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Abstract: The classification of soils into categories with a similar range of properties is a fundamental
geotechnical engineering procedure. At present, this classification is based on various types of cost-
and time-intensive laboratory and/or in situ tests. These soil investigations are essential for each
individual construction site and have to be performed prior to the design of a project. Since Machine
Learning could play a key role in reducing the costs and time needed for a suitable site investigation
program, the basic ability of Machine Learning models to classify soils from Cone Penetration Tests
(CPT) is evaluated. To find an appropriate classification model, 24 different Machine Learning models,
based on three different algorithms, are built and trained on a dataset consisting of 1339 CPT. The
applied algorithms are a Support Vector Machine, an Artificial Neural Network and a Random Forest.
As input features, different combinations of direct cone penetration test data (tip resistance qc, sleeve
friction fs, friction ratio Rf, depth d), combined with “defined”, thus, not directly measured data
(total vertical stresses σv, effective vertical stresses σ’v and hydrostatic pore pressure u0), are used.
Standard soil classes based on grain size distributions and soil classes based on soil behavior types
according to Robertson are applied as targets. The different models are compared with respect to
their prediction performance and the required learning time. The best results for all targets were
obtained with models using a Random Forest classifier. For the soil classes based on grain size
distribution, an accuracy of about 75%, and for soil classes according to Robertson, an accuracy of
about 97–99%, was reached.

Keywords: cone penetration test; soil classification; machine learning; artificial neural network;
support vector machine; random forest

1. Introduction

With the increasing number of available high-quality datasets, the application of
machine learning algorithms has gained the interest of various fields of research over
the last 10 years [1]. The classification of soils into groups with similar properties is a
fundamental engineering task in the preliminary stages of a construction project. At
this stage, the feasibility of the desired project is often not yet proved. Hence, monetary
investments are associated with high risks. To keep the financial consequences of an
unfeasible project low, (soil) investigation studies are usually cost-optimized. At present,
investigation into subsoil using a combination of field and laboratory tests is inevitably
associated with high costs; therefore, this process is often as minimal as possible. In recent
years, the Cone Penetration Test (CPT) has gained interest as a powerful and cost-effective
tool for the investigation of subsoil conditions. The goal of this paper is to utilize CPT data
for the automatic interpretation of subsoil conditions.

Recent publications related to Cone Penetration Test data interpretation and soil
classification using Artificial Intelligence show promising results. In these studies, Machine
learning has been used to classify soils from CPT data [2–5] and to successfully estimate
soil and design parameters [2,6]. Compared to these investigations, the basis of the present
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study is formed of a very large dataset of 1339 CPT tests, which were all performed in
similar soils and conditions, with 490 of these tests are complemented by traditional soil
classifications based on the European Soil Classification System (ESCS) [7,8]. Additionally,
the ML models are used to predict soil classes from CPT tests conducted in the Netherlands,
and thus outside the test area of the training data.

In this paper, a machine learning classifier based on a Support Vector Machine, Arti-
ficial Neural Network and Random Forest were used to predict soil classes according to
Oberhollenzer et al. [8] and soil behavior types according to Robertson [9–11]. To identify
the algorithm that is best suited to this task, 24 models were built and trained with varying
sets of input features. The best results for each target, in terms of both prediction accuracy
and training time, were obtained using the Random Forest classifier. The Random Forest
models were also used to identify and predict soil strata from unseen CPT data from sites
in Austria and the Netherlands, and led to very satisfying results.

It has to be noted that the application of machine learning does not automatically
lead to cost-efficiency. However, regarding the interpretation of a high number of data
or finding patterns in the obtained test data, machine learning could help to improve the
interpretation quality and could reduce the time required for the classification. Thus, it
may lead (in certain circumstances) to a reduction in costs.

2. Cone Penetration Test, Models and Methods
2.1. Cone Penetration Test (CPT)

In a CPT, a cone with a specific diameter gets pushed vertically into the ground under
a constant rate. Based on the measured data, e.g., tip resistance qc and sleeve friction fs,
various soil behavior charts were developed to identify the soil strata and soil behavior
types [9–13]. Additionally, various empirical correlations have been published for a quick
and easy interpretation of CPT data (including parameter determination). However, these
correlations are generally not applicable to all soils and subsurface conditions and might
need to be validated before their application (e.g., for over-consolidated soils [14,15] or
reclaimed fills [16]). Figure 1a shows the scheme of the cone and Figure 1b shows a plot of
the measured tip resistance qc, sleeve friction fs and the resulting friction ratio Rf (fs/qc
in percent). In a piezocone test (CPTu), additional pore-pressures, due to groundwater
(and installation effects) are measured (u1, u2, u3). In a seismic cone penetration test
(SCPT, SCPTu), the shear wave velocity Vs at specific penetration depth intervals (usually
50–100 cm) is measured. CPTs are mainly performed to determine subsoil conditions, such
as soil type and strata, and to estimate geotechnical parameters (e.g., effective friction
angle ϕ’, cohesion c, etc.) [17]. The disadvantages of a cone penetration test are that its
application is limited to predominantly fine-grained soils and that the subsoil is not visible
to the engineer. Therefore, the CPT tests are usually complemented by core drillings to
verify the applicability of the correlations (e.g., for parameter identification).
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Figure 1. (a) Scheme of the CPT probe, which is pushed into the subsoil [17]. (b) Example of meas-
ured data from the cone penetration test (cone resistance qc, sleeve friction fs and the friction ratio 
Rf). 

2.2. Dataset 
The dataset used for this study was published in 2021 by Graz University of Tech-

nology, in cooperation with the company Premstaller Geotechnik GmbH [8]. It is open-
source and available for download under the following link: https://www.tugraz.at/en/in-
stitutes/ibg/research/computational-geotechnics-group/database/ (accessed on 1 October 
2020). 

The dataset consists of 1339 CPT tests from sites in Austria and southern Germany. 
All tests were performed by the company “Premstaller Geotechnik ZT GmbH”. For the 
tests, a CPT-truck or CPT-rig with a standardized 15 cm² probe was used.  

For the interpretation, the test data were processed with the software bundle CPeT-
IT of Geologismiki to identify the soil behavior types according to Robertson [9–11]. Ad-
ditionally, 490 of them were classified based on grain size distribution from adjacent bore-
holes. Figure 2 shows an example of the assignment of soil classification from borehole 
samples to the CPT data. The maximum distance between the CPT test and its adjacent 
borehole is approximately 50 m. Differences in the position of the soil layer changes, due 
to the distance between the CPT and borehole, were considered by manually adjusting 
the location of the soil layers by Oberhollenzer et al. [8]. 

 
Figure 2. Example of the assignment of core drillings to CPT-data by Oberhollenzer et al. [8]. 

Figure 1. (a) Scheme of the CPT probe, which is pushed into the subsoil [17]. (b) Example of measured data from the cone
penetration test (cone resistance qc, sleeve friction fs and the friction ratio Rf).

2.2. Dataset

The dataset used for this study was published in 2021 by Graz University of Tech-
nology, in cooperation with the company Premstaller Geotechnik GmbH [8]. It is open-
source and available for download under the following link: https://www.tugraz.at/
en/institutes/ibg/research/computational-geotechnics-group/database/ (accessed on 1
October 2020).

The dataset consists of 1339 CPT tests from sites in Austria and southern Germany.
All tests were performed by the company “Premstaller Geotechnik ZT GmbH”. For the
tests, a CPT-truck or CPT-rig with a standardized 15 cm2 probe was used.

For the interpretation, the test data were processed with the software bundle CPeT-IT
of Geologismiki to identify the soil behavior types according to Robertson [9–11]. Addition-
ally, 490 of them were classified based on grain size distribution from adjacent boreholes.
Figure 2 shows an example of the assignment of soil classification from borehole samples
to the CPT data. The maximum distance between the CPT test and its adjacent borehole is
approximately 50 m. Differences in the position of the soil layer changes, due to the dis-
tance between the CPT and borehole, were considered by manually adjusting the location
of the soil layers by Oberhollenzer et al. [8].

The database contains 28 columns and 2,516,978 rows. The feature columns are dis-
tinguished in raw test data, data defined by an engineer and data based on empirical
correlations (using the test and defined data). Measurement errors and outliers are elimi-
nated by setting threshold values for the measured data of −100 and +10,000. Datapoints
which exceed those boundaries are left blank.

https://www.tugraz.at/en/institutes/ibg/research/computational-geotechnics-group/database/
https://www.tugraz.at/en/institutes/ibg/research/computational-geotechnics-group/database/
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The soil behavior types determined with the software package of Geologismiki [18]
are based on the publications of Robertson from 2009, 2010 and 2016. In 1986, Robertson
published the first chart for soil classification based on the cone penetration test data.
With the cone resistance qt (Pa), the friction ratio Rf (%) and the pore pressure ratio Bq
(-), the chart distinguishes between 12 behavior types for predominantly fine-grained
soils [13]. In 1990, Robertson provided a new soil behavior type classification based on
normalized, and thus adapted to ground water conditions, CPT data. Additionally, the
number of soil behavior types was decreased to nine [12]. An updated version of this
chart using normalized parameters was published in 2009, where the normalized soil
behavior types are determined by the soil behavior type index, Ic (-) (Equation (3)), which
is calculated with the normalized cone resistance Qt (-) and the normalized friction ratio Fr
(-) [9]. In 2010, Robertson published an updated version of the soil behavior chart from
1986, where the 12 behavior types were adjusted to the nine types of 1990 [10]. Instead
of qt (Pa), this chart uses the dimensionless cone resistance qc/pa (-), where pa (Pa) is the
atmospheric pressure, and the friction ratio Rf (%), on both log scales. In 2016, Robertson
published a new version of the soil behavior types, where the chart distinguishes between
soil beyond the type, based on its behavior under loading. This is based on the updated
normalized cone resistance Qtn (-) (Equation (1)) and the normalized friction ratio Fr (%)
(Equation (4)) [11]. The discussed soil behavior type charts are provided in Figure 3.

Qtn =

[
(qt − σv)

pa

]
∗
(

pa

σ′v

)n
(1)

where n (-) is the stress exponent (Equation (2) and ≤1, which is based on the soil behavior
type index Ic (-) (Equation (3)).

n = 0.381(Ic) + 0.05
(

σ′vo

pa

)
− 0.15 (2)

Ic =

√
(3.47− logQt)

2 + (logFr + 1.22)2 (3)

FR =
fs

qt − σvo
× 100% (4)
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As mentioned above, an additional soil classification based on grain size distribution
from adjacent boreholes was assigned to the 490 CPTs in the dataset by Oberhollenzer
et al., in 2021 [8]. In this project, the borehole samples were classified according to ESCS [7].
Due to the fact that the soil classification of the borehole samples was performed by
different engineers, the determined soil classes spread with regard to their denotation.
Oberhollenzer et al. [8] summarized all classifications into seven different soil classes,
henceforth called Oberhollenzer_classes (OC). These soil classes are summarized in Table 1.
Classes which could not be assigned to one of the seven classes, e.g., due to the too widely
spread classifications, are summarized in class 0 (ignored classifications).

Table 1. Soil classification provided by Oberhollenzer et al. [8].

Name Grain Size Range Mainly Contents Label

Group 1 Gr,sa,si’→ Gr,co gravel 1

Group 2 Or,cl→ Or,sa’ fine grained organic soils 2

Group 3 Or,sa→ Or/Sa coarse grained organic soils 3

Group 4 Sa,gr,si→ Gr,sa,si sand to gravel 4

Group 5 Sa,si→ Sa,gr,si’ sand 5

Group 6 Si,sa,cl’→ Si,sa,gr silt to fine sand 6

Group 7 Cl/Si,sa’→ Si,cl,sa clay to silt 7

Ignored Group * – – 0
Gr = gravel; Sa = sand; Si = silt; Cl = clay; Or = organic soil; according to EN ISO 14688-1 [7]. * EN ISO 14688
classes which could not be assigned to OC Group 1–7.
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2.2.1. Data Pre-Processing

In the pre-processing step, the dataset is evaluated with regard to its completeness
and amount of data.

Since the number of samples is sufficiently high, rows with not a number (NAN)
or null entries are deleted. For the learning models using grain-size-based soil classes
as targets (Oberhollenzer_classes) 1,025,284 samples are available and, for the learning
models using soil behavior types (SBT, SBTn, Mod. SBTn) as targets, 2,514,262 samples
are available. Table 2 provides the mean, standard deviation, and numerical range of the
input features.

Table 2. Statistical information of the input features.

Target Feature Mean Standard Deviation Min Max

Oberhollenzer_classes

Depth (m) 13.22 10.58 0.01 75.92

qc (MPa) 5.34 8.41 −8.61 101.73

fs (kPa) 54.76 70.40 −99.90 1591.40

Rf (%) 2.49 38.16 −100.00 22,000.00

σv (kPa) 251.12 200.94 0.19 1442.48

u0 (kPa) 122.54 103.23 0.00 744.48

σ’v (kPa) 128.58 99.69 0.09 697.70

Soil Behavior Types (SBT,
SBTn, ModSBTn)

Depth (m) 12.40 10.43 0.01 103.00

qc (MPa) 5.57 8.48 −8.61 122.90

fs (kPa) 64.56 254.20 −100.00 47,436.00

Rf (%) 2.70 43.32 −100.00 30,000.00

σv (kPa) 235.68 198.21 0.19 1957.00

u0 (kPa) 114.86 101.48 0.00 1010.43

σ’v (kPa) 120.83 98.62 0.09 946.57

For every target, two different sets of features are defined for training: one where only
directly measured data, namely, qc, fs, Rf, and the depth are considered, and one where
the total and effective vertical stresses σv and σ’v, as well as the hydrostatic groundwater
conditions u0, are additionally considered. This leads to a total number of 24 models
which are investigated in this study. Note: It was the intention of the authors to utilize as
many data as possible to train the ML models, but only 362 CPTs were performed as CPTu.
Therefore, it was decided to use qc instead of qt as an input feature.

The split of the data into subsets for training and validation and testing was done
with the scikit-learn feature “train_test_split”, which randomly splits the samples into two
datasets. The ratio of training and test data is defined as 80/20.

To ensure the uniform contribution of each feature to the training and prediction
process, the features are scaled using the “StandardScaler” module. The features are scaled
between −1 and +1 while the median is kept on the same level; therefore, the data are not
biased by this process.

The uneven distribution of data between the classes could cause problems for the
prediction performance of many machine learning algorithms. Unbalanced datasets can
affect the learning model, e.g., if one class is highly underrepresented compared to the rest
of the dataset, the model might ignore this class and still compute sufficient accuracy, but
if the goal of the model is to find this specific class, then the model might be completely
useless. In this study, the class balance of the data is considered within the Random forest
models by setting the model parameter “class_weight” to ‘balanced’. This setting assigns a
higher penalty to wrong classifications in minority classes. Another possible way to handle
unbalanced data is the application of resampling algorithms. Two popular algorithms for
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this task are SMOTEENN and SMOTETomek. Both algorithms resample the data using
a combination of under- and oversampling, which means that underrepresented classes
are filled with synthetic data (which is based on the already available data), and data
of overrepresented classes are removed, while statistical parameters like the mean and
median of the data are kept on the same level. The difference between raw and resampled
data is shown in Figure 4.
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Preliminary studies showed that the application of these algorithms did not improve
the overall model performance in this study and, additionally, the Random Forest models
were barely susceptible to unbalanced data. Therefore, all models were trained with
unbalanced datasets. More information on the sampling algorithms is provided on the
imbalanced learning website [19].

2.3. Machine Learning Models—General Information

Machine learning (ML) has become a popular tool in various sciences for the interpre-
tation of large datasets. The difference in the function principle of machine learning models
compared to common computing algorithms is mainly that, rather than computing the
results from an input and a predefined solution, the ML model finds a solution by learning
from the input (features) with the respective output (targets), regardless of the specific
algorithm (ANN, RF, etc.). The present study evaluates three different machine learning
algorithms, namely, the Support Vector Machine, Artificial Neural Network and Random
Forest. Their function principles are described briefly in the following section (Figure 5).

The Support Vector Machine (SVM) is a supervised learning algorithm for classi-
fication, regression, and detection of outliers [20]. For different tasks like classification
and regression, the separating hyperplanes in a high or infinite dimensional space with
the largest margin are to be found by the algorithm. The larger the margin, the lower
the generalization error of the model. Figure 5a shows an example of a linear SVM. The
samples on the boundaries are called support vectors. SVMs have recently been used in
geotechnical engineering for soil classification [21], to estimate the bearing capacity of
bored piles from CPT data [22] or for the assessment of soil compressibility [23].
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The Artificial Neural Network is based on the function principle of a brain, and
consists of three different types of layer (Figure 5b): first, the input layer, where the input
features are handed to the model, second, the hidden layer(s), where the information of the
input layers is combined with the weights, and third, the output layer, where the results
are computed. The applied neural network in this study is a backpropagation algorithm,
which is trained iteratively. Then, the output of the model is compared with the real targets
of the training set to calculate the error and update the weights in the hidden layer(s). This
process is performed until a minimum error is reached or the incremental improvement
between iterations reaches zero. In recent research, ANNs have been used to classify soils
from CPT data [3], identify soil parameters [24] or estimate the cone resistance of a cone
penetration test [25].

The Random Forest (RF) is an ensemble of decision trees. A decision tree is a non-
parametric supervised learning method that can summarize the decision rules from a
series of data with features and labels, and use the structure of the tree to present these
rules to solve classification and regression problems [26]. The solution of decision trees is
comprehensible, and it is possible to identify the contribution of each input feature to the
classification or regression model. Random forest models were recently used to predict
the pile drivability [26], estimate geotechnical parameters [24] and, notably, the undrained
shear strength [6]. Figure 5c shows an example of a decision tree with two splits for an
ML model with two input features and three targets. The first line of the node provides
the decision function; the second line provides the Gini impurity, which represents the
probability of a random datapoint being classified as wrong and indicates the quality of
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a split (0.0 is best case; 1.0 is worst case). The third line indicates the number of samples
which are observed in the node. The fourth line provides the final classification of the
observed samples. The last line provides the most common resulting class, which was
observed in the node [20].

The hyperparameter settings and input features of the applied machine learning
models for this study are described in the following sections. All models are built on a
MacBook Pro 13” 2018 (CPU: INTEL core i5 2.3 GHz quad core, RAM: 8 GB, GPU: Intel
Iris Plus Graphics 655 1536 MB) using the SPYDER python environment. The Machine
Learning algorithms used are part of the open-source-software library of scikit-learn [20].

2.3.1. Support Vector Machine

The evaluated Support Vector Classifier (SVC) uses a linear kernel function in order
to keep training times low. A change in the kernel was investigated and showed that, for
this interpretation, a radial basis function does not significantly improve the prediction
accuracy but considerably increases the necessary learning time. The SVC models targeting
soil classes based on grain size distribution (Oberhollenzer_classes) are evaluated without
further hyperparameter modifications. The training and evaluation of SVC models target-
ing soil behavior types were cancelled due to the long necessary training time (compared
to the other models), which exceeded 24 h. In contrast, the training times of ANN and
RF models are within a few minutes. Table 3 shows the originally planned models for
the support vector classifier. However, as stated above, only the two models for Oberhol-
lenzer_classes are further analyzed and compared to the Artificial Neural Network and
Random Forest models.

Table 3. Proposed Models for each target and feature set.

Target Model ID Features

Oberhollenzer_classes
OC1_SVM, OC1_ANN, OC1_RF Depth, qc, fs, Rf

OC2_SVM, OC2_ANN, OC2_RF Depth, qc, fs, σv, u0, σ’v, Rf

Soil Behavior Type (2010)
SBT1_SVM *, SBT1_ANN, SBT1_RF Depth, qc, fs, Rf

SBT2_SVM *, SBT2_ANN, STB2_RF Depth, qc, fs, σv, u0, σ’v, Rf

Normalized Soil Behavior Type
(2009)

SBTn1_SVM *, SBTn1_ANN, SBTn1_RF Depth, qc, fs, Rf

SBTn2_SVM *, SBTn2_ANN, SBTn2_RF Depth, qc, fs, σv, u0, σ’v, Rf

Modified Normalized Soil
Behavior Type (2016)

ModSBTn1_SVM *, ModSBTn1_ANN, ModSBTn1_RF Depth, qc, fs, Rf

ModSBTn2_SVM *, ModSBTn2_ANN, ModSBTn2_RF Depth, qc, fs, σv, u0, σ’v, Rf

* These models were planned but not evaluated using SVM due to training times beyond 24 h.

The influence of class balance on the model quality was considered by setting the
hyperparameter “class_weight” to ‘balanced’. Then, the penalty size for wrong predictions
is assigned with respect to the amount of data in each class. This leads to a higher penalty
for wrong predictions in minority classes. The evaluation of the obtained results shows that,
in the considered problem, the overall performance of the SVM models does not increase
when considering the class balance with the hyperparameter “class_weight”. Sampling
algorithms are not used for the SVM models.

2.3.2. Artificial Neural Network Models

The artificial neural network models are built using the MLPCLassifier module of the
scikit-learn library. The network size is chosen based on recommendations provided by
Heaton [27]. Similar to the support vector classifier, eight different models are analyzed.
The best combination of hyperparameters is evaluated and determined using grid search
techniques, where a range for each parameter is defined. The chosen hyperparameters are
then validated using cross-validation. In order to keep the training times within acceptable
limits, the number of hidden layers is set to a maximum of three and the number of neurons
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in these layers is set to a maximum of 10. (Note: It would be possible to increase the number
of hidden layers and neurons, which would also slightly increase the prediction accuracy
of the models. However, the training times would increase significantly, and thus would
no longer be comparable to the training times of Random Forest models).

During the grid search analysis, a range of settings was tested for the number of
hidden layers, the number of neurons, the activation function, the learning rate and the
solver. For the activation function, learning rate and the solver modifications, aside from
the default settings, do not significantly increase the model performance; therefore, the
default parameters are used for model evaluation. The number of hidden layers and
neurons are evaluated in individual steps. First, three sets with one, two and three layers of
10 neurons are evaluated. Then, three different sets of neurons in one layer are evaluated.
The best combination was identified with three layers of 10 neurons for both targets, the
soil classes based on grain size distribution and soil behavior types. Note: To obtain
the best possible prediction accuracy for soil classes based on grain size distribution, the
number of hidden layers and neurons must be increased further. This would result in a
higher accuracy of about 8–10%. However, the resulting model accuracy is still much lower
(10–15%) compared to the Random Forest models (see next chapter). Therefore, it was
decided to keep the training times comparable in this study, within the range of from 10
to 30 min. The further optimization of the prediction with neural networks with deeper
and more sophisticated networks is part of the ongoing research at the Institute of Soil
Mechanics, Foundation Engineering and Numerical Geotechnics at Graz University of
Technology.

2.3.3. Random Forest Models

The Random Forest classifier used in this study is part of the ensemble learning
module of scikit-learn. Similar to the ANN models, the best set of hyperparameters is
determined via cross-validation. Additionally, cross-validation is used to plot learning
and validation curves to identify the bias and variance of the model. Cross-validation and
hyperparameter tuning are performed for the models targeting Oberhollenzer_classes and
soil behavior types. Since the properties of all soil behavior types are quite similar, they are
only performed once for all models targeting soil behavior types (SBT, SBTn, ModSBTn).
An overview of the models based on the random forest classifier is provided in Table 3.

The RF models are analyzed using learning and validation curves to visualize bias and
variance, which indicates susceptibility to over- or underfitting. In order to obtain a robust
model, bias and variance should be kept low [28]. The difference between training and
validation accuracy is referred to as variance. High variance causes a model that is not able
to generalize very well, which results in a much higher training accuracy than validation
accuracy. A high bias means that the data are too complex for the model. One of the main
hyperparameters governing bias and variance of an RF model, is the maximum size of
each tree (“max_depth”) in the forest. Figure 6 displays the process of hyperparameter
optimization. In the learning curve without the limitation of tree-size (Figure 6a), the
curves show high variance. By plotting the validation curve (Figure 6b), the influence
of a specific hyperparameter, in this case the “max_depth” is visualized. After adjusting
the settings for the respective hyperparameter (in this case, to 16), the learning curve is
plotted again (Figure 6c), and a reduced variance of nearly 20% can be seen. By reducing
the variance, the bias also increases (in this case, ~10%); therefore, a good trade-off must
be found. Compared to the size of each tree, the number of trees (n_estimators) does not
influence the bias and variance of the model, which is shown in Figure 6d.
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Figure 6. Model evaluation and optimization with learning and validation curves for target class OC1. (a) Learning curve
for Random Forest model without limitation of max depth. (b) Influence of the tree size on bias and variance with chosen
trade-off. (c) Learning curve for chosen tree size. (d) Validation curve for varying number of trees.

2.4. Training, Validation and Testing

After pre-processing the data, the building process of a machine learning models can
be divided into three different steps: First the training step, where the machine learning
algorithm learns from the training data. This is an iterative process, which ends when
a desired minimum error or maximum accuracy, or a predefined maximum number of
iterations, is reached. Second, the validation step, where the model is analyzed regarding
generalization properties such as overfitting and underfitting, whereas overfitting (high
variance) means that the model fits better to the training data than to validation data and
underfitting (high bias) means that the data are too complex for the chosen model. To
eliminate errors due to the distribution of the data in the dataset, the validation is usually
performed with cross-validation (CV) techniques [28]. The most common form of the CV is
k-fold cross validation. Here, the training data are split k-times into sets for training and
testing. As a result of the CV, learning and validation curves can be plotted. Third, the
testing step where the model with the desired hyperparameter set is tested on unseen data
from the test dataset (usually 20–30% of the entire data) [28]. A schema of the data used for
the three aforementioned steps is given in Table 4. The results of the testing step are then
used to generate the classification report and confusion matrix.
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Table 4. Schema of utilized data in k-fold cross validation [20].

Schema of k-fold Cross Validation

Entire Dataset

Split Training Data
Test Data

(not used for
validation)

1st fold Validate Train

Not used for
validation

2nd fold Train Validate Train

3rd fold Train Validate Train

4th fold Train Validate

2.5. Model Comparison

The confusion matrix contains information about the distribution and uniformity of
classification results through the target classes, and thus also indicates the influence of
class balance on the model. Table 4 schematically shows the content of a confusion matrix,
where true positive means that the model prediction is positive, and the actual state is
positive. False negative means that the model prediction is negative, but the actual state
is positive. False positive means that the model prediction is positive, but the actual state
is negative and true negative means that the predicted and actual state are both negative.
The classification report (Table 5), however, contains the classification results in terms of
accuracy (describes the percentage of the correct classifications), precision (defined as the
positive correct predictions), recall (describes what percentage of positive cases the model
catches) and the f1-score (weighted ratio between the precision and recall). All values are
given as a percentage, where 100% is the best and 0% is the worst. In addition, the results
of the classification report are provided as a weighted average (Equation (5)), which is the
average score of all classes, weighted by the number of classifications.

weighted avg =
∑
(

score o f each class ∗ nclassi f ications in class

)
nall classi f ications

(5)

Table 5. Schema of a confusion matrix for the evaluation of results [20].

Actual

Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

3. Results
3.1. Support Vector Machine

As mentioned in Section 2.2.1 for the support vector machine, the results are only ob-
tained from models using Oberhollenzer_classes as targets. The database for soil behavior
type models contains approximately twice as many data as the OC database. Therefore, the
training times of the support vector classifier for SBT models are extremely high when com-
pared to ANN and RF models. Regardless of the applied kernel function, the training times
always exceed 25 h. On the contrary, the training times of ANN and RF models are consis-
tently within a few minutes (depending on the simultaneously running processes of the
hardware). Hence, it was decided to not evaluate these models any further. Additionally,
since the training time of the OC_SVM models is approximately 12 h, which is far longer
than ANN or RF (in combination with poor classification accuracy), the cross-validation
step was skipped.
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However, the results of the two analyzed models, OC1_SVM and OC2_SVM, are
provided in Table 9. Although the training times of the SVM models are the longest by far,
regardless of the kernel function, the obtained accuracies are the lowest. With an accuracy
of about 38% and a training time of about 12 h, it can be assumed that the SVM is not
sufficient for this dataset or, in other words, not well-suited to this type of application.

3.2. Artificial Neural Network

Classification models based on artificial neural network algorithms also lead to low
prediction accuracies when used for Oberhollenzer_classes. However, the training times
are similar to RF and within a few minutes. The obtained accuracies for OC models are
46% and 47% for OC1_ANN and OC2_ANN, respectively. To evaluate the influence of the
number of hidden layers and neurons on the overall model quality, one training run is
carried out, where these hyperparameters are set to three layers, with 100 neurons in each.
The computed results showed that this leads to an increased accuracy (~55%); however,
as a consequence of this hyperparameter adjustment, the training time increases to 12 h.
Considering the highly increased training time, with only a small effect on the gained
accuracy, it is assumed that the model with three hidden layers of 10 neurons (as described
in Section 2.3.2) is a good trade-off for this study.

In contrast to the OC_ANN models, the models for soil behavior type classifica-
tions predict a very high accuracy, consistently above 94%. The models using additional
information related to the vertical stresses and hydrostatic pore pressures (SBT2_ANN,
SBTn2_ANN, ModSBTn2_ANN) give even better results, with accuracies consistently at
about 98% (and beyond). Additionally, the training times are similar to the random forest
models (a few minutes). The result of each ANN model is provided in Table 8.

3.3. Random Forest

The models based on a random forest algorithm lead to the highest prediction accura-
cies of all evaluated models. Models for the Oberhollenzer_classes predicted an accuracy of
about 65% (OC1_RF) and 75% (OC2_RF). Additionally, the training times of the RF models
are the lowest, being within a few minutes.

The prediction accuracy of random forest models for the soil behavior type classifica-
tions is nearly 100% (97–99%). The training times of these models are also slightly lower
than the training times of ANN models. Another point which should be mentioned is that
the RF models are the easiest to apply regarding hyperparameter settings.

Tables 6–8 provide the confusion matrices of the models OC2_RF and ModSBTn2_RF,
respectively. The corresponding classification reports are provided in Table 8. The confusion
matrix provides the distribution of correct and incorrect classifications for the obtained test
samples. The diagonal values (in bold) indicate the correct predictions, and the rest show
the incorrect predictions for each class. A relatively uniform distribution of correct and
incorrect classifications across all classes, combined with high accuracy, usually indicates a
good generalization performance of the evaluated model. The classification report provides
the scores described earlier in Section 2.4. From the confusion matrix and classification
report of OC2_RF and ModSBTn2_RF, it could be concluded that RF models seem to be
very efficient for the interpretation of CPT data.
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Table 6. Confusion matrix for OC2_RF.

OC2_RF

Confusion Matrix

Predicted

0 1 2 3 4 5 6 7

A
ct

ua
l

0 10,789 1358 716 12 588 1322 588 421
1 1084 13,968 505 19 1240 2236 609 281
2 474 409 30,722 38 729 2630 2066 1403
3 51 39 413 689 32 68 55 65
4 870 2015 800 14 12,104 2908 534 297
5 719 1304 1121 13 985 33,760 2805 1042
6 800 581 1596 50 526 4713 26,080 1817
7 509 285 993 43 220 1433 2579 26,722

Bold values are related to correct classifications.

Table 7. Confusion matrix for ModSBTn2_RF.

ModSBT
n2_RF

Confusion Matrix

Predicted

0 1 2 3 4 5 6 7

A
ct

ua
l

0 18,243 114 69 0 142 78 122 139
1 110 38,476 477 0 113 0 4 3
2 17 367 120,717 286 154 13 0 1
3 0 2 267 34,202 1 192 0 0
4 15 113 220 0 30,499 89 238 14
5 6 0 3 197 111 32,106 1 278
6 35 2 0 0 245 2 64,811 480
7 48 0 0 0 5 244 491 158,291

Bold values are related to correct classifications.

Table 8. Classification report for ModSBTn2_RF and OC2_RF.

Classification Report

Model Score Weighted Avg.

ModSBTn2_RF

Accuracy 0.99

Precision 0.99

Recall 0.99

F1-score 0.99

OC2_RF

Accuracy 0.75

Precision 0.76

Recall 0.75

F1-score 0.75

3.4. Comparison

The best model performance through all classification targets and feature sets is
obtained using a random forest algorithm, in terms of both accuracy and training time. The
result of each model is provided in Table 9.
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Table 9. Results of all analyzed models.

Target Model ID Algorithm Features Accuracy

OC

OC1_SVM SVM Depth, qc, fs, Rf 0.38

OC2_SVM SVM Depth, qc, fs, σv, u0, σ’v, Rf 0.38

OC1_ANN ANN Depth, qc, fs, Rf 0.46

OC2_ANN ANN Depth, qc, fs, σv, u0, σ’v, Rf 0.47

OC1_RF RF Depth, qc, fs, Rf 0.65

OC2_RF RF Depth, qc, fs, σv, u0, σ’v, Rf 0.75

SBT

SBT1_ANN ANN Depth, qc, fs, Rf 0.98

SBT2_ANN ANN Depth, qc, fs, σv, u0, σ’v, Rf 0.98

SBT1_RF RF Depth, qc, fs, Rf 0.99

SBT2_RF RF Depth, qc, fs, σv, u0, σ’v, Rf 0.99

SBTn

SBTn1_ANN ANN Depth, qc, fs, Rf 0.95

SBTn2_ANN ANN Depth, qc, fs, σv, u0, σ’v, Rf 0.97

SBTn1_RF RF Depth, qc, fs, Rf 0.97

SBTn2_RF RF Depth, qc, fs, σv, u0, σ’v, Rf 0.99

Mod.SBTn

MSBTn1_ANN ANN Depth, qc, fs, Rf 0.94

MSBTn2_ANN ANN Depth, qc, fs, σv, u0, σ’v, Rf 0.98

MSBTn1_RF RF Depth, qc, fs, Rf 0.97

MSBTn2_RF RF Depth, qc, fs, σv, u0, σ’v, Rf 0.99

In summary, it can be concluded that the SVM models are not well-suited to this
type of task and data. The ANN models perform very well for the determination of soil
behavior types from the CPT data, but, in contrast, the prediction of soil classes based on
grain-size distribution was not sufficient. The RF models resulted in the best classifications
for each combination of input features and target classes analyzed. Furthermore, the
positive influence of additional information on the stresses and groundwater conditions
in the subsoil is recognizable in the improved model accuracies after adding the effective
and total vertical stresses, σ’v and σv, as well as the hydrostatic pore pressures, u0, to the
feature set.

4. Application—Classification of Unseen CPT Data

Since the random forest model yielded adequate results for soil classification, both
in the prediction of soil classes based on grain size distribution and soil classes based
on empirical correlations with the CPT data (SBT, SBTn, ModSBTn), the RF models are
used in the next step to predict the soil classes of unseen CPT data from sites inside and
outside Austria. In the following, the results of one CPT from Austria and one from a CPT
performed in the Netherlands are discussed.

4.1. CPT Data from Austria

The results of soil classification using the random forest model are provided below.
Figure 7 displays the CPT data (qc, Rf) along with the predicted soil classes (OC) and the
resulting soil model, as well as the probability of each class. Additionally, for comparison,
the soil classes and the soil model determined from an adjacent borehole are presented. The
class probability plot provides the probability of each class for every depth step, where the
class with the highest probability is also the resulting soil class predicted by the ML model.
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From 0 to 5 m below surface elevation, the model predicts mixtures of sand, gravel
and silt (OC 1–5). From 5–10 m, mainly sand, silt and clay are identified (OC 5–7), whereas
below 10 m, the model mainly classifies silt and clay (OC 6–7). (Note: Class 2 consists of
fine-grained organic soils; therefore, the physical behavior under cone penetration seems
to be quite similar to class 7. This could be a possible explanation for the classification of
fine-grained organic soils in the last 4–5 m). The comparison of the predicted soil model
with the soil model from the adjacent borehole shows that the RF model is able to identify
the coarse-grained soils in the first 5 m of the test quite well. The range between 5 and 10 m
deviates somewhat from the borehole classification, but the most-predicted classes refer to
a mixture of sands, silts and clays, which is quite comprehensible in view of the CPT data.
Additionally, the predicted classes below 10 m in depth are nearly similar to the borehole
classification. The depth of the borehole is not equal to the penetration depth of the CPT;
therefore, the last meters cannot be compared.

Besides the soil classification based on grain size distribution, classification based on
soil behavior types is also evaluated. Figure 8 shows the CPT data, along with the predicted,
modified, normalized soil behavior type (Mod.SBTn) of the RF model. Additionally, for
comparison, the soil behavior type is determined using the software bundle of Geologismiki.
As expected from the testing results of the model, the classification result is almost identical
to the one determined based on empirical correlations using Geologismiki, since, compared
to the Oberhollenzer_classes, soil behavior types are determined with empirical correlations
from the CPT data. Consequently, the random forest models for soil behavior types
predictwith a higher accuracy than those for Oberhollenzer_classes. Additionally, the
plotted class probabilities are much more clearly distributed than those in the prediction of
OCs and, thus, the classifications are more robust.
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4.2. CPT Data from The Netherlands

The random forest models are additionally used to classify soils from CPT performed
in the Netherlands, and thus the model is applied to soils which did not originate in
fine-grained deposits of the Alpine regions. Figure 9 displays the predicted soil classes,
their probability distribution and (for comparison) the soil classification and soil model
determined from an adjacent borehole. (Note: The original soil classification was adjusted
to the Oberhollenzer_classes and the depth of the borehole was only about 13.5 m; therefore,
the comparison is only possible for half of the CPT data.)
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One can see that the random forest model predicts a mixture of sands, silt and clay
over the entire depth of the test. The results clearly indicate that the model is able to
estimate the predominant soil types, but is not able to predict their correct distribution
over depth. The borehole soil classification yields sand-dominated ground conditions with
mixtures of silt and clay and two interlayers of clay-dominated soil. In this case, the model
was not able to identify those clay layers correctly.

The Mod.SBTn2_RF model is again used to classify the soil behavior type of the
CPT performed in Holocene deposits. The results are shown in Figure 10. Similar to the
CPT tests from Austria, the model is able to identify almost all of the soil behavior types
correctly. Since the soil behavior types classified using Geologismiki are based on the same
correlations as used for the Austrian CPT, the performance of the RF model is similar.
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5. Conclusions and Discussion

The paper has shown that machine learning algorithms are able to classify soils into
classes based on grain size distribution (Oberhollenzer_classes) and, additionally, classes
based on empirical correlations using measured test data (SBT, SBTn, ModSBTn). The best
results regarding prediction accuracy and learning time were obtained using a random
forest classifier. However, it should be noted that more sophisticated neural networks
(deep neural networks (DNN)) may lead to even better results. These investigations are
part of ongoing research. The results also indicate that the machine learning models are
unable to differentiate between Class 2 and 7 of the Oberhollenzer_classes very well. This
is most probably related to the fact that both classes contain fine-grained soils (silt and
clay). In order to eliminate this error, further research and revision of the classification
is necessary.

The different prediction accuracies for CPT tests from Austria compared to CPT
tests from the Netherlands for the Oberhollenzer_classes are probably due to the locally
limited training data from mainly Austrian sites. The training data mainly consist of
tests performed in fine-grained postglacial deposits of the Alpine region. The CPTs from
the Netherlands are performed in Holocene deposits; therefore, it is assumed that more
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training data from CPTs in these deposits are needed to decrease the generalization error
of the model and thus obtain robust predictions.

The ANN and RF models used for the determination of soil behavior types yielded
very accurate results, and thus could become useful tools, employed within other software
packages for geotechnical engineering to obtain fast and reliable soil classifications without
depending on third-party software solutions.

The studies presented here are limited with respect to the previously performed soil
classifications (Oberhollenzer_classes), as well as the algorithms taken only from the scikit-
learn library. In future research, the classification based on the ESCS (Oberhollenzer_classes)
of the database will be revised to increase the efficiency of machine learning models.
Another task is to analyze the effect of deeper and more sophisticated neural networks on
the model performance.
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