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Abstract: The Tuscany Magmatic Province consists of a Miocene to Pleistocene association of a wide
variety of rock types, including peraluminous crustal anatectic granites and rhyolites, calcalkaline and
shoshonitic suites and ultrapotassic lamproites. In addition to the magma types already recognised,
the occurrence of a new, distinct magma type at Capraia and Elba islands and in mafic enclaves in
the San Vincenzo rhyolites has been suggested by recent studies. This particular type of magma,
represented by intermediate to acidic calcalkaline rocks showing high Sr, Ba, and LREE, is restricted
to the northwestern sector of the province and to a time interval of about 8 to 4.5 Ma. New data
obtained on rocks from Capraia Island have allowed for the verification of the occurrence of this new
magma type, the exploration of its origin and a discussion of its possible geodynamic significance.
The high-Sr-Ba andesite-dacite rocks occurring in the Laghetto area at Capraia display a composition
that is intermediate between adakitic and calcalkaline rocks. It is suggested that they represent a
distinct type of magma that originated at mantle pressure by melting of the lower continental crust,
followed by mixing with other Capraia magmas. The geodynamic model that best explains the
composition of the studied rocks is the thickening of the continental crust during continental collision,
followed by extension that favoured melting of the lower crust.

Keywords: Capraia Island; adakitic rocks; lower continental crust; melting; continental collision

1. Introduction

The Tuscany Magmatic Province (TMP) is one of the most extensively studied and
best known magmatic worldwide areas. It consists of Miocene to Pleistocene (about
8.5 Ma to 300 ka) intrusive and effusive rocks, cropping out in the Tuscan Archipelago, as
seamount on the northern Tyrrhenian Sea floor, and at several places in southern Tuscany
and northern Latium. In addition, a small peralkaline mafic sill, occurring at Sisco (Corsica)
and showing an older age of 14.5 Ma [1], is considered as an early part of the Tuscany
Province, essentially because of its petrogenic lamproitic affinity close to some occurrences
from southern Tuscany (Orciatico, Montecatini Val di Cecina and Torre Alfina; e.g., [2] and
references therein).

Petrological and geochemical studies recognised the occurrence of several types of
primary magmas, both of mantle and crustal origin. Mantle-derived magmas show a
range of mafic compositions, from calcalkaline and shoshonitic to ultrapotassic lamproitic;
crustal magmas consist of peraluminous granites and rhyolites. A wide variety of hybrid
compositions results from the mixing of different types of mantle-derived melts as well as
between these and crust-derived end-members [3].

Despite the high number of existing studies on the Tuscan Magmatic Province, there
are still several petrological, volcanological and geodynamic aspects that have been not
adequately considered in the past and that deserve further attention. In particular, the num-
ber of end-member magma compositions occurring in the area and their significance for
the structural evolution of the northern Apennines and back-arc area deserves clarification.
Such a subject is also of interest to other complex orogenic settings.
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Recent reconsideration of the literature data has revealed a new magma type in
Tuscany, in addition to those recognised by previous studies. This supposedly new end-
member is characterised by andesitic s.l. composition and anomalously high Sr and
Ba contents [3]. It crops out as lavas at Capraia Island, as dykes at Elba Island and as
mafic micro-enclaves in the San Vincenzo (southern Tuscany) rhyolites [4]. However, its
occurrence, nature, origin and geodynamic significance are still ambiguous.

This paper reports on new data on rocks from Capraia Island, with the aims of
verifying the occurrence of this new magma type, exploring its origin and discussing its
possible geodynamic significance.

2. The Tuscany Magmatic Province

The Tuscany Magmatic Province (Figure 1) is a magmatic setting characterised by the
occurrence of a wide variety of rock types, including peraluminous granites and rhyolites,
calcalkaline and shoshonitic suites, and ultrapotassic lamproites (e.g., [5] and references
therein). Acid compositions, such as the monzodiorites to leucogranites occurring at
Montecristo, Giglio and Elba Islands, and the rhyolitic lava flows and domes found at
San Vincenzo, Roccastrada, and Tolfa-Manziana-Cerite areas, are the most abundant in
the Tuscany Province. Mafic-intermediate calcalkaline-shoshonitic to ultrapotassic rocks
occur as small lava and hypabyssal bodies at Montecatini Val di Cecina, Orciatico, Torre
Alfina, Radicofani, Monti Cimini, Amiata, Capraia Island, Campiglia, central-eastern Elba
Island, and Sisco. Mafic-intermediate compositions are also found as enclaves within some
granitoid and extrusive rocks.
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Figure 1. (a) Geological map of Capraia Island (modified from [4]). Legend: A = Monte Rosso Synthem, B = Monte Cam-
panile Synthem, C = Monte Castello Synthem, D = Monte Rucitello Synthem, E = Punta dello Zenobito Synthem. (b) Loca-
tion of the magmatic centres of Tuscany Magmatic Province (TMP). The orange areas indicate the occurrence of adakite-
like rocks. 
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rocks entering into the melt (e.g., [10]).  

According to Poli [11,12] and Poli and Peccerillo [3], the compositions falling between 
mafic and crustal anatectic rocks (i.e., the bulk of outcropping rocks) represent mixtures 
between crustal and mafic melts. In contrast, Farina et al. [13] suggested that the primary 
magmas were generated by different degrees of melting of sedimentary to igneous crustal 
protoliths, with variable amounts of residual phases being incorporated in the melts.  

A distinct group of intermediate to acidic calcalkaline rocks showing high Sr, Ba and 
LREE has been distinguished by Poli and Peccerillo [3] among the Orano dykes at Elba 
Island, for mafic enclaves in the San Vincenzo rhyolites, and at Capraia Island. It was sug-
gested that this represents a distinct type of magma, which had not been recognised by 
previous studies. Actually, the high-Sr-LREE of these rocks had been already pointed out 
(e.g., [14–16]), but petrogenetic significance and regional distribution were not explored. 

Figure 1. (a) Geological map of Capraia Island (modified from [4]). Legend: A = Monte Rosso Synthem, B = Monte
Campanile Synthem, C = Monte Castello Synthem, D = Monte Rucitello Synthem, E = Punta dello Zenobito Synthem.
(b) Location of the magmatic centres of Tuscany Magmatic Province (TMP). The orange areas indicate the occurrence of
adakite-like rocks.
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According to Poli and Peccerillo [3] and Peccerillo [6], three different extreme end-
members can be recognised within the wide range of compositions. One has a silicic peralu-
minous composition and is derived from the melting of crustal metapelitic rocks, as indicated
by incompatible element contents and a Sr-Nd-Pb isotope signature, all similar to pelites
([3] and references therein); the other two end-members are of mantle origin and have mafic
calcalkaline-shoshonitic (CA-SHO), and lamproitic (LMP) compositions, respectively. Mix-
ing between the three end-members and fractional crystallisation or assimilation-fractional
crystallisation (AFC) of mafic magmas would be responsible for the origin of the other rocks
in Tuscany. These processes generated a continuum for the main petrological and geochemi-
cal characteristics of magmatism as a whole, which makes it hard discriminating between
different magma types and understanding their genetic relationships.

Silicic rocks are characterised by variable geochemical-petrological compositions,
which suggests the occurrence of two distinct groups. One group represents primary
crustal anatectic magmas related to the melting of metasediments (micaschists, gneisses) of
the Tuscany basement. In contrast, another group consists of evolved melts derived from
intermediate parents via fractional crystallisation or AFC (see [3] and references therein).
The two groups overlap each other for several petrological and geochemical characteristics
but have distinct Sr isotopic signatures.

Based on the available data, CA-SHO and LMP mafic end-members were likely formed
by melting of anomalous mantle rocks contaminated by variable amounts of subducted
sediments (see [7–9] and others). The compositions falling in between CA and LMP
mafic magmas might result from mixing between the two end-members. An alternative
hypothesis is that the entire range of mafic magmas is primary and was generated in a
mantle source containing variable proportions of veins and geochemically barren mantle
rocks entering into the melt (e.g., [10]).

According to Poli [11,12] and Poli and Peccerillo [3], the compositions falling between
mafic and crustal anatectic rocks (i.e., the bulk of outcropping rocks) represent mixtures
between crustal and mafic melts. In contrast, Farina et al. [13] suggested that the primary
magmas were generated by different degrees of melting of sedimentary to igneous crustal
protoliths, with variable amounts of residual phases being incorporated in the melts.

A distinct group of intermediate to acidic calcalkaline rocks showing high Sr, Ba and
LREE has been distinguished by Poli and Peccerillo [3] among the Orano dykes at Elba
Island, for mafic enclaves in the San Vincenzo rhyolites, and at Capraia Island. It was
suggested that this represents a distinct type of magma, which had not been recognised by
previous studies. Actually, the high-Sr-LREE of these rocks had been already pointed out
(e.g., [14–16]), but petrogenetic significance and regional distribution were not explored.

These rocks show very similar abundances of most major and trace elements
(SiO2 = 60–65 wt%; MgO ~ 3–4 wt%; TiO2 = 0.6–0.8 wt%; Th = 40–60 ppm; Zr ~ 200–250 ppm;
etc.) as other intermediate rocks from the same region. However, Sr (>700 ppm), Ba (>1000 ppm),
Sr/Y (>30) and LREE are higher. Peccerillo [6] noticed that these characteristics are typical of
adakites, as defined by several authors [17–20], although typical low Y contents (<15 ppm) are
only found in a few samples from Orano dykes. 87Sr/86Sr ratios (~0.708–0.712) plot at the low
end of the Tuscany mafic-intermediate compositional range, whereas Nd-isotope ratios have an
opposite behaviour. Such a particular type of magma seems to be restricted to the northwestern
sector of the Tuscany Magmatic Province; it was emplaced over a time interval of about 8 to
4.5 Ma, decreasing in age from Elba to Capraia and San Vincenzo.

The Capraia Island

The island of Capraia is located at the northwestern sector of the Tuscan Archipelago.
It is a large asymmetric cone (Figure 1) consisting of a partially collapsed stratovolcano, on
which the small late-stage lateral centre of Punta dello Zenobito formed at the southernmost
end of the island (e.g., [4,21–25]). The island was built up during two distinct periods
of magmatic activity, at 7.7–7.2 Ma and 4.6 Ma [4,26,27]. Therefore, Capraia Island is the
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oldest volcanic centre in the Tuscan Magmatic Province, and its activity is slightly younger
to contemporaneous to the magmatism of Elba.

Aldighieri et al. [4] reconstructed the volcanic evolution of the island (Figure 1). They
grouped the deposits of the first phase of activity (Capraia Supersynthem) in five different
synthems. The deposits of the second activity phase were included in the Punta dello
Zenobito Synthem. Accordingly, it is possible to distinguish the following: (a) the oldest
volcanic products (lava flows, breccia and scoria) represented by the Punta del Trattoio
Synthem (southwestern cliff, not visible on the map in Figure 1); (b) the andesitic domes and
deposits (block, ash and pyroclastic flow) belonging to the Monte Rosso Synthem, visible
along the western sector of the island; (c) the thick lava domes associated with lava flows and
pyroclastics of Monte Campanile Synthem on the eastern side of the island; (d) lava flows
and breccias of Monte Castello Synthem, which cover most of the island; (e) the lava flows
forming the Monte Rucitello Synthem, which partially fill a large depression due to a flank
collapse of the eastern part of the Monte Castello Synthem. In the same period, a new flank
collapse, possibly due to the intrusion of a cryptodome, occurred toward the east; lava flows,
breccias, scoriae and small lava domes were emplaced in the northern sector of the island
as well as two lava domes in the central area. After a long quiescence period, the eruptive
activity resumed in the southern area of the island (Punta dello Zenobito Synthem).

The Capraia stratovolcano is predominantly composed of massive high-K calcalkaline
andesite and dacite lavas, with minor ash and block flows and subordinate pyroclastic
flows, emplaced during the first phase of activity. The second eruptive phase mostly
consists of strombolian scoriae and a few lava flows and dykes of Punta dello Zenobito
centre which show a shoshonitic basaltic composition [25,26,28].

Prosperini [28] and Poli et al. [24] distinguished six different groups of rocks: (1) Older
Series, belonging to the main and older emission stage, whose lava flows cover the largest
part of the island; (2) Monte Campanile and Porto volcanites, cropping out in the central
part of the eastern coast; (3) Zurletto pyroclastics, probably originating from an external
submerged centre, which crop out in the eastern coast; (4) San Rocco and Piano volcanites,
erupted by small eruptive centres, disposed in a NE–SW direction; (5) Laghetto volcanites,
cropping out in a narrow depressed area on the top of the volcano; (6) Zenobito volcanites,
in the southern part of the island, forming a neck of porphyritic lava surrounded by
stratified scoria deposits. A petrographic and geochemical overview of the Capraia lavas is
reported in Prosperini [28] and Poli and Perugini [25].

The bulk of the rocks making up the stratovolcano have mostly a high-K andesite-
dacite composition with a slight enrichment in potassium (K2O = 2.5–4.0 wt%). The
basaltic-andesites from Punta dello Zenobito display moderate concentrations of CaO
(around 7–8 wt%) and Na2O (around 3 wt%) and variable MgO, Ni, and Cr content.

Sr isotope ratios of Capraia rocks have partially overlapping values. Punta dello
Zenobito shows 87Sr/86Sr ~ 0.7071–0.7074; high-K andesites and dacites show a large range
of values with 87Sr/86Sr = 0.7073–0.71102. Nd isotope ratios are poorly variable in the
range 143Nd/144Nd = 0.51224–0.51235 [9,28].

3. Materials and Methods

Among the Capraia products, a group of rocks shows Sr, Ba and LREE contents
distinctively higher than other rocks with similar silica contents [3,6]. They come from the
“Laghetto volcanic group” [24,28]. This group has been sampled with the aim of providing
further data and investigating the origin of high Sr-Ba rocks.

In the Laghetto area (Figure 2), a series of lava flows crops out in a small depression.
Several samples have been collected from various lava levels and have been analysed for
major and trace elements. Mineral chemistry and Sr-Nd radiogenic isotope analyses have
been carried out for selected samples.
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Analytical Methods

The major element composition of selected mineral phases has been obtained on thin
polished sections (30 µm) through the Electron Microprobe JEOL JXA-8600 (IGG-CNR of
Firenze). The instrument is equipped with four WDS spectrometers and an EDS detector; it
is controlled by the software XMas. The system operates at 10 nA beam current and 15 kV
accelerating voltage, with counting times of 15 s on the peak (10 s for Na) and of 5 s on each
background. The data acquired have been processed using the PAP correction system [29].

Major and trace element analyses of the collected rock samples were carried out at the
Activation Laboratories, Ancaster, Ontario, Canada. For major oxides and selected trace
elements (Ba,Sr,Y,Zr,Sc,V), the samples were prepared and analysed in a batch system. Each
batch contained a method reagent blank, certified reference material and 17% replicates.
Samples were mixed with a flux of lithium metaborate and lithium tetraborate and fused in
an induction furnace. The molten melt was immediately poured into a solution of 5% nitric
acid containing an internal standard and mixed continuously until completely dissolved
(~30 min). The samples were run on a combination simultaneous/sequential Thermo
Jarrell-Ash ENVIRO II ICP (inductively coupled plasma). Calibration was performed using
7 prepared USGS and CANMET certified reference materials. One of the 7 standards
was used during the analysis for every group of ten samples. Detection limit was in the
range between 0.01 and 0.001 (%) for major elements and between 1 and 5 (ppm) for trace
elements. The same sample solution was spiked with internal standards to cover the entire
mass range and was further diluted and introduced into a Perkin Elmer SCIEX ELAN 6000,
6100 or 9000 ICP/MS (inductively coupled plasma/mass spectrometry) using a proprietary
sample introduction methodology. The detection limits in ppm were: Pb = 5 ppm; Ni, Co,
Cr, Rb = 1 ppm; Nb= 0.2; Cs, Hf, Ta = 0.1; La, Ce, Nd, Eu, Th = 0.05; Lu = 0.02; Pr, Sm, Gd,
Tb, Dy, Ho, Eb, Yb, U = 0.01; Eu, Tm = 0.005.

Radiogenic isotope ratio measurements were performed at IGG–CNR of Pisa (Italy). Sr
and REE fractions were separated from the matrix using conventional cation columns with
AG 50W-X8 200–400 mesh resin. Strontium separates were then loaded onto 99.98% Re
filaments, and isotope ratios were measured using a Finnigan MAT 262 multiple collector
thermal ionisation mass spectrometer (TIMS) for running in dynamic mode. Instrumental
mass bias correction was done by internal normalisation to 86Sr/88Sr = 0.1194. Replicate
measurements of NIST SRM 987 (SrCO3) standard gave an average value of 0.710229 ± 11
(2SD, n = 16). Throughout the full chemical process, the Sr blanks were approximately
0.3 ng, which were negligible for the analysed samples (0.1–0.2 g of sample). Nd vas
extracted from REE eluates using Eichrom Ln resin. Nd eluates were dried, then redissolved
in 2% HNO3 solution and measured in static mode with a Thermo Neptune Plus, MC-
ICP-MS equipped with 1011 and 1012 Ohm resistors. Blank was negligible; thus, no blank
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correction was performed. 144Sm interference over 144Nd was calculated using 147Sm;
however, this correction also had also a negligible effect on the final ratio. Instrumental mass
bias correction was done by internal normalis ation to 146Nd/144Nd = 0.7219. Seventeen
replicates of the standard J Nd Replicate analyses of JNdi-1 standard [30] gave an average
value of 0.512098 ± 6 (2SD).

4. Results
4.1. Petrography and Mineral Chemistry

The collected samples show hypocrystalline, moderately porphyritic (Porphyritic
Index = 20–30), textures, with phenocrysts of plagioclase, clinopyroxene, and biotite;
amphibole, K-feldspar, opaque minerals and apatite are present in accessory amounts.
The micro- to crypto-crystalline groundmass consists of the same mineral phases as the
phenocrysts, with abundant microlites of plagioclase and biotite.

The composition of the main mineral phases is reported in Table 1. Plagioclase is the
most abundant mineral (40–65% of total phenocryst abundance) and consists of euhedral or
subhedral twinned crystals; in a few cases, phenocrysts display a sieved mantle. Both phe-
nocryst core (An37-49) and rim (An44-47) have andesinic composition. The microphenocrysts
(An36-57) and groundmass (An40-64) plagioclase span a larger range of compositions, from
poorer to richer in Anorthite. Clinopyroxene is ubiquitous; it appears as colourless or
lightly brown-coloured euhedral to rounded crystals, showing at times reaction rims. Phe-
nocryst core composition is in the range Wo43-45, En35-50, Fs5-21; zoning is generally slightly
normal (more Mg-rich cores), even though, in a few cases, crystals with reverse zoning are
observed. Some microphenocrysts and groundmass clinopyroxene show disequilibrium
evidence, having higher Enstatite content than phenocrysts, in agreement with the higher
Anorthite content in plagioclase microliths. When plotted in the quadrilateral classification
diagram [31], the analysed pyroxenes fall in the augite field or on the boundary between the
augite and diopside fields; they form two slightly distinct groups (Figure 3), each including
phenocrysts, microphenocrysts, and groundmass clinopyroxene. Biotite phenocryst may
display a ragged habit and variable extent of resorption; both biotite and amphibole often
display opacitic rims or are almost entirely transformed to opaque minerals.
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Table 1. Representative chemical analyses of the main mineral phases from the Laghetto rocks.

Plagioclase

CA3-1 CA3-1 CA4-8 CA4-11 CA5-1 CA5-1 CA5-6 CA3-9 CA3-15 CA3-19 CA4-5 CA4-13 CA5-3 CA3-14 CA4-6 CA5-16

Ph core Ph rim Ph core Ph core Ph core Ph rim Ph core Micro
core

Micro
core

Micro
core

Micro
core

Micro
core

Micro
core Gdm Gdm Gdm

SiO2 57.2 57.5 59.8 59 55.9 56.2 56.6 59.8 53 59.4 58.7 59.3 57 59.4 54.7 51.8
Al2O3 26.1 26.6 25.2 25.9 27.7 26.9 28 25.9 28.6 24.7 26.3 25.3 26.9 25.9 29 30.3
FeO 0.11 0.11 0.17 0.07 0.65 0.16 0.15 0.13 0.20 0.19 0.19 0.12 0.07 0.77 0.66 0.14
CaO 9.2 9.3 7.5 8 10.2 9.7 10 7.9 11.3 7.5 8.3 7.2 9.1 8.2 11.5 13.5

Na2O 6.1 6.1 7.1 7 5.5 5.3 6.2 6.9 4.5 6.6 6.6 6.5 6 6.4 5.1 4
K2O 0.54 0.68 0.76 0.66 0.43 1.10 0.54 0.78 0.42 1 0.89 1.02 0.58 0.71 0.38 0.27
Total 99.2 100.3 100.5 100.7 100.4 99.2 101.5 101.5 98 99.4 100.9 99.4 99.7 101.5 101.4 100

An 43.9 43.8 35.4 37.4 49.3 47 45.8 37.2 56.8 36.6 39.1 35.8 44.1 39.8 54.4 63.9
Ab 53.1 52.3 60.3 58.9 48.3 46.7 51.2 58.5 40.6 57.7 55.9 58.2 52.6 56.2 43.5 34.6
Or 3.1 3.8 4.3 3.7 2.4 6.3 2.9 4.3 2.5 5.8 5 6 3.3 4.1 2.1 1.5

Clinopyroxene

CA3-3 CA3-3 CA4-1 CA4-1 CA4-12 CA4-17 CA4-16 CA5-9 CA5-9 CA4-4 CA5-7 CA5-11 CA5-11 CA3-5 CA4-3 CA5-15

Ph core Ph rim Ph core Ph rim Ph core Ph core Ph core Ph core Ph rim Micro
core

Micro
core

Micro
core

Micro
rim Gdm Gdm Gdm

SiO2 52.3 52.6 51.7 52.4 53.3 53.9 53.1 53.2 54.8 54.4 54.4 51.6 53.3 53.2 53.2 54.3
TiO2 0.18 0.14 0.17 - 0.09 0.36 0.29 0.24 0.18 0.16 0.21 0.02 0.39 0.25 0.21 0.24

Al2O3 0.80 0.52 0.43 0.54 0.56 1.34 1.24 1.30 1.34 0.70 0.60 0.41 1.84 1.55 1.37 0.78
FeO 11.6 11.9 12.7 12 11.6 4.3 4.8 3.4 4 4.7 3.8 11.8 5.4 5.9 7.7 5.6
MnO 0.46 0.61 0.68 0.61 0.57 0.11 0.13 0.06 0.11 0.14 0.17 0.67 0.16 0.14 0.26 0.16
MgO 13 12.4 12.4 12 12.9 17.3 16.8 17.7 18.2 18.7 19.1 11.9 17.2 17.1 17.6 18.7
CaO 21.7 21.5 21.4 22.2 22.1 22.1 22.1 21.7 22.2 20.8 20.6 21.6 21.5 21.7 19.8 20

Na2O 0.26 0.17 0.15 0.20 0.30 0.25 0.27 0.27 0.14 0.18 0.16 0.26 0.29 0.26 0.29 0.20
K2O - 0.02 - 0.02 0.01 0.01 - - 0.07 - 0.02 0.04 0.01 - - 0.01

Cr2O3 0.02 0.01 - - 0.02 0.53 0.33 0.67 0.31 0.15 0.48 0.01 0.02 0.11 0.02 -
Total 100.2 99.9 99.7 100 101.5 100.1 99.1 98.5 101.4 100 99.5 98.3 100.1 100.3 100.4 99.9
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Table 1. Cont.

Plagioclase

Wo 44.1 44.3 43.5 45.6 44.5 44.5 44.7 44.3 43.7 41.1 41.1 45.1 43.1 43.2 39.2 39.6
En 36.7 35.7 35.2 34.2 36.2 48.5 47.4 50.2 49.7 51.4 52.8 34.5 48.1 47.4 48.4 51.5
Fs 19.2 20.1 21.3 20.2 19.2 7 7.8 5.5 6.4 7.5 6.1 20.4 8.7 9.5 12.4 8.9

Biotite Amphibole Opaque minerals

CA3-6 CA3-11 CA3-20 CA4-9 CA5-8 CA3-16 CA5-5 CA5-14

Micro
core Ph core Ph core Ph core Ph core Ph core Gdm Gdm

SiO2 37.8 40.3 37 43.7 38.7 54.0 - 0.01
TiO2 3 3.9 2.8 3.6 4.6 0.18 2.1 2

Al2O3 14.7 17.8 14.5 14.7 14 1.3 0.83 2
FeO 8.5 5.2 10.7 7.2 8.2 3.4 85.5 89
MnO 0.12 0.04 0.10 0.02 0.05 0.09 0.27 0.14
MgO 21.6 18.4 20.5 17 19 18.5 0.85 0.30
CaO 0.12 0.06 0.14 0.14 0.09 20.64 0.35 0.07

Na2O 0.68 0.66 0.66 0.78 0.29 0.21 - -
K2O 9.8 6.8 8.9 9.3 10.1 0.04 0.04 0.03

Cr2O3 - 0.03 0.13 0.02 0.06 1.05 0.06 0.09
Total 96.3 93.1 95.4 96.4 95.1 99.4 90 93.6

Ph = phenocryst; Micro = microphenocryst; Gdm = groundmass.
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4.2. Geochemistry

Major and trace element compositions of the analysed samples are reported in
Table 2, along with a few representative analyses of other Capraia rocks [9,28]. The Total-
Alkali versus Silica (TAS) [32] and K2O vs. SiO2 [33] classification diagrams are shown in
Figure 4. Major and trace element diagrams are shown in Figures 5–7. Other rocks occur-
ring at Capraia, as dykes at Elba Island and as mafic enclaves in the San Vincenzo rhyolites,
are also reported [15,16,34,35].

The Capraia rocks are mostly high-K calcalkaline andesites and dacites. The samples
from Punta dello Zenobito are more mafic and fall at the boundary between shoshonitic
and high-K basaltic andesites. The Zurletto pyroclastics display more evolved composition
plotting between dacite and rhyolite fields (Figure 4b).

The investigated samples from the Laghetto Series plot at the boundary between the
trackyandesite and trachydacite fields in the TAS diagram (Figure 4a) and mostly in the
high-K calcalkaline andesite and dacite fields in the K2O vs. SiO2 diagram (Figure 4b).

The variation diagrams for major elements (Figures 4 and 5) show a similarity of the
analysed rocks with other andesite-dacites from Capraia for most elements, although they
exhibit slightly higher K2O and lower TiO2 and FeOt.

Trace elements against SiO2 (Figures 6 and 7) show that the Laghetto samples have
similar abundances as other Capraia intermediate rocks. However, they display distinct
spikes in Sr and Ba, LREE, Th, U and Pb. In contrast, HREE have slightly lower values,
and consequently, La/Yb and Tb/Yb ratios are higher. High Sr-Ba compositions in the
Laghetto Series were also found by Prosperini ([28] and Table 2). High Sr-Ba rock samples
from Orano dykes and San Vincenzo mafic enclaves display compositions in the range of
intermediate Capraia rocks for many major and trace elements (Figures 4–7).Geosciences 2020, 10, x FOR PEER REVIEW 9 of 22 
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Figure 4. (a) TAS and (b) K2O vs. SiO2 classification diagrams for Capraia rocks. Open circles (first
activity phase) and triangles (second activity phase): data from the literature [9,28]; full green circles:
this work. Some Elba dykes [15,35] and mafic enclaves from San Vincenzo [16,34] are also plotted for
comparison. Data are plotted on water-free basis.
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Chondrite-normalised REE patterns of the analysed samples are fractionated for both
LREE and HREE (Figure 8a). Incompatible element abundances normalised to primordial
mantle compositions show strong negative spikes of HFSE, high positive anomalies of
Pb and other LILE, and a small negative anomaly of Ba (Figure 8b). Similar patterns are
shown by the Elba and San Vincenzo rocks.
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Figure 8. (a) Chondrite normalised REE patterns and (b) Primitive mantle normalised trace element
patterns for the Laghetto rocks. Patterns of other Capraia rocks [9,28], Elba dykes [15,35] and a San Vincenzo
mafic enclave [16] are shown for comparison. Normalising values from Sun and McDonough [36].
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Table 2. Major (%), trace (ppm) and isotopic compositions of representative rocks from Capraia Island.

Rock
Sample CA4 CA2 CA5 CA1 CA6 CA7 CA3 CP25 CP22 CP50 CP9 CP28 CP7 CP6 CP30 CP14 CP 101 CP110 CP54 RZ05E PP-180C PP-180R DG-27 DG-28

Locality

Capraia Island Southern
Tuscany Elba Island

Laghetto Laghetto Laghetto Laghetto Laghetto Laghetto Laghetto Laghetto Laghetto
Monte
Cam-

panile

Monte
Cam-

panile
Porto Zurletto Zurletto

San
Rocco-
Piano

San
Rocco-
Piano

Capo
Fer-

raione
Peraiola Zenobito

San
Vincenzo
Enclave

Orano
Por-

phyry

Orano
Por-

phyry

Orano
Dykes

(Chiessi)

Orano
Dykes

(Chiessi)

Data Source This
Work

This
Work

This
Work

This
Work

This
Work

This
Work

This
Work [28] [28] [28] [28] [28] [28] [28] [28] [28] [9] [9] [9] [16] [15] [15] [35] [35]

SiO2 60.2 61.1 61.2 61.4 61.5 62.3 63.3 62.2 63 62 63.9 59.1 67.6 68.4 62.2 62.5 61.9 62.3 50.7 55.2 64.5 63.3 61.2 59.8
TiO2 0.66 0.65 0.67 0.64 0.62 0.61 0.65 0.67 0.67 0.97 0.94 0.81 0.51 0.56 0.71 0.73 0.69 0.68 1.65 0.82 0.62 0.69 0.67 0.67

Al2O3 14.8 16.1 15.4 16.7 15.6 15.7 16.1 16 16 16.5 16 16.5 13.6 14.3 15.8 15.8 15.3 15.2 15.5 15.6 16.1 15.2 14.6 14.5
Fe2O3 4.72 4.68 4.71 4.71 4.54 4.51 4.63 4.66 4.60 5.35 4.99 5.97 3.26 3.38 5.32 5.50 5.39 5.24 10.20 6.55 4.23 4.64 5.01 5.11
MnO 0.09 0.07 0.08 0.06 0.07 0.05 0.07 0.09 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.13 0.05 0.06 0.06 0.11 0.10
MgO 3.07 2.96 3.02 2.72 3.04 2.08 2.26 3.06 3.38 2.60 2.09 4.16 1.36 1.33 3.53 3.18 3.48 2.88 6.41 3.70 3.06 4.33 5.78 5.76
CaO 5.06 4.29 4.91 4.50 4.89 4.56 4.46 4.92 4.32 4.34 3.74 5.66 2.42 2.72 5.35 5.14 5.48 4.59 7.92 6.26 2.37 3.49 4.11 4.68

Na2O 3.09 3.01 3.27 3.06 3.18 3.32 3.35 3.27 3.17 3.53 3.61 3.20 3.82 3.10 2.88 2.87 3.14 3.14 2.83 2.27 3.27 2.92 3.28 3.20
K2O 4.26 4.14 4.27 4.07 3.99 4.15 4.26 3.95 3.75 3.71 4 2.82 3.86 3.95 3.04 3.12 3.33 3.90 2.42 3.78 3.87 3.95 3.25 3.09
P2O5 0.31 0.27 0.33 0.30 0.28 0.29 0.26 0.29 0.29 0.36 0.34 0.26 0.14 0.18 0.23 0.25 0.18 0.29 0.48 0.61 0.28 0.27 0.25 0.24
LOI 1.97 1.85 1.06 1.83 1.46 1.99 0.66 1.10 0.88 0.70 0.45 1.69 3.41 2.14 1.14 1.10 1.36 2.19 1.13 4.98 1.99 1.41 2.02 3.21
Total 98.3 99.1 98.9 99.9 99.2 99.6 100 100.2 100.1 100.2 100.1 100.3 100.1 100.1 100.3 100.2 100.3 100.5 99.4 99.8 100.3 100.3 100.3 100.3

Sc 14 14 15 14 14 13 13 13.2 - 13.8 - 17.4 6.8 - 16 - - - 23 19 11 12 - -
V 106 92 94 93 92 86 86 88 88 99 78 101 24 27 123 127 128 137 166 - 75 88 118 124
Cr 120 120 100 110 120 120 100 100 123 94 56 243 20 34 144 168 177 132 400 310 86 144 248 243
Co 16 14 15 15 14 10 13 8 14 11 11 18 8 7 14 16 11.9 15.2 30 19 12.8 16.3 18 19
Ni 20 20 20 20 30 30 < 20 25 26 22 10 84 8 9 13 13 29 - 69 90 43.1 83.7 101 112
Rb 164 169 162 166 163 172 180 164 153 187 191 125 182 205 122 122 116 161 115 129 166 206 189 189
Sr 1092 908 1164 1004 947 932 914 1110 1042 498 489 489 341 383 852 849 733 933 399 1634 920 1461 1563 1602
Y 20.9 19.4 22.7 18.7 19.2 19.7 21.5 31 20 25 24 22 18 20 19 23 19.3 31 20 30 20 20.1 10 8
Zr 227 247 245 236 222 252 255 206 223 259 232 207 170 176 198 197 185 234 221 226 192 213 219 217
Nb 11.3 9.8 11.3 10.3 12.9 12.7 12.9 8 13 20 17 13 10 12 11 9 11.9 14.3 15 7 12.4 10.9 9 8
Cs 11.7 11.5 11 11.5 12.1 13.4 12.3 12 - - - - - - - - 9.2 15.2 4 - 12 30 14 -
Ba 1537 1342 1574 1318 1259 1296 1278 1220 1367 828 820 738 563 650 866 853 711 1410 540 1510 970 1278 1528 1470
La 129 121 145 119 114 119 107 127 128 68 63 68 44 49 57 59 58.5 165 29.3 181 101 120 146 148
Ce 232 228 259 237 213 210 202 224 246 119 129 106 89 86 102 98 109 297 68.4 333 186 205 263 295
Nd 85.2 81.3 96.8 79.5 77.7 76.9 74.6 103 - 49 - 43 34 - 39 - 43.6 105 51.9 160 80 94 107.3 -
Sm 12.8 12.2 14.4 11.7 11.8 11.5 11.6 13.9 - 10.7 - - 6.7 - 8.6 - 8.01 16.4 9.6 25 12.6 14.4 15.7 -
Eu 2.38 2.32 2.72 2.33 2.33 2.3 2.3 2.62 - 1.63 - 1.67 1.05 - 1.63 - 1.76 3 2.09 4.88 2.05 2.76 3 -
Gd 7.25 6.54 7.93 6.48 6.5 6.36 6.65 8.1 - - - - - - - - 5.3 9.5 6.2 14 7.89 9.38 10.3 -
Tb 0.86 0.79 0.89 0.71 0.74 0.76 0.83 1.1 - 0.82 - 0.72 0.57 - 0.71 - 0.77 1.24 1 1.5 0.88 0.92 1 -
Dy 4.03 3.64 4.23 3.59 3.77 3.63 4.05 4.9 - - - - - - - - 3.6 5.6 4.9 6.9 4.25 4.36 4.9 -
Ho 0.67 0.62 0.71 0.61 0.6 0.6 0.7 0.91 - - - - - - - - 0.7 1.01 0.99 1.1 0.74 0.73 0.6 -
Er 1.92 1.77 2.12 1.79 1.72 1.79 1.94 2.3 - - - - - - - - 2.05 2.85 2.7 2.6 1.83 1.69 1.7 -
Tm 0.24 0.23 0.29 0.26 0.23 0.25 0.27 0.30 - - - - - - - - 0.29 0.40 0.40 - 0.26 0.24 0.20 -
Yb 1.68 1.58 1.82 1.56 1.50 1.53 1.84 2.30 - 2.10 - 2 1.80 - 1.80 - 1.84 2.49 2.30 2.10 1.67 1.37 1.20 -
Lu 0.24 0.25 0.29 0.22 0.24 0.23 0.28 0.35 - 0.35 - 0.36 0.28 - 0.23 - 0.28 0.36 0.35 0.30 0.22 0.18 0.20 -
Hf 5.6 5.5 6.2 5.7 5.6 5.9 5.9 5.3 - 7.3 - 4.6 5.9 - 5 - 5.4 6.3 5.6 6.5 - - - -
Ta 1.07 1 0.97 1 1.03 1.11 1.17 1 - 1.8 - 1.3 1.5 - 1.08 - 0.9 1.11 1.2 1.1 1.54 1.3 - -
Pb 72 74 78 77 78 72 70 53 59 41 42 38 51 52 48 46 61 82 12 - 36 101 77 61
Th 51.5 53.7 56.8 52.5 50 52.5 48.3 44 46 44 43 26 34 34 25 23 23.1 49.4 24 51.5 37 35 43 51
U 10.5 10.4 10.6 10.9 10.5 11.8 9.9 - - - - - - - - - 6.4 11.7 3.8 - 11 9.9 - -

87Sr/86Sr 0.709642 - 0.710009 - - - 0.709553 0.710260 0.707314 0.709628 0.709811 0.709175 - - 0.708782 0.707933 0.708719 0.710213 0.708135 - - 0.711500 0.711348 -
143Nd/144Nd 0.512343 - 0.512331 - - - 0.512339 0.512243 - - - - - - - - 0.512346 0.512239 0.512254 - - 0.512270 0.512330 -
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Sr-Nd isotope ratios of the analysed samples fall in the range of 87Sr/86Sr =0.709553–0.710009
and 143Nd/144Nd = 0.512331–0.512343. Sr-isotope ratios overlapped or were somewhat
higher than other Capraia rocks reported in the literature [9,28]. Overall, the Capraia rocks,
as well as the Elba dykes and San Vincenzo enclaves, plot near to the lowest Sr and highest
Nd isotope distribution range of the Tuscany Province, whose main isotopic characteris-
tic is the intermediate composition between typically mantle-derived and crustal anatectic
magmas (Figure 9). The few published Pb isotope ratios show poorly radiogenic values,
as typically found in other rocks from the Tuscany Province (206Pb/204Pb = 18.65–18.73;
207Pb/204Pb = 15.64–15.70; 208Pb/204Pb = 38.96–39.09; [9] and references therein).Geosciences 2020, 10, x FOR PEER REVIEW 14 of 22 
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Tuscan province. Data from other adakite localities (orange areas) are reported for comparison [19].

5. Discussion
5.1. Classification, Occurrence and Genetic Processes of Sr-Ba-LREE–Rich Rocks

The analysed rocks of the Laghetto Series differ from other intermediate calcalkaline
rocks from Capraia and most of the other centres of the Tuscany Magmatic Province for
showing anomalous enrichments in Sr and Ba [3]. Moreover, they also show enrichment in
LREE, Th, U, and Pb, and strong REE fractionation (high La/Yb and La/Y). A few dykes
from Elba Island (Table 2) also show similar characteristics to the Laghetto samples [15,35].

Intermediate to felsic high-Sr rocks are found in many recent and old subduction zones
and have been named adakites. They were interpreted early on as representing magmas
formed directly by melting of MOR basaltic crust at high pressures along subduction zones
([17,18] and references therein).

Successively, several occurrences of rocks with high Sr-Ba, with variable isotopic composi-
tions, have been reported both in some circum-Pacific arc systems and in continental collision
environments ([36,37] and references therein). Summarising previous studies on various
occurrences, Richard and Kerrich [38] and Castillo [19] defined the adakites and adakitic rocks
as characterised by intermediate to felsic compositions, high Sr (≥400–500 ppm), Sr/Y (≥20),
and La/Yb (≥2) ratios, and low Y (≤18 ppm) and HREE (Yb ≤ 1.9 ppm).

The analysed Laghetto rocks share several compositional features of adakites, as
defined by Richard and Kerrich [38] and Castillo [19]. These include high Sr, Sr/Y, Ba and
La/Yb (Figures 7 and 10). On the other side, Y contents are also somewhat higher in the
Capraia rocks with respect to typical adakites, although low Y and HREE are found at
Elba (Figure 10). Sr (and Nd) isotopic ratios differ from typical island-arc adakite values
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(87Sr/86Sr ~ 0.704) [38]; however, they are close to some Yang Tse Block and Northern Tibet
adakite values (Figure 9). Based on this evidence, the Laghetto rocks can be considered
as members of the adakitic rock clan or as transitional rocks between adakitic and arc
calcalkaline rocks. They represent a new magma type for Central Italy, which had not
been highlighted by previous studies. Similar rocks occur in at least one other place in
Tuscany: at Elba, a few dykes from Chiessi (Orano dykes) have similar characteristics as
Laghetto, in addition to lower abundances of Y and HREE [35]. Some mafic enclaves from
San Vincenzo rhyolites, southern Tuscany, likely also belong to the same magma type, as
will be discussed later.
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that the samples with high Sr/Y plot on these curves, and the Laghetto rocks plot at the transition between
adakite and calcalkaline rocks.

There is a general agreement that the high Sr-Ba contents of adakitic rocks point to
genetic processes that occurred at high pressure, outside the stability field of feldspars.

In addition to the early hypothesis of a direct derivation by partial melting of the MORB-
type crust along subduction zones [17], other processes include high-pressure amphibole-
dominated crystal fractionation of arc hydrous basalts, a derivation from anomalous mantle
rocks contaminated by upper crustal material coming from the slab, or melting of thickened
lower continental crust in zones of continental collision (e.g., [18–20,37–44]). In all cases, Sr
and Ba behave as incompatible elements and, therefore, are enriched in the melts.

5.2. Petrogenesis of Laghetto Rocks

Sharp spikes of some elements in the Laghetto rocks might suggest a shallow-level
magma chamber process, for instance, the accumulation of Sr-Ba-LREE–rich phases such
as feldspars, biotite, and accessory apatite. All feldspars contain high concentrations of Sr;
K-feldspars and biotite are enriched in Ba (e.g., [45,46]); apatite contains high amounts of
all REE (e.g., [47]). The analysed samples contain apatite and biotite. There is a positive
correlation between P2O5 and LREE (not shown), which would support accumulation
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of apatite. However, apatite is rich in both Light and Heavy REE (e.g., [48]) and should
produce an increase of all REE, which is not observed. Also, accumulation of phlogopite
should lead to exceedingly high Rb contents, which is not observed in our rocks. Moreover,
the porphyritic index of Laghetto rocks is moderate (about 20%) and much lower than
other intermediate rocks from the same island [28]. Therefore, mineral accumulation is
unlikely to be responsible for anomalous enrichment in the investigated rocks, based on
petrographic and geochemical evidence. Their anomalous composition as compared to
other andesite-dacite rocks in Tuscany must reflect processes occurring during melting
or/and during the ascent of magma to the surface. Clear evidence emerging from isotopic
data is that the Laghetto rocks differ from typical MORB rocks. Moreover, the Sr-Nd isotope
signature clearly requires the participation of both mantle and crustal components in its
origin and/or evolution. This excludes any direct genetic relationship with mid-ocean
ridge basalts (MORB), e.g., by melting of the subducted oceanic slab. These conclusions
are valid for most, if not all, Tuscany magmatic rocks (e.g., [3]). Therefore, an origin from
melting of the subducting oceanic basaltic slab is unlikely. Other possible processes include
high-pressure fractional crystallisation of basaltic magmas, melting of mixtures of crustal
and mantle rocks above subduction zones (subduction mélange bodies), and melting of the
lower continental crust, thickened during collision. These processes will be tested by trace
element modelling.

High-pressure fractional crystallisation. Such a process has been tested by assuming
a calcalkaline-shoshonitic mafic magma with a composition as the rocks from Punta dello
Zenobito. Models have been carried out for both compatible and incompatible trace ele-
ments. Fractionation of feldspar-free mineral assemblages dominated by mafic minerals
amphibole and/or clinopyroxene has been assumed. This mineral assemblage has a low
bulk partition coefficient for Sr and Ba and other incompatible elements during fraction-
ation and can explain the enrichments in the Laghetto rocks. However, amphiboles and
clinopyroxenes also incorporate significant amounts of ferromagnesian elements, such
as Cr, Co, and Sc, which have partition coefficients much higher than unity (see GERM
website [49]). For modelling, Sr and Rb have been used as incompatible elements, whereas
Cr has been selected as representative of compatible elements. Partition coefficients have
been set at DSr = 0.1, DRb = 0.01, DCr = 2 and 20; a very low partition coefficient for Rb
has been assumed because this element is one of the most incompatible in both mafic and
felsic systems. Partition coefficients for Cr are variable, and two extreme values are used
for modelling (see GERM website [49]). The model of Cr vs. Sr (Figure 11a) shows that the
separation of a mafic mineral assemblage from basaltic Capraia magmas generates high-Sr
residual liquid as the Laghetto rocks, after about 50 to 70% crystal fractionation. However,
the Cr contents are matched only if the minimum value of DCr = 2 is assumed.

For higher and more realistic values of DCr (= 5–10), the decrease in Cr is extreme
and produces residual melts that are away from Laghetto rocks. This argues against
fractional crystallisation of mafic phases. The same conclusion is suggested by Rb-Sr
modelling (Figure 11b), which is unable to generate high-Sr and moderately Rb-rich
residual liquids starting from Zenobito basalts unless the unrealistic assumption is made
of a nearly compatible behaviour for Rb (i.e, DRb = 0.9–1). A compatible behaviour of
Rb would imply fractionation of either amphibole and/or phlogopite, which would not
explain the increase in Ba.
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Lower crust melting. Alternative processes could be melting of the lower continental
crust or a derivation from mixtures between mantle peridotite and upper crustal rocks, i.e.,
subduction mélanges of peridotite and metapelites [50]. Both occur at high pressure outside
the stability field of feldspars (i.e., thickened crust), making Sr behave as an incompatible
element. Lower crust batch melting processes of Sr vs. the compatible element Cr are
reported in Figure 11c. The lower crust composition is from Wedepohl [51]. Modelling
shows that, assuming an incompatible behaviour (i.e., few or no feldspars in the residue,
compatible with high-P melting in the deep crust), Sr increases with a decreasing degree of
melting, whereas compatible elements are not strongly depleted. Overall, a compositional
trend that resembles the Laghetto rocks can be obtained. However, the adakite-like rocks
from Elba and the San Vincenzo mafic enclave have exceedingly high Cr contents to be
derived from the lower crust. Such a problem does not necessarily rule out lower crust
melting. However, a contribution of mantle material has to be assumed in the origin of
these rocks.

Crustal melting has been also tested using couples of incompatible elements (Sr
vs. Rb). If partition coefficients of 0.1 and 0.01 are respectively assumed for Sr and Rb,
crustal melting can generate liquids that resemble some of the most Sr-rich among the
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analysed samples but does not explain the entire range of the Laghetto rocks. However, the
compositional range of the latter rocks can be matched by assuming that Sr-rich magmas
mixed with other Capraia liquids to form a suite of hybrid magmas matching the trend
of the analysed samples. In conclusion, the most Sr-rich rocks from Capraia and Elba can
be formed by melting of the lower crust. However, a contribution from upper mantle
peridotite is required to obtain the observed values of compatible elements such as Cr.

Melting of mantle–upper crust mixtures (subduction mélange). The occurrence of
upper mantle rocks strongly contaminated by upper crustal material in the Roman Province
has been suggested by many papers ([8] and others). A hybridism of mantle and crustal
rocks is probably common along the entire Alpine-Himalayan orogenic belt [52]. Mantle-
crust mixing can occur by sediment transport along subduction zones, melting and veining
by these melts inside the overlying mantle wedge ([4] and references therein). Other models
assume that basalts, sediments, and slices of continental crust are transported along the
subduction channel and are added to mantle wedge to form hydrous mélange bodies at the
slab–mantle interface. The low density of these bodies favours ascent as plumes toward the
hotter corner of the mantle wedge, where they dehydrate and melt (e.g., [50,53–55]). The
melting of different portions of diapirs generates various types of magmas, with variable
enrichments in incompatible elements; melting of dehydrated sectors of the diapirs can
generate magmas enriched in poorly mobile elements such as Th and REE [56]. These
magmas can also be rich in Ba-Sr if melting occurs at high pressure, outside the stability
field of feldspars.

Quantitative modelling of hybrid mantle-crust rocks melting is very difficult to per-
form because of the large number of assumptions that have to be made on the composition
of the crustal rocks, the amounts of crustal material entering into the mantle, and the role
of fluid in modifying different portions of the mantle wedge. Because of these difficulties,
only some aspects will be explored.

As stated earlier in this paper, Sr-Nd isotopic signatures on the Laghetto rocks require
contributions by both mantle and upper continental crust, as amply recognised for other
mafic to intermediate magmas in the Tuscany province and along the Alpine-Himalayan
belt. The amount of crustal material involved in the mixing with mantle is uncertain.
If a composition as that reported for the average gneiss from Southern Tuscany is as-
sumed (Sr = 180 ppm, 87Sr/86Sr = 0.723 [57]), the contribution of the continental crust
end-members to the Laghetto source is around 5%, starting from an upper mantle com-
position of Sr = 20 ppm and 87Sr/86Sr = 0.703 (see GERM website [49]). A mixture of
95% mantle material and 5% crustal material is still ultramafic in composition. Its melting
generates a liquid containing high contents of compatible elements Ni and Cr (Ni around
300–400 ppm and Cr around 1000–1100 ppm, assuming batch melting), which differ from
the studied rocks.

Role of magma mixing. The Laghetto volcanics display evidence of textural and miner-
alogical disequilibrium, such as the sieve-texture in plagioclase, the reaction rim and variable
composition of clinopyroxene and plagioclase (Table 1), and the resorption rims in biotite
and amphibole, which suggest mixing between compositionally different magma batches.
To highlight this process, plots of elements vs. element ratios (i.e., Rb vs. Rb/Sr) are re-
ported in Figure 12. The analysed samples and other Capraia rocks define different trends
that are typical of mixing processes. These trends are consistent with the hypothesis that a
range of high-Sr and low Rb/Sr magmas was formed during lower crustal melting (dash-dot
line). These subsequently mixed with low-Sr and high-Rb/Sr melts, which represent the
bulk of Capraia rocks and might be derived from mafic parents following shallow-level
fractional crystallisation processes. The circled symbols in Figure 12 represent the different
end members.



Geosciences 2021, 11, 104 18 of 21

Geosciences 2020, 10, x FOR PEER REVIEW 19 of 22 

 

 
Figure 12. Element vs. element ratio diagrams for the Laghetto and other Capraia rocks. Some 
Elba dykes [15,35] and mafic enclaves from San Vincenzo [16,34] are also plotted for comparison. 
The dash-dot line is the melting curve of the lower continental crust. The full lines are possible 
mixing trends between different end members (circled symbols). 

In conclusion, the melting of the lower continental crust seems the most plausible 
genetic mechanism for the investigated rocks. These processes occurred at high pressure, 
probably at the base of a continental crust that was thickened during continental collision. 
Mixing between these magmas and other mantle-derived calcalkaline liquids, showing 
lower Sr contents, modified primary lower crustal melts, thus giving the range of compo-
sitions observed at Laghetto. 

5.3. Regional Distribution and Geodynamic Significance 
High-Sr-Ba andesites, similar to the analysed samples from Capraia, occur elsewhere 

in the Tuscany Magmatic Province. In particular, a group of dykes from Elba share many 
characteristics with the Laghetto rocks, but have lower Y and HREE contents [35] and can 
be also classified as adakitic rocks. The Elba and Capraia adakitic rocks have been erupted 
around 7–8 Ma and represent some of the oldest rocks of the Tuscany Magmatic Province. 
Other adakitic compositions might be represented by mafic enclaves in the San Vincenzo 
rhyolites. These also have high Sr contents, but the available data are insufficient to com-
pare these enclaves with the Capraia and Elba high-Sr rocks [14,16,34]. The San Vincenzo 
rhyolites are sited on mainland Tuscany, east of Capraia and Elba. Their age is 4.5 Ma, 
younger to coeval to Elba and Capraia activity. Overall, the episode of adakitic-type mag-
matism seems to be restricted to the westernmost and oldest sector of the Tuscany Prov-
ince. 

There is a general agreement that the mafic-intermediate magmas in Tuscany are 
generated in a heterogeneous and anomalous upper mantle, modified by the addition of 
subduction-related upper crustal material such as pelitic sediments or their metamorphic 
equivalents. According to some authors [2,3,6,50], modification of the upper mantle oc-
curred during southeast directed Alpine subduction of the European plate beneath the 
Adriatic-African margin.  

Starting from the Oligocene, there was an inversion of the subduction, with the Adri-
atic-African plate immerging westward beneath the older collision zone. New subduction 
and back-arc extension induced melting of the previously contaminated mantle, which 

0 100 200 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Rb
/S

r

Rb ppm

Lower
Crust

Capraia Isl. first activity phase San Vincenzo mafic enclave
Capraia Isl. second activity phase Elba Isl. Orano porphyry
Capraia Isl. Laghetto (this work)             Elba Si. Chiessi dyke

Figure 12. Element vs. element ratio diagrams for the Laghetto and other Capraia rocks. Some Elba
dykes [15,35] and mafic enclaves from San Vincenzo [16,34] are also plotted for comparison. The
dash-dot line is the melting curve of the lower continental crust. The full lines are possible mixing
trends between different end members (circled symbols).

In conclusion, the melting of the lower continental crust seems the most plausible
genetic mechanism for the investigated rocks. These processes occurred at high pres-
sure, probably at the base of a continental crust that was thickened during continental
collision. Mixing between these magmas and other mantle-derived calcalkaline liquids,
showing lower Sr contents, modified primary lower crustal melts, thus giving the range of
compositions observed at Laghetto.

5.3. Regional Distribution and Geodynamic Significance

High-Sr-Ba andesites, similar to the analysed samples from Capraia, occur elsewhere
in the Tuscany Magmatic Province. In particular, a group of dykes from Elba share many
characteristics with the Laghetto rocks, but have lower Y and HREE contents [35] and can
be also classified as adakitic rocks. The Elba and Capraia adakitic rocks have been erupted
around 7–8 Ma and represent some of the oldest rocks of the Tuscany Magmatic Province.
Other adakitic compositions might be represented by mafic enclaves in the San Vincenzo
rhyolites. These also have high Sr contents, but the available data are insufficient to compare
these enclaves with the Capraia and Elba high-Sr rocks [14,16,34]. The San Vincenzo rhyolites
are sited on mainland Tuscany, east of Capraia and Elba. Their age is 4.5 Ma, younger to
coeval to Elba and Capraia activity. Overall, the episode of adakitic-type magmatism seems
to be restricted to the westernmost and oldest sector of the Tuscany Province.

There is a general agreement that the mafic-intermediate magmas in Tuscany are
generated in a heterogeneous and anomalous upper mantle, modified by the addition of
subduction-related upper crustal material such as pelitic sediments or their metamorphic
equivalents. According to some authors [2,3,6,50], modification of the upper mantle
occurred during southeast directed Alpine subduction of the European plate beneath the
Adriatic-African margin.

Starting from the Oligocene, there was an inversion of the subduction, with the
Adriatic-African plate immerging westward beneath the older collision zone. New sub-
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duction and back-arc extension induced melting of the previously contaminated mantle,
which gave several compositionally different magma types, ranging from calcalkaline to
potassic lamproitic, according to the depth and degrees of partial melting.

Continental collision and inversion of subduction immersion were followed by east-
ward migration of the magmatic arc, along with back-arc extension. Collision probably
generated a thickening of the continental crust, which was the site of melting and formation
of adakitic-like magmas. Melting was favoured by the post-collisional extension, which
migrated eastward, behind the subduction zone shifting in the same direction. Therefore,
these episodes of magmatism occurred in the westernmost sectors where the crustal thick-
ness was produced by the collision. By contrast, they are not present in other younger
manifestations of the Tuscany magmatism, probably because back-arc extension reduced
the crustal thickness of the continental crust.

6. Conclusions

• A series of high-Sr-Ba andesite-dacite rocks occur at Capraia in the Laghetto area, rep-
resenting a particular stage of calcalkaline activity at ~ 7 Ma. They have a composition
that is intermediate between adakitic and calcalkaline rocks.

• Geochemical data suggest that these rocks cannot be related to other calcalkaline rocks
occurring on the island by fractional crystallisation but represent a distinct type of magma.

• Geochemical modelling suggests that the most likely hypothesis is the generation at
mantle pressure by melting of the lower continental crust, followed by mixing with
other mantle-derived Capraia magmas.

• A similar rock type also occurs at Elba Island and is almost coeval with those from
Capraia and possibly at San Vincenzo, on the mainland Tuscany. In contrast, it seems
to be absent in other sectors of the Tuscany magmatic province.

• The geodynamic model that best explains the composition of the studied rocks is
the thickening of the continental crust during a continental collision, followed by
extension that favoured melting of the lower crust. Such a process was possible during
the early stages of extension, shortly after the collision event. This explains why lower
crustal melting and formation of adakitic-like magmas are restricted to older stages of
magmatism in Tuscany.
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