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Abstract: The rock slope stability analysis can be performed using deterministic and probabilistic
approaches. The deterministic analysis based on the safety concept factor uses fixed representative
values for each input parameter involved without considering the variability and uncertainty of
the rock mass properties. Probabilistic analysis with the calculation of probability of failure instead
of the factor of safety against failure is emerging in practice. Such analyses offer a more rational
approach to quantify risk by incorporating uncertainty in the input variables and evaluating the
probability of the failure of a system. In rock slope engineering, uncertainty and variability involve a
large scatter of geo-structural data and varied geomechanical test results. There has been extensive
reliability analysis of rock slope stability in the literature, and different methods of reliability are
being employed for assessment of the probability of failure and the reliability of a slope. Probabilistic
approaches include Monte Carlo simulation (MCS), the point estimate method (PEM), the response
surface method (RSM), first- and second-order reliability methods (FORMs and SORMs), and the
first-order second-moment method (FOSM). Although these methods may be complicated, they
provide a more complete definition of risk. Probabilistic slope stability analysis is an option in
most commercial software; however, the use of this method is not common in practice. This paper
provides an overview of the literature on some of the main probabilistic reliability-based methods
available for the design of the rock slope in open pit mining. To demonstrate its applicability,
the paper investigates the stability of a rock slope in an open pit mine in the Goldfields region,
Western Australia. Two different approaches were adopted: deterministic stability analysis using
two-dimensional limit equilibrium and finite element shear strength reduction methods using SLIDE
and RS2 software, respectively, and probabilistic analysis by applying the MCS and RSM methods
in the limit equilibrium method. In this example, the slope stability analysis was performed using
the Spencer method with Cuckoo search optimization to locate the critical slip surface. The results
obtained were compared and commented on.

Keywords: open pit; rock slope; uncertainty and variability; probability; reliability; factor of safety;
probability of failure

1. Introduction

Probability analysis of rock slopes has gained considerable attention in the design
of open pit mines (e.g., [1–6]). The unavoidable uncertainties involved in geotechnical
design parameters has, however, attracted significant research in the use of reliability
analysis of slope stability over the past few decades [7–12]. In most cases, the stability
of the open pit slope is expressed in terms of the factor of safety. The factor of safety is
determined by the deterministic methods, which include limit equilibrium (LEM) and the
shear strength reduction method (SSRM). For complex cases of variable slope geometry
and geological settings, deterministic methods cannot be applied. The natural variability
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in rock properties is the direct result of various factors that the rocks are subjected to
during their formation [13]. The complexity comes from the variabilities and uncertainties
associated with the rock properties during the design and assessment of rock slope stability.
This natural variability cannot be reduced no matter our knowledge of rock properties
and expertise displayed in estimating them [13,14]. On the other hand, knowledge-based
uncertainties can be reduced, if not eliminated. Unlike the natural variability, the magnitude
of knowledge-based uncertainties reduces as the level of knowledge increases [13,14].
Therefore, in the deterministic approach, the factor of safety cannot reflect the uncertainty
of its underlying parameters. In most cases, the influence of a parameter on the calculated
factor of safety is investigated through a sensitivity analysis, based on the recognition that
there are many uncertainties associated with the underlying parameters [15,16].

Therefore, the most appropriate approach is to consider the stability analysis as a ran-
dom system where the occurrence of slope failure is a random event and analyze it with the
probability method. The use of probability methods in slope engineering permits a rational
treatment of the various uncertainties that significantly influence the safety of a rock slope.
These methods assume that the input parameters are of a random character that depends
not only on the mean values of the parameters but also on their scatter and correlation. In
other words, the probability methods allow a systematic approach of treating uncertainties
and quantifying the reliability of a design [11,12,14–21]. In a probability analysis, every
input parameter is assigned a statistical distribution, and stability is evaluated in terms of
the probability of failure (Pf) and/or reliability index (β); Pf is the probability that the factor
of safety is less than unity or a reference value. As an example, the relationship between
β and Pf is presented in Table 1 [22]. Geotechnical designs typically require a β > 3.0 (i.e.,
Pf = 0.001) for an expected performance better than “above average”.

Table 1. Relationship between the reliability index (β) and probability of failure (Pf) [22].

Reliability Index β
Probability of Failure Pf

=Φ(−β) Expected Performance Level

1.0 0.16 Hazardous
1.5 0.07 Unsatisfactory
2.0 0.023 Poor
2.5 0.006 Below average
3.0 0.001 Above average
4.0 0.00003 Good
5.0 0.0000003 High

Where Φ(−β) = standard normal cumulative distribution function.

Both LEM and SSRM, although originally deterministic, can easily be adapted to suit
probabilistic models [23]. The probability of failure and the reliability index are used to
quantify risks and hence evaluate the consequence of failure [24]. Various probability
methods have been proposed to estimate Pf and/or β (e.g., [14,25–28]). The most widely
used methods are the first-order reliability method (FORM) (e.g., [29–31]), first-order
second-moment (FOSM) method (e.g., [7,26]), and second-order reliability method (SORM)
(e.g., [32,33]). The reliability-based design approach has been developed and utilized
to address the shortcomings of the deterministic approach and considers uncertainties
explicitly [14,34]. Several applications of solution methods using Monte Carlo simulation
(e.g., [35–37]), the point estimate method (e.g., [19,38,39]), and the response surface method
(RSM) have been reported in the literature (e.g., [32,40,41]). [7] explored the mean first-
order reliability method, which is a simplification of the more general first-order reliability
method. [21] used FORM to model rock plane failure. [42] used Monte Carlo simulation
as sensitivity tool for calculating the probability of failure [43]. The reliability methods
and the response surface methods have been used for slope reliability problems with an
implicit performance function (e.g., [40]).

The early applications of reliability methods (e.g., [44–48]) were limited to theoretical
case studies. Currently, the probability and reliability methods for slope stability constitute
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an already well-developed research area and most of the methods are currently imple-
mented in numerical code for the design of rock slopes in practice. The most important
literature in this area includes journal articles and books (e.g., [14,49–51]). Although the
system reliability methods have been used extensively in theoretical cases and in civil
engineering applications, these approximation methods may not be available for practi-
cal open pit slopes with complicated geometry and/or multiple slope bench due to the
perceived mathematical complexity. More importantly, with the advent of computers in
data handling, Monte Carlo simulation, Latin hypercube, and the response surface method
(RSM) have been adopted in LEM software programs, such as SLIDE. The SSRM methods,
however, have been adopted in several well-known finite element (RS2/3) or finite differ-
ence (FLAC) programs. In addition, the FOSM, for instance, is time consuming, which is
quite common for the implicit performance for LEM analysis [52]; however, researchers
have tried to overcome these problems using methods like RSM [53]. Recently, [53] used
Gaussian process regression (GPR) and genetic programming (GP) to resolve the problems
of the implicit function performance function. This GPR is a nonparametric kernel-based
probabilistic model.

However, while LEM is the most widely used method for evaluating slope stability in
practice, extensive research has been undertaken to improve its performance, particularly
in finding the global critical slip surface [23]. Again, while the determination of the critical
slip surface may be affected by the experience of the researcher or engineer, several search
algorithms, such as the cuckoo, particle swam optimization, simulated annealing, etc.,
have been proposed to optimize the search for the critical slip surface. On the other hand,
to carry out a probabilistic analysis using SRM, a spatially correlated field is typically
developed in random field theory and then solved using finite element or finite difference
methods [54].

This paper aims to review some probability methods that have been used in the design
of rock slope reliability problems. A brief discussion of the uncertainty and variability
associated with rock mass and some methods of quantification is presented. Then, the
cuckoo and particle swam optimization search methods are briefly discussed. Based on
existing knowledge of the uncertainty associated with rock slopes, and the limitation of
the implicit reliability functions, the paper adopts the cuckoo techniques coded in the
Rocscience SLIDE computer software to analyze the stability of a case pit slope located in
the Goldfields, Western Australia. Deterministic and probabilistic analyses were carried
out using LEM using the Rocscience SLIDE computer software to determine the factor
of safety, probability of failure, and reliability index. The reliability of the case pit slope
stability was evaluated using Monte Carlo simulation and the response surface method
and the results were compared.

2. Uncertainty in Rock Slope Engineering and Methods of Quantification

In general, sources of uncertainty in slope engineering include the natural variabil-
ity of the rock material, limited availability of information about the ground condition,
and errors made during measurements and testing of samples [55]. There are various
classifications of uncertainty in the literature; however, one classification that proves ade-
quate for geotechnical engineers places uncertainty into three groups (Figure 1): geological
uncertainty, model uncertainty, and parameter uncertainty [14,56,57]. Geological uncer-
tainty comprises uncertainties associated with the geometry of geological structures and
their relationships between lithologies and those associated with the boundaries of litholo-
gies [56,58]. Model uncertainty exists if there is a possibility of obtaining an incorrect
result even if the exact values are available for all the model parameters [56]. It reflects the
inability of a model or design technique to represent the true physical behavior of a system
under consideration [14,58,59]. Parameter uncertainty reflects the inability to account for
the various attributes of the geotechnical model [56]. It includes uncertainties associated
with the values adopted for the rock mass and hydrogeological model parameters, which
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can stem from data scatter, such as the spatial variability and random testing error and
systematic error, which involves statistical error and bias in measurements.
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Figure 1. Types of uncertainty.

As uncertainty is present in the in situ material, it means uncertainty will also exist
in the expected performance function of the design [60]. If a value of the performance
function like cohesion or the friction angle varies, and this variation over space and time
cannot be predicted, one cannot say with certainty what the value of the variable will be
but only the likelihood or probability that it will be within some specific range of values.
Unfortunately, the overall uncertainty is rarely quantified in rock engineering. Instead,
conservative designs are generally adopted through deterministic analysis. However, as
single values are assigned in the deterministic analyses, there is no guarantee that the
design will perform as expected. Therefore, there is the need to have an approach that can
consider varying rock variabilities and uncertainties in rock slope conditions during the
design of rock slopes and analysis of rock slope stability.

Various mathematical frameworks have been developed for the assessment of uncer-
tainty and variability in slope stability analysis (e.g., [7,8,11,12,14,19,25,32,34,35,37,55,61–65]).
Two main methodologies have been proposed to deal with uncertainties in the rock proper-
ties in the assessment of slope stability, i.e., the reliability method and non-deterministic
methods [66]. As shown in Figure 2, the non-deterministic methods consist of proba-
bilistic methods and non-probabilistic methods (also called imprecise methods). In the
probabilistic methods, the rock properties affecting the stability of the slope are considered
as random variables that have a certain probability distribution. Some of the common
non-probabilistic methods are evidence theory, fuzzy set theory, the interval approach,
possibility theory, random set theory, etc. [58,66]. For instance, uncertainty characterized by
fuzziness is treated with a branch of methodologies based on a fuzzy representation of un-
certain variables. A complete description of each method is outside the scope of this paper
and the reader is referred to the documents cited for more information on the mathematical
formulations and procedures. A brief description of FORM, FOSM, SORM, PEM, MCS,
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and RSM is given in the next section to provide some insight on the mathematical meaning.
Reliability analyses provide a more rational approach to quantity slope design risk than a
deterministic method by incorporating uncertainty in the input parameters in the analysis.
By doing so, the probability of failure can be established for a specific failure mode.
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3. Review of Reliability-Based Methods
3.1. Reliability Index and Probability of Failure

The main task of reliability analysis is to calculate the probability of failure and
reliability index. To perform a reliability analysis, a performance function g(X) must be
defined that relates to the resistance R(X) and disturbance S(X) acting on the system. This
is mathematically expressed as:

g(X) = R(X) − S(X) (1)

where X represents the collection of random input variables. By this definition, failure
occurs if g(X) < 0, while g(X) > 0 denotes stable conditions (Figure 3). The surface defined
by g(X) = 0 is referred to as the critical limit state as it defines the boundary between these
two conditions [60]. When considering the critical limit state for a rock slope under planar
failure, the performance function can be expressed as the shear strength that resists sliding
minus the shear forces that initiate sliding. Such equations can be evaluated analytically
with little additional effort. For more complex problems, such as an analysis of rock slope
deformation under seismic conditions, it is difficult to define the loads and resistances
explicitly. Approximate methods of evaluation are therefore required.
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To calculate the reliability of the system, the distance between the mean value of the
performance function and the critical limit state at g(X) = 0 must be determined. When the
distance between these two points is normalized with respect to the standard deviation
of the performance function, this is referred to as the reliability index β for the system
(Figure 3). The reliability index is defined as [60]:

β =
µg

σg
(2)

where µg and σg are the mean and standard deviation of the performance function, re-
spectively. However, to solve for the value of β in Equation (2), the exact shape of the
performance function must be known, which is not always the case. Based on this, a more
versatile measurement of reliability is the Hasofer–Lind reliability index βHL. This method,
also known as the first-order reliability method (FORM), calculates the minimum distance
in units of the directional standard deviation from the mean value point of the multivariate
distribution of the random variables to the boundary of the critical limit state (Figure 3).
This provides a more consistent and invariant measure of reliability for the system and
can also be easily calculated for correlated or uncorrelated variables using the approach
outlined in [29]. The matrix equation for βHL can be defined as [60]:

βHL = minx∈F

√
(X− µ)TC−1(X− µ) (3)

or:

βHL = minx∈F

√(
Xi − µi

σi

)T
[R]−1

(
Xi − µi

σi

)
(4)

where X is the vector of random variables of the set random variable, µ is the vector of
mean values of random variables, σ is the standard deviation, and F defines the failure
region of g(X) < 0. The variable C defines the covariance matrix and R is the correlation
matrix, which allows the user to establish either a positive or negative relationship between
random variables. Equation (4) is preferred to Equation (3) because the correlation matric R
is easier to set up and conveys the correlation structure more explicitly than the covariance
matrix. For uncorrelated variables, the matrix R simplifies to a symmetric unit matrix. The
matrix algebra may be unfamiliar to some; however, programs, such as Microsoft Excel or
MATLAB, can be used to easily complete these calculations (e.g., [29,31,67]).
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After the reliability index has been determined, the probability of failure Pf for the
system can be found by calculating the probability of g(X) < 0 (Figure 3). This is related to
the reliability index using the following equation:

Pf =
∫ 0

−∞
g(X) = Φ(β) (5)

where Φ is the cumulative distribution function (CDF) for the performance function evalu-
ated at 0 with a unit standard deviation and a mean β. As mentioned earlier, the shape of
the distribution is rarely known and therefore must be assumed. In most cases, a normal
distribution is reasonable; however, a truncated or lognormal distribution may be more
appropriate when the performance function depends on positive functions, such as the
factor of safety, extent of yield in a material, or displacements [60].

Again, from Equation (2), a constant mean value suggests that the reliability index
increases, and the uncertainty in the estimate of the performance function decreases.
This results in a narrower distribution for the performance function and a decrease in
the probability of failure for the system. FORM is widely used because of its efficiency.
However significant errors may arise when the nonlinearity of the failure/performance
function increases. This nonlinearity is due to the nonlinear relationship between random
variables, the consideration of non-normal random variables, and/or the transformation
from a correlated to uncorrelated random variable [24]. As many of the reliability methods
are based on approximations, it is likely that different methods will produce different
results. Different methods must be compared to obtain a more accurate understanding of a
system. There are two variations of FORM, i.e., FOSM and AFOSM. In FOSM, the statistical
distribution of the random variables is ignored whereas in AFOSM, the distribution of the
random variables is considered.

3.2. Reliability Methods

As mentioned earlier, for a more a complex problem, the performance function cannot
be stated explicitly. The reliability methods are normally coupled with the finite element
method to evaluate the performance function. The number of evaluations and what input
parameters are selected depend on the reliability methods used [60]. The following section
briefly describes five methods that can be used to approximate the statistical moments of
the performance function.

3.2.1. First Order Second Moment

FOSM has long been applied to assess the reliability of slopes [68]. It consists of the
Taylor series of approximations of the mean and variance of the performance function.
Where the performance function is smooth and regular, the mean and variance can be
calculated using the first terms of the Taylor series expansion method to expand g(X) [69,70].
It requires a linearized form of the performance function at the mean values of the random
variables [24,70]. This method assumes that the expected value of the performance function
is approximately equal to the value of the function calculated with the mean values of
all variables [60,70]. The variance is determined by calculating the partial derivatives of
the performance function with respect to each uncertain variable. For uncorrelated input
random variables, the variance of the function is given as:

σ2
g
∼=

n

∑
i=1

(
∂F
∂Xi

)2
σ2

Xi
(6)

where Xi denotes the random variables and n is the number of random variables. As stated
earlier, since the performance function cannot be stated explicitly in most geotechnical
engineering applications, a linear approximation for the partial derivatives is required [70].
To achieve this, each of the variables is changed by a small (∆Xi) amount while all other
variables are kept at their mean values. The change in the performance (∆G) that results
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is then divided by the difference in the input. Therefore, to maintain a consistent level
of uncertainty, the input variables are chosen at the mean plus and minus one standard
deviation, and Equation (6) can be revised as [60]:

σ2
g
∼=

n

∑
i=1

(
∆G
∆Xi

)2
σ2

Xi
(7)

Knowing the moments of the performance function, the reliability index and proba-
bility of failure can be calculated using Equations (2) and (5) assuming a normal distribu-
tion [69,70].

3.2.2. Second-Order Reliability Method

SORM was initially studied by [71,72]. The method was developed to enhance the
accuracy of the estimated probability of failure. Since the performance function is approxi-
mated by a linear function, the accuracy of FORM deteriorates when the nonlinearity of
a limit state function increases. In other words, SORM overcomes the disadvantage of
FORM. SORM is more computationally expensive than FORM since a second derivative is
required. Once the second-order surface is obtained, according to the asymptotic formula
of Breitung, the probability of failure can be calculated. Breitung’s formulation [72] for
SORM is given by [73]:

p f = Φ(−β)
n−1

∏
i=1

(1 + βvi)
1/2 (8)

where vi (i = 1, . . . , n − 1) are the principal curvatures of the limit state function at the
most probable point (MPP) and β is the reliability index obtained from FORM. MPP is the
point that has the highest probability density on the performance g(X) = 0 as shown in
Figure 4. The principal curvatures of the limit state surface are obtained as the eigenvalues
of the rotational transformed second-order derivatives matrix called the Hessian matrix
of the performance function in the standard normal space [74]. In attempt to address this
problem, a number of studies have been performed aiming to eliminate the calculation of
the Hessian matrix (e.g., [73,75–77]). The other popular formulation is given by [78], which
is considered more accurate than Breitungs’s formulation [73,76,77]. Ref [73] modified
SORM, called the second-order reliability method with first-order efficiency (SORM-FOE).
According to [73], if the derivatives of the MPP search are evaluated numerically, the
number of functions required for FORM will be linearly proportional to the number of
random variables n as [73,74]:

NFORM = k(n + 1) (9)

where k represents the number of iterations of the MPP search. However, if the finite
difference formula is used for the derivative evaluation, the number of functions required
by SORM is:

NSORM = k(n + 1) +
n(n + 1)

2
= NMPP +

n(n + 1)
2

(10)

Clearly, the SORM is second-order efficient because NSORM is quadratic in terms
of n. SORM-FOE improves the accuracy of FORM while maintaining a similar level of
efficiency [73].
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3.2.3. Point Estimate Method

The point estimate method (PEM) originally proposed by [79,80] is one of the most
popular numerical procedures that approximates the expected value and the variance of
a performance function by evaluating it as a series of specifically chosen discrete points.
Evaluation of the points is chosen at the mean plus and mean minus one standard deviation
for each variable, resulting in 2n evaluations for n random variables. A weighting value
ρ is used at each evaluation point to ensure the expected (mean) value and standard
deviation of the input parameters are recovered [19,39,59,60,81,82]. The method accounts
for a maximum of three statistical moments, namely mean, variance or standard deviation,
and skewness. It does not require prior knowledge of the shape of any probability density
function of the input variables and the spatial correlation; however, this approximate
method may lead to incorrect interpretations of the reliability if the var function g(X) is
highly nonlinear or the random variables are asymmetric. According to [60], if all the
evaluation points are weighted equally, this value is 1/n for each variable. The statistical
mean and variance are given by the following equations:

µg ∼=
1
2n

2n

∑
i=1

g(xi) (11)

σ2
g
∼=

1
2n

(
2n

∑
i=1

g(xi)

)2

− µ2 (12)

where xi is the input variable, g(xi) is the function of the input variable xi, and n is the
number of variables. When the coefficients of variation for the input parameters are small,
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PEM is found be robust; however, the number of evaluations can be significantly high when
a large number of variables are considered. [83], including several other authors, have
developed methods to reduce the number of evaluations, and users need to be mindful of
the assumptions [60,81,82].

3.2.4. Monte Carlo Simulation

The Monte Carlo (MC) simulation method is considered a very powerful tool. It
was developed in 1949 by John von Neumann and Stanislav Ulam when they published
a paper “the Monte Carlo method”. Due to its robustness and concept simplicity, it has
been widely used in reliability analyses [14,34,37,84,85]; it provides efficiency for engineers
with basic working knowledge of probability and statistics for risk evaluation of risk or
reliability of complex engineering systems. Thus, when the behavior of the performance
function is difficult to evaluate, the probability of failure can be calculated directly by using
Monte Carlo simulation. In this method, large sets of randomly selected input variables
are generated according to their probability distribution function in the analytical model to
determine the behavior of the system [60,82]. The method generates a random number for
each of the input random variables in the problem and it makes combinations amongst all
these random variables to perform several deterministic computations [5,86]. The accuracy
of the method depends on the number of simulations performed and increases with an
increasing number of simulations. Though the method has some advantages, it can be
computationally intensive and time consuming. However, the lack of approximations
makes Monte Carlo an ideal standard to compare to other reliability methods.

3.2.5. Response Surface Method

The response surface method (RSM) has been presented as an efficient tool to identify
the likelihood of the failure behavior of rock slopes [87]. The method has been applied in
using the central composition method design (CDD), which is one of the statistical design
methods used to implement experiments to examine the effects of the main interactions of
different levels of independent variables on the resulting response (dependent variable).
As a result, an equation for the response, i.e., factor of safety is established as a function of
the design variable (independent variables) of the response surface. The resulting mathe-
matical model or response equation is used to estimate the probability of an unsatisfactory
performance in the rock slope [88]. The RSM can be used to approximate the performance
function by relating the input and output parameters for a system by a simple mathematical
expression. It uses a small number of strategically selected computations to create a re-
sponse surface of factor of safety (FS) values for various combinations of input parameters.
It then predicts the factor of safety values for any combination of samples and provides an
estimated probability of failure. It has been shown that for a potential slip surface of a slope,
the relationship between the factor of safety and the input parameters can be approximated
by a quadratic polynomial function [41,89,90]. Thus, in reliability analyses, the exact limit
state function g(X) can be approximated by the polynomial function g’(X) [60,81]:

g′(X) = a0 +
n

∑
i=1

biXi +
n

∑
i=1

ciX2
i (13)

where X = (x1, ..., xi, ..., xn) is the vector of the input random variables, n is the number of input
random variables or number of random field elements; and a = (a0, b1, . . . , bn, c1, . . . ., cn)T

is the vector of unknown coefficients that must be determined [91]. According to [60], to
properly evaluate the number of unknowns in the quadratic equation, 2n + 1 evaluations
are required [91–93]. A regression-based approach is used to compute the unknown
coefficients (e.g., [91]).

From [94], the method works by: (1) converting all random variables to standard
normal random variables (0, 1); (2) representing the resulting factor of safety in polynomial
chaos expansion form; and (3) using a small number of computations to determine the
coefficients of the polynomial in step 2 and (4) generate Latin hypercube samples and
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plugging them into the polynomial to estimate the factor of safety. According to [92],
the initial random variables are converted to standard normal random variables using
transformation equations [92,94]. Hence, the Hermite polynomial chaos expansion of the
factor of safety for a given failure surface looks like this:

F(U) = ao +
n
∑

i1=1
ai1 Γ1

(
Ui1
)
+

n
∑

i1=1

i1
∑

i2=1
ai1,i2 Γ2

(
Ui1 , Ui2

)
+

n
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1
ai1i2i3 Γ3

(
Ui1 , Ui2 , Ui3

)
+ . . .

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1
. . .

in−1

∑
in=1

ai1i2,...in Γn
(
Ui1 , Ui2 , . . . , Uin

)
(14)

where F is a random output of the model; ai1i2,...in are deterministic coefficients in the
expansion to be estimated; n is the number of variables used to represent the uncertainty
in the model inputs; U =

(
Ui1 , Ui2 , . . . , Uin

)
is a vector of independent standard normal

variables; and Γn
(
Ui1 , Ui2 , . . . , Uin

)
is the polynomial chaos of order n [92]. A complete

description of the above mathematical formulation is outside the scope of this paper and
readers are referred to articles and monograph (e.g., [92,95]).

Once the approximate limit state function has been established, FORM Equation (3)
is used to determine the reliability index directly. This is more accurate than the FOSM
method as it uses geometric interpretations to determine the reliability index rather than
determining statistical moments through a linear extrapolation of the mean input values.
The advantage of the combined RSM/FORM method is that it can be used for correlated
and non-normal input variables and is suitable for any linear limit state surface. One
disadvantage is the assumption that the inputs and outputs are related through a quadratic
equation, which may not be valid in all situations.

4. Overview of Cuckoo and Particle Search Optimization
4.1. Cuckoo Search Optimization Method

The cuckoo search (CS) is a metaheuristic optimization algorithm that is inspired
by [96], based on cuckoos’ breeding behavior. This method has been used in welded beam
and spring designs, data fusion in wireless network sensors, and recently in slope stability
designs. [97,98] used this method in 2-D slope stability analysis [99]. The application of the
cuckoo search method in 3-D slope stability analysis has also been reported (e.g., [99,100]).
From [99,101], the following rules applies to the CS algorithm [96]:

a. Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.
b. The best nests with high-quality eggs will carry over to the next generations.
c. The number of available host nests is fixed, and hosts can discover an alien egg with

a probability pa ∈ (0, 1).

Based on these rules, the host bird can either throw the egg away or abandon the nest
and build a new nest [101]. By the last rule, the fraction pa can be used to determine the
worst solutions of n nest that will be replaced with a new nest randomly [99,101]. To solve
the problem, the illustration is that every egg in a nest represents one new solution. The
aim is to use the new and better solution to replace the current solution in the nest. In some
cases, the nest may have two eggs (solution), but the problem can be simplified so one nest
has only one solution [99,102]. From [97], the CS algorithm begins by initializing a fixed
number of n valid solution vectors {P0, . . . ,Pi, . . . ,PN−1|F(Pi) > 0 exist ∀i ∈ [0, N − 1]}. A
number of iterations Imax is defined; both N and Imax depend on the dimensionality of the
problem. The solution vectors are sorted from worst fitness (i.e., highest factor of safety) to
the best fitness [94].

Several other authors have developed methods to refine the solution and readers are
referred to the documents cited. The method has been compared with other algorithms,
such as PSO and the genetic algorithm, and the results show that CS has a higher success
rate [96,99].
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4.2. Particle Swarm Optimization Method

The particle swarm optimization (PSO) was initialized by Kennedy and Eberhart in
1995 [103,104]. The method simulates bird flock activities when they randomly search
for food in their path. Each solution is considered a particle in the search space and each
particle has a fitness value. During movement, each particle adjusts its position by changing
its velocity according to its own experience and the group’s experience, finally moving
to the optimal position [105–107]. PSO has gained popularity in the field of structural
engineering (e.g., [108–110]), hydrogeological (e.g., [111,112]), and geotechnical engineering
(e.g., [113–115]). Examples of PSO applications to slope stability problems include [107,116–
122]. In the literature, PSO’s dynamics is governed by five principles of swarm intelligence:
(a) proximity, i.e., ability to perform simple and time computation; (b) quality, i.e., ability
to respond to quality factors in the environment; (c) diverse response, i.e., the method
should not commit its activities along excessive narrow channels; (d) stability, i.e., the
behavior of the method must not change with small changes in the environment; and
(e) adaptability, i.e., the method must be able to alter its behavior when the computational
cost is not excessive [104,122,123].

PSO reaches its goal if it meets the termination criteria. The commonly used termina-
tion criteria are set as follows: (i) reaching a maximum number of iterations; (ii) finding a
satisfactory solution; and (iii) achieving constant fitness for a certain number of iterations.
These criteria are set to guarantee the completion of the iterative search process [118,119]. In
essence, PSO uses a population of search points to probe the search space. The population
is called the swarm and the search points are called particles. Each particle moves in the
search space with adaptable velocity, recording the best position it has ever visited in the
search space, i.e., the position with the lowest function value. The adaption of the velocity
is based on the information coming from the particle itself, as well as from the rest of the
particles. As each particle has a neighboring prescribed particle, the best position attained
by any neighbor is communicated to the particle and influences the movements. For the
mathematical formulations of PSO, readers are referred to [107,116–119,122].

5. Adopted Methods

In this study, the adopted methods can be grouped into deterministic factors of safety
evaluation, probability of failure by means of MCS and RSM methods, and comparison of
the results. MCS is an ideal standard to replace other reliability methods. RSM determines
the optimum condition of the model’s input variable that leads to the maximum or mini-
mum response within the region of interest. These methods were chosen because they are
coded in most slope stability commercial software, and they are readily available for use
in practice.

5.1. Limit Equilibrium Analysis with Monte Carlo Simulation and the Response Surface Method

There are various alternative methods that are available in this group. The main
difference between different limit equilibrium methods is in the assumptions made about
the shape of the slip surface and the equilibrium equation that can be satisfied. As part of
this effort, the factor of safety and probability of failure were evaluated by adopting the
cuckoo search (CS) optimized slip surface in the Spencer method in Slide2. The CS is a very
fast and efficient global optimization method, which is used in Slide2 for locating critical
non-circular slip surfaces and hence locates a lower factor of safety than other methods,
such as PSO. It requires no user input of trial surfaces or search objects.

5.2. Finite Element Shear Strength Reduction Method

The finite element elasto-plastic analyses assess the magnitude of deformation. The
RS2 two-dimensional mode yields a deterministic factor of safety by means of the shear
strength reduction (SSR) technique, during which the cohesion and friction angle of linear
materials and the shear strength envelope of nonlinear materials are simultaneously re-
duced by a reduction factor until numerical convergence within the specified tolerance is



Geosciences 2021, 11, 319 13 of 20

no longer possible. The greatest SSR factor that allows convergence is considered the factor
of safety against slope instability. The finite element method more realistically models
actual failure mechanisms by allowing the failure surface to implicitly emerge as strain
occurs within the continuum during the shear strength reduction process.

6. Application to Case Study

To demonstrate the application of probability methods, a case study was examined
for an open pit mine. The case mine is a gold mining operation located in the Goldfields
region of Western Australia. Slope stability analyses for a large open pit mine are relevant,
such as increasing the slope angles of the existing design. A comprehensive slope stability
project was conducted to determine the engineering properties of the rock mass to assess
the failure mechanism and investigate alternatives for improving the overall stability of
the slopes. The slope stability analysis was conducted for the eastern slope of the pit. The
material in this location comprises three types, namely volcaniclastic sediment, porphyry,
and basalt.

7. Results

The mean values of the material properties for the rock types are presented in Table 2.
The expected values and standard deviations were determined for each parameter by
analyzing the geotechnical test results (Table 2). All variables of the slope were found to
be normally distributed, so all the analyses were based on normal distribution data. The
mechanical properties of the rock mass were estimated from Hoek–Brown investigation.
The results of the laboratory test show that the rock strength values, as obtained from the
uniaxial compression strength test for the volcaniclastic sediment, basalt, and porphyry,
are 140, 168, and 215 MPa, respectively. The unit weight of the rock mass is 27.4 kN for
volcaniclastic, 28.8 kN/m3 for basalt, and 26.3 kN/m3 for the porphyry. The geological
strength index (GSI) for the rock mass is estimated to be 58 for volcaniclastic, 68 for basalt,
and 61 for porphyry. The mi is a constant estimation that is related to rock types and
is based on considerations from RocData. In addition, the disturbance factor was taken
as 1 for conventional production (poor) blast and the effect of the slope height was also
considered in the calculation of the rock mass where the overall height used was 280 m.
Given the high quality and strength of the three rock types, and the structural conditions,
rock mass failure was considered the most likely failure mechanism. The traditional
Hoek–Brown failure criterion was considered for the rock mass.

Table 2. Input parameters of the rock material.

Rock Type Unit Weight
(kN/m3)

Generalized Hoek–Brown

UCS
(MPa) GSI mi D Young’s

Modulus (GPa) Poisson Ratio σUCS
(MPa) σGSI Distribution

Volcaniclastic
Sediment 27.4 140 58 24 1.0 2.78 0.3 34.5 13.3 Normal

Basalt 28.8 168 68 25 1.0 4.93 0.2 32.0 10.0 Normal
Porphyry 26.3 215 60 20 1.0 3.34 0.2 53.9 12.0 Normal

8. Discussion

To reduce the number of random variables, UCS and GSI were assumed to have
engineering significance and were treated as random variables. All other parameters were
treated deterministically, and their mean values used. From field observation, and based on
the geological cross-section, no anisotropy matching fault/shear was included in the model.
The location of the groundwater table in the model was based on water level readings from
standpipe piezometers and the pressure head from a vibrating wire piezometer as obtained
from the site.
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To ensure the slip surface is global, the maximum iteration in CS was 500, the number
of nests was 50 with an initial number of surface vertices of 8, and analyzed for the non-
circular mode of failure. The analysis was performed to verify the performance of CS in
probabilistic Monte Carlo simulation and the response surface search method.

Table 3 shows the minimum factor of safety and probability of failure with the two
iterations for the slope. This approach finds the optimal solution. It is clear from Table 3
that CS with RSM could be used in analyzing slope stability. The respective factor of
safety (FS) of the overall slope is 2.59 and 2.90 using Monte Carlo simulation and the
response surface search, and 0% probability of failure (PF). This suggests the slope is stable
(Figure 5).

Table 3. Result of FoS and PoF from limit equilibrium analysis.

Probability Method FS PF (%) RI

MCS 2.587 0 3.2
RSM 2.902 0.2 2.7

MCS = Monte Carlo Simulation; RSM = Response Surface Method; FS = Factor of Safety; PF = Probability of
Failure; RI = Reliability Index.
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Figure 5. Probabilistic limit equilibrium slope stability analysis.

Figure 6 shows the results of the finite element method using the same parameters
and model applied in LEM. The critical strength reduction factor (SRF) is 2.47 for the slope.
The results show they are in reasonably good agreement with the slip surface assumed in
the Spencer LEM analysis. Comparing the results of LEM with SSRM, the factor of safety
from LEM is reliable and can be used.



Geosciences 2021, 11, 319 15 of 20
Geosciences 2021, 11, x FOR PEER REVIEW 15 of 20 

Figure 6. Result of deterministic finite element analysis. 

9. Conclusions 
In this paper, an overview of probabilistic reliability methods for slope stability 

calculation considering material uncertainty was presented. The study highlights the need
for a conscientious understanding of uncertainty and variability for effective 
representation of rock slope design. Uncertainty is a common fact in geological
engineering problems and three types of uncertainty are normally identified for slope 
design. These are geological uncertainty related to natural variability in the rock 
properties, which cannot be reduced no matter our knowledge and expertise displayed in 
estimating them; model uncertainty related to the possibility of obtaining an incorrect 
result even if all the exact values are available for all model parameters; and parameter 
uncertainty related to the inability to account for the various characteristics of the 
geotechnical model that stem from either data scatter and/or systematic error, such as 
statistical and bias in measurements. These uncertainties can have a significant impact on 
the design performance of a slope if not properly accounted for. 

There are two main approaches to deal with uncertainties. These are reliability and 
non-deterministic methods. There are two categories of non-deterministic probabilistic 
methods and non-probabilistic methods. Probabilistic methods are commonly used to 
represent and quantify uncertainty in the slope design process. Likewise, the reliability-
based design approach quantifies and provides a consistent measure of safety by
determining the probability of failure for a slope system. Even though the reliability-based 
methods may appear complex, they have been logically applied to a variety of rock slope 
engineering problems. For probability methods, the techniques have been coded in limit 
equilibrium and finite element computer software. However, as results may differ
depending on the reliability (or probability) method chosen, two or more methods should 
be used to gain an understanding of the errors involved. 

A case example was presented to demonstrate the value of probabilistic-based 
analyses in the slope design process. A rock slope from an open pit in a gold mining 
operation was studied. Geotechnical parameters are considered significant factors and 
any inconsistencies in these parameters and difficulty in the selection of appropriate data
are paramount in rock slope design. The uniaxial compression strength (UCS), geological 
strength index (GSI), disturbance factor (D), rock mass constant (mi), and unit weight 
were determined to be key parameters. UCS and GSI were treated as random variables 
and a normal distribution was chosen. The Monte Carlo simulation and response surface 
methods implemented in SLIDE software and solved with cuckoo Spencer limit 
equilibrium methodology were used for this purpose. The study highlights the need for 
verification with deterministic finite element methodology in RS2 software. The results 

2

2
Critical SRF: 2.47

Maximum
Shear Strain
min (stage): 0.00 

max (stage): 0.01 

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.01

93
00

92
00

91
00

90
00

19700 19800 19900 20000 20100 20200 20300 20400 20500 20600

Figure 6. Result of deterministic finite element analysis.

9. Conclusions

In this paper, an overview of probabilistic reliability methods for slope stability calcu-
lation considering material uncertainty was presented. The study highlights the need for a
conscientious understanding of uncertainty and variability for effective representation of
rock slope design. Uncertainty is a common fact in geological engineering problems and
three types of uncertainty are normally identified for slope design. These are geological
uncertainty related to natural variability in the rock properties, which cannot be reduced
no matter our knowledge and expertise displayed in estimating them; model uncertainty
related to the possibility of obtaining an incorrect result even if all the exact values are
available for all model parameters; and parameter uncertainty related to the inability to
account for the various characteristics of the geotechnical model that stem from either
data scatter and/or systematic error, such as statistical and bias in measurements. These
uncertainties can have a significant impact on the design performance of a slope if not
properly accounted for.

There are two main approaches to deal with uncertainties. These are reliability and
non-deterministic methods. There are two categories of non-deterministic probabilistic
methods and non-probabilistic methods. Probabilistic methods are commonly used to rep-
resent and quantify uncertainty in the slope design process. Likewise, the reliability-based
design approach quantifies and provides a consistent measure of safety by determining the
probability of failure for a slope system. Even though the reliability-based methods may
appear complex, they have been logically applied to a variety of rock slope engineering
problems. For probability methods, the techniques have been coded in limit equilibrium
and finite element computer software. However, as results may differ depending on the
reliability (or probability) method chosen, two or more methods should be used to gain an
understanding of the errors involved.

A case example was presented to demonstrate the value of probabilistic-based analyses
in the slope design process. A rock slope from an open pit in a gold mining operation was
studied. Geotechnical parameters are considered significant factors and any inconsistencies
in these parameters and difficulty in the selection of appropriate data are paramount in rock
slope design. The uniaxial compression strength (UCS), geological strength index (GSI),
disturbance factor (D), rock mass constant (mi), and unit weight were determined to be key
parameters. UCS and GSI were treated as random variables and a normal distribution was
chosen. The Monte Carlo simulation and response surface methods implemented in SLIDE
software and solved with cuckoo Spencer limit equilibrium methodology were used for this
purpose. The study highlights the need for verification with deterministic finite element
methodology in RS2 software. The results were compared and were useful to highlight the
benefit of probabilistic analysis of slope designs over the deterministic method.
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Geotechnical engineers must be aware that probabilistic slope design methods are
evolving and that the deterministic methods are not always consistent slope design meth-
ods. They must be aware that when using the deterministic method, significant design
errors can occur if the design technique fails to represent the true physical behavior of the
slope or rock mass conditions, such as calculating the factor of safety in deterministic limit
equilibrium methods or finite element methods. Based on these conditions and for the
purposes of expedience, it is necessary to integrate deterministic analysis with probabilistic
design analysis to give a credible economic slope design. Slope design methods that use
probabilistic analysis give a wider review of failure probability and risk-based decision-
making, which is warranted in complex mining situations. Despite their mathematical
complexity, the probabilistic-reliability methods discussed are in use today and due to
progress in computation, they provide an invaluable reference to decision-making.
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