study, for the best performing RF algorithm, the factor
contribution analysis highlighted that elevation, land cover, geology, and precipitation are
the factors that most condition the development of gully erosion. Several studies have
described the strong contribution of the latter parameters in conditioning gully erosion on
both local and regional scales [10,21,22]. Secondary factors were distance to the rivers and
to roads, slope, and drainage density. The other algorithms rely on these same factors for
mapping. However, the low DACC values, less than 7%, emphasize that gully formation
is not governed by one or two major factors, and that this type of erosion is complex in
nature. On this point, despite their mathematical distinctions, both machine learning and
PCA agree on the complexity of the factors involved in the development of gullies.

The study reveals the diversity of situations in which gullying develops in the study
area, as well as the associations of spatially variable factors, i.e., a strong complexity in the
determinism of erosion. Therefore, for a local application, the susceptibility maps are all
quite similar, but must be used with knowledge of this diversity, depending on the specific
situation on a case by case basis. In general, compared to lower flat areas, high elevation
areas have a relatively high potential for gully erosion under conditions of high rainfall and
runoff. Higher relief accelerates surface runoff, paving the way for soil erosion [22,35]. Land
cover and land use are also known to play important roles in gully formation. In Brazil,
extensive rotational cropping, with tillage practices that increase surface runoff, is the most
susceptible to gully erosion [73]. The contribution of geology to susceptibility modeling has
been widely recognized [22,35,67], and it must be kept in mind that the geology parameter
shows a high contribution in the four models. Areas of very high susceptibility are all
located on the Caiuá formation. Castro and Queiroz Neto [37] mentioned the presence
of more than 9000 large voçoroca-type gullies in the Parana sedimentary basin, 80% of
which were developed on ultisols derived from the fine sandstone formations, particularly
from the Caiuá and Baurú groups. Anthropogenic action, often decried as a cause of gully
development, appears only as a contributing factor in addition to other natural features
that favor gullying. However, the largest voçoroca-type gullies recorded in the study area
are in the peri-urban areas of the Caiuá formation near the drainage network (Figure 11).

5. Conclusions

In this work, we studied the different factors controlling the formation and devel-
opment of gully erosion and established susceptibility maps in the Rio Ivinhema basin
in the state of South Mato Grosso, Brazil. The database constructed on gully erosion
and 13 geo-environmental factors was analyzed by a multifactorial statistical approach
(principal component analysis (PCA)) and by machine learning with four different algo-
rithms, multivariate discriminant analysis (MDA), logistic regression (LR), classification
and regression tree (CART), and random forest (RF). This type of analysis highlights the
existence of distinct major processes (in this case, two major processes) that take place in
different sectors of the study area. In the western part of the basin, i.e., in the upstream
region, the gullies are accompanied by rill erosion and do not develop near the drainage
network. In the center and east of the basin, on the other hand, large gullies (long, wide,
and deep) develop near the drainage system. Human activity, represented by the parameter
of distance to the road network, contributes significantly to the formation of gullies, but
only under specific geological conditions, mainly on the sandstones of the Caiuá formation.
The influence of human activity also seems to be related to the construction of small earth
dams for cattle feeding, mainly in the western part of the basin, but this parameter was
not considered and quantified in the study. Human activity is also related to rotary crops,
which interfere intensively with the soil. The study shows that this kind of approach should
be carried out in parallel with studies of the organization of soil cover along broadly repre-
sentative catena, including the path of water. Such studies would help considerably in the
interpretation of our results. All four models performed well in mapping gully susceptibil-
ity (ROC curve > 0.8), giving very similar results, although slightly better in the case of the
random forest algorithm. Areas of high to very high susceptibility (29% < area < 35% of the
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study area) involve regions with high relief and precipitation, short distance to rivers and
roads, and sandstone lithology, mainly the Caiuá formation. Analysis of the contribution
of the descriptor parameters selected for the study shows that susceptibility to gullying is
not governed primarily by a single factor, but by the contribution of several factors that
reflect several complex spatially distributed processes. In a context of risk reduction and
sustainable land management, the results of the study should help the authorities and
stakeholders concerned to make decisions, but by considering the processes involved on a
case-by-case basis for each area to be developed.
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