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Abstract: Glacial geology, marine environment, and arid climate govern the composition of clay
tills. The main purpose of this work is to develop a clear understanding of the engineering behavior
of compacted clay till under soil suction and applied stress. The results indicate moderate water
adsorption due to the presence of clay minerals (26% corrensite, 10% illite, and 8% kaolinite) with Ca2+

as the dominant cation and a flocculated fabric in a slightly basic (pH = 7.5) pore water. The water
retention curve comprised four transition points that are associated with capillary water drainage
from large pores (air entry value of 2 kPa and residual suction value of 20 kPa) and small pores (air
entry value of 700 kPa and residual suction value of 5 × 104 kPa). Beyond the last value, vapor flow
is dominant and removes the adsorbed water by evaporation. The ratio of soil volume change to
water volume change best described the s-shaped shrinkage path that also comprised four stages,
namely: from most large pores with low volume change; from remaining large and most small
pores along with almost equal volume change; from some small pores with low volume change; and
from the rest of the small pores with no volume change. Likewise, the s-shaped swelling potential
curve comprised three stages and correlated well with bimodal hydraulic conductivity curve, that
is, slow initial swelling (unsaturated hydraulic conductivity around 10−14 m/s) due to expansion
of peripheral clay in lumps; high primary swelling (unsaturated hydraulic conductivity of up to
10−11 m/s) due to thickened double layer of most colloids; and slow secondary swelling (albeit
unsaturated hydraulic conductivity around 10−10 m/s) due to expansion of remaining particles.
Soil compression (compression index of 0.164) was due to a gradual reduction in number of large
pores, whereas rebound (swelling index of 0.047) was due to water adsorption on clay with part
of the deformations recovered. Finally, the consolidation rate was related to saturated hydraulic
conductivity, which varied by three orders of magnitude.

Keywords: clay tills; soil composition; water retention; volume change; hydraulic conductivity

1. Introduction

Clay tills are frequently encountered across the Northern Hemisphere, primarily in
Canada, United Kingdom, Russia, Norway, Ireland, and Poland. These soils are hetero-
geneous mixtures of unsorted earth materials containing variable amounts of clays [1–3].
The presence of clay minerals governs the engineering behavior of such soils, owing to
water adsorption and retention. The resulting flow through and volumetric changes have
been reported to severely affect the integrity of civil infrastructure. For example, 18 month
construction halt due to low hydraulic conductivity and high pore pressures in Alameda
dam extension (Saskatchewan, Canada) [4] and post-construction settlement of 900 mm
in Saint-Marguerite–3 dam partly due to consolidation (Quebec, Canada) [5]. Generally,
the behavior of earth structures is related to the following: seasonal weather causing
saturation–desaturation and resulting in alternate swelling and shrinkage [6,7] and con-
struction loading causing initial pore pressure increase and subsequent settlement [8,9].
Given that several new large-scale projects (such as irrigation canals from Diefenbaker
Lake and Pike Lake and rehabilitation of Gardiner dam) have to be constructed from local
clay tills, there is a need to understand flow through and volumetric changes in such soils.
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The engineering characteristics of clayey soils are governed by specific minerals (smec-
tite, illite, and kaolinite) possessing small particles and high cation exchange [10]. Their
behavior can be described by the stress state variables of soil suction due to precipitation
and evaporation and applied stress due to overburden or structural load. Suction is gen-
erated by capillary action at the air–water interface in soil pores and water adsorption
by clay mineral surfaces through diffuse double layer interactions. Both mechanisms
restrict water movement such that capillarity (driven by matric potential) is operative at
low suction [11,12] and adsorption (driven by electrical potential) is dominant at high
suction [13,14]. Swelling of an initially dry soil (high suction) occurs due to hydration of
clay particle surfaces forming thin water films (diffuse double layers (1 nm to 100 nm))
by van der Waals attraction [10,15]. These water films gradually increase in size (8 nm to
680 nm [16]) thereby developing water menisci in the soil pores and decrease suction that
diminishes at full saturation [17,18]. The reverse order of water expulsion has been ob-
served during shrinkage of an initially wet soil [19]. Likewise, consolidation of an initially
saturated soil occurs by the expulsion of pore water, whereas the adsorbed water remains
attached to clay minerals [20]. Furthermore, the hydraulic conductivity under a given
stress state determines the rate at which volumetric changes take place. Such interrelated
phenomena require a fundamental understanding of mineral composition in conjunction
with flow through, swell-shrink, and compression-rebound.

The main objective of this paper was to investigate the effect of composition on the
engineering behavior of clay tills. First, index properties were determined for preliminary
soil assessment. Second, mineral and water compositions were determined to appreciate
the geological origin and water adsorption of the clay till. Third, the water retention
curve (WRC) was determined along with the shrinkage curve (SC) to understand the
water holding capacity during volume changes under soil suction. Fourth, the swell-
consolidation behavior was determined along with the hydraulic conductivity curve (HCC)
to assess volume changes under applied stresses.

2. Geological Setting

Saskatchewan resides on sedimentary rocks from the Cretaceous to the Tertiary. These
rocks developed due to tectonic activity that resulted in the rising of the Rocky Mountains
and down-warping of the Williston Basin [21,22]. Physical weathering resulted in the accu-
mulation of unsorted materials in the depression [23], whereas volcanic ash from eruptions
in southwestern Montana deposited feldspar minerals in the region [24]. During the late
Cretaceous period, the Western Interior Seaway (east of the Rocky Mountains from the Gulf
of Mexico to the Arctic Ocean) was formed due to sea level rise [25]. Alternate sea level
fluctuations caused physical and chemical weathering of the mountains thereby growing
surficial materials as well as precipitating Na+, K+, Ca2+, Mg2+, Cl−, CO3

2−, and SO4
2− as

salts such as carbonates [26]. During the Tertiary period, rivers and channels originated
from the Rocky Mountains and further deposited alluvial sediments [27]. Furthermore,
the region experienced several periods of hot and dry climate from the Cretaceous to the
Tertiary period [28,29]. This means that the basin facilitated the conversion of feldspars
to clays because of marine environment, arid climate, and restrained leaching along with
deposition of calcites and dolomites [30].

The region underwent extensive reworking due to multiple glacial events throughout
the Quaternary period. Advancing ice sheets progressively scraped surficial materials and
the retreating glacier deposited thick successions of clayey tills [2,31,32]. The present-day tills
evolved in the predominantly flat geomorphology and semi-arid climate after the Wisconsinan
17,000 year BP through 11,000 years BP [33,34]. Based on stratigraphy and mean carbonate
content, regional clay till formations include the following [35]: (i) the Sutherland group (60 m
thick) has a carbonate content of 19 ± 8 mL CO2/g and comprises the Mennon, Dundurn,
and Warman formations; and (ii) the Saskatoon group (80 m thick) has a carbonate content of
34 ± 10 mL CO2/g and comprises Floral and Battleford formations.
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Figure 1 presents the plasticity chart developed by Cassagrande [36] with typical
mineral ranges given by Holtz and Kovacs [37]. The data reported by Sauer et al. [3]
indicated that most tills fall in the region designated as lean clay (CL). The liquid limit
range for the Saskatoon group was 22% to 40%, whereas that for the Sutherland group was
35% to 52%. These data indicate that a low liquid limit is associated with high carbonate
content (and vice versa), because the amount of adsorbed water on clay surfaces is reduced
by the Ca2+ and Mg2+ ions in the carbonates. The behavior of both types of tills tends to be
close to smectite clay minerals.
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Figure 1. Plasticity chart showing clay tills in southern Saskatchewan (data from Sauer et al. [3]).

3. Research Methodology

The till samples were obtained from a surface deposit at Belle Plaine, Saskatchewan,
Canada. The materials were collected in a 20 L bucket, sealed with polythene wrap to pre-
vent water loss, and brought to the geoengineering laboratory at the University of Regina
as per ASTM D4220/D4220M-14 [38]. The soil was air-dried at a temperature of 21 ◦C, the
chunks were broken down, and visible coarse particles were removed. The remainder of
the material was pulverized and the oversized (coarser than 4.75 mm) particles discarded.
Pulverization was achieved by gently breaking down the material using a manual grinder
to ensure that the natural sizes of the individual grains are not altered. The index properties
were determined according to the following ASTM methods: (i) specific gravity (Gs) by
ASTM D854-14 [39]; (ii) grain size distribution (GSD) by ASTM D422-63(2007) [40]; and
(iii) liquid limit (wl), plastic limit (wp), and plasticity index (Ip) by ASTM D4318-17e1 [41].
The soil was classified using the ASTM D2487-17e1 [42]. The ASTM D2216-19 [43] was
used for all soil properties requiring the determination of water content. This method uses
oven drying of materials at 105 ± 5 ◦C, which does not affect the grain size distribution of
sedimentary soils.

The mineral composition was determined by X-ray diffraction (XRD) analysis using
a diffractometer (Bruker D4 Endeavor) equipped with a monochromatic incident beam
(Co K-alpha) at 35 kV and 40 mA. To separate coarse particles from clay aggregates, a soil
sample (2.5 g) finer than 0.075 mm was dispersed using sodium hexametaphosphate.
The sample was centrifuged to separate coarse particles (coarser than 0.002 mm) at 600 rpm
for 5 min and clay particles (finer than 0.002 mm) at 3000 rpm for 20 min. The coarse
sample was air-dried at 22 ◦C, pulverized to a fine powder, mounted onto a glass slide
with random particle orientation, and examined over an angle (2θ) of 4◦ to 75◦. In contrast,
preferentially oriented clay samples were prepared as follows: (i) in air-dried state to
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develop the base case; (ii) ethylene glycol (EG) solvated to identify expansive clay minerals;
and (iii) hydrochloric acid (HCl) solvated to identify soluble clay minerals. These samples
were examined over an angle (2θ) of 4◦ to 50◦. The Powder Diffraction File (PDF)-4 Mineral
Database from the International Centre for Diffraction Data (ICDD) was used for mineral
identification. Likewise, the reference intensity ratio (RIR) method was applied for mineral
quantification [44].

Exchangeable cations were quantified through the inductively coupled plasma optical
emission spectroscopy (ICP-OES). About 10 g of sample and 40 mL of 1 M ammonium
acetate were added in a centrifuge tube that was agitated at 115 rpm for 5 min in a reciprocal
shaker. The solution was re-agitated after 24 h for 15 min and filtered via Buchner funnel
with a Whatman No.42 filter paper [45]. An extract from the filtered solution was placed in
ICP-OES (Perkin Elmer Optima 7300s) to determine Na+, K+, Ca2+, and Mg2+. The sample
was heated up to 7000 ◦C and allowed to cool down. The cations were identified from the
emitted light wavelengths and quantified from the spectroscopic intensity.

Thermo-gravimetric analysis (TGA) was conducted to understand weight loss due to
soil water removal and mineral transitions. About 100 mg of powdered soil was placed in
the analyzer (LECO TGA 701), and the temperature was raised from 28 ◦C (ambient) to
950 ◦C at a uniform rate of 2 ◦C/min. To preclude oxidation, the analyzer was purged with
nitrogen (N2), and a gas flow of 7 L/min was maintained throughout the test.

The pore water characteristics were determined to assess the effect of clay–liquid
interactions on soil fabric. A 1:1 slurry was prepared by mixing 50 g of material finer
than 2 mm with 50 mL of distilled water. To separate material coarser than 0.002 mm, the
slurry was centrifuged at 600 rpm for 5 min using Sorvall Thermo Scientific Biofuge Primo
R. The pH and electrical conductivity (EC) were determined in accordance with ASTM
D4972-19 [46] using OHAUS starter 2100 and ASTM D1125-14 [47] using EC meter (D-54),
respectively. Likewise, zeta potential (ZP) was determined for a 1:1 slurry (with material
finer 0.075 mm) using a Zeta Meter System 4.0. The sample preparation and measurement
methods are described in Azam and Rima [48].

To understand the engineering behavior of constructed earthwork, the soil was com-
pacted (water content, w = 9% and dry unit weight, γd = 17 kN/m3) according to ASTM
D698-12e2 [49]. The WRC was determined following ASTM D6836-16 [50] using pressure
extractors to apply selected suction (ψ) values: porous plate for up to 50 kPa and porous
membrane for up to 2000 kPa. Several identical sub-samples (40 mm diameter and 10 mm
thick) were cored from the compacted sample, placed on the respective plate or membrane,
and allowed to saturate (achieved in up to four days) using distilled and de-aired water.
The known suction value was applied and regularly monitored through the water level in a
graduated burette that, in turn, was connected to the extractor. The test was stopped when
successive readings over 24 h recorded an insignificant difference. Likewise, the dew point
potentiometer (WP4-T) was utilized to measure suction beyond 2000 kPa. A sub-sample of
about 8 g was trimmed from the compacted sample and put in the sampling cup that was
subsequently placed in the potentiometer chamber. In the sealed chamber, water vapor
pressure in the soil was equilibrated with air vapor pressure and suction readings were
displayed on the screen. Equilibration time ranged from a few minutes for low suction to
about one hour for high suction. In both methods, the water content was determined using
ASTM D2216-19 [43].

The shrinkage curve was determined using two methods. The ASTM D4943-18 [51]
standard was used for high water content (more than wp). The sub-samples were obtained
from the extractors after the termination of applied suction, and each was divided into
two specimens for separate determination of water content (as before) and void ratio. To
determine void ratio, one of the specimens with known mass was coated with molten
microcrystalline wax (Gs = 0.87) and allowed to solidify. Thereafter, it was submerged in a
water-filled beaker to determine the volume (equal to the displaced water volume) that, in
turn, was duly corrected for wax volume. Likewise, a Vernier caliper was used to determine
void ratio at low water content (less than wp). A sub-sample (46 mm diameter and 18 mm
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height) was cored from the compacted sample and allowed to desiccate. The changes
in mass and volume were recorded at regular time intervals and used to calculate water
content and void ratio, respectively.

The volume change characteristics were determined in two steps. Initially, free
swelling was measured in accordance with the ASTM D4546-14e1 [52]. A sub-sample
(63 mm diameter and 25 mm thick) was cored from the compacted sample, as before.
The sub-sample was inundated under a seating pressure of 5 kPa and allowed to swell
until consecutive readings in deformation over one week were found to be negligible.
Thereafter, consolidation was carried out as per ASTM D2435/D2435M-11 [53] by applying
incremental pressures. A digital camera was used to record the deformations readings of
the dial gauge at specified time intervals. The test data were also analyzed to determine the
saturated hydraulic conductivity (ks) following the method described in Terzaghi et al. [54].
The ks along with WRC was used to estimate HCC using empirical relationships.

4. Results and Discussion
4.1. Index Properties

Table 1 provides the geotechnical index properties of the clay till. The Gs was found
to be 2.72, which is similar to that of clays. As shown in GSD (Figure 2), material finer
than 0.075 mm measured 51% and that finer than 0.002 mm was 18%. The consistency
limits (wl = 29% and wp = 15%) indicated that the investigated till is similar to those in the
Saskatoon group (Figure 1), which is a soil with moderate water retention and adsorption
capacity. Using the plasticity chart, the corresponding shrinkage limit (ws) was found to be
12%. The investigated soil was classified as lean clay (CL). These data are typical for clayey
tills in the region [3].

Table 1. Summary of geotechnical index properties.

Soil Property Value

Specific gravity, Gs 2.72
Material finer than 4.75 mm (%) 100

Material finer than 0.075 mm (%) 51
Material finer than 0.002 mm (%) 18

Liquid limit, wl (%) 29
Plastic limit, wp (%) 15

Shrinkage limit, ws (%) 12
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4.2. Soil and Pore Water Compositions

Figure 3 plots the X-ray diffraction patterns of investigated clay till. The coarse
sample (Figure 3a) showed quartz with diffraction peaks at 24.4◦, 31.2◦, 42.9◦, and 59.1◦.
This validated the accuracy of the analyses for other minerals [10]. The existence of quartz
indicated the sedimentary origin of the investigated till [55]. Likewise, calcite at 34.4◦ and
dolomite at 36.3◦ in the sample are related to deposition of calcareous compounds from
seawater [56]. Furthermore, various types of feldspars (K-feldspar at 25.8◦ and plagioclase
at 27.7◦ and 32.7◦) are related to the deposition of volcanic debris in the Cretaceous period
and subsequent weathering during the Quaternary period.
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The clay sample (Figure 3b) showed the presence of corrensite (smectite–chlorite
mixed layer) that generally forms during hydrothermal metamorphism occurs under low
pressure and low temperature [57]. The occurrence of corrensite was confirmed from the
following observations: (i) shift in peak of the basal spacing from 7.03 Å (7.3◦ for air-dried
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state) to 8.41 Å (6.1o for EG solvated); (ii) presence of a distinct peak at a basal spacing
of 2.82 Å (37.0◦ for EG solvated); and (iii) absence of the first peak (HCl solvated) due to
mineral decomposition [58]. In contrast, the presence of kaolinite (14.4◦, 24.3◦, and 29.1◦)
and illite (20.7◦) were confirmed from the absence of shifts in peaks for EG solvated and
HCl solvated samples.

Figure 4 gives the TGA results of the till in the form of total weight loss and weight
loss rate. The sample exhibited a total weight loss of 11%. The weight loss rate curve shows
two peaks with distinct weight reduction. The first peak existed between 28 ◦C and 190 ◦C
with a weight loss of about 2% that corresponded to the removal of adsorbed water. The
second peak occurred between 550 ◦C and 700 ◦C with a corresponding weight loss of
about 5% due to the removal of hydroxyl ion [58].
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Table 2 gives a summary of the mineralogical and pore water composition of the
clay till. The clay till was found to contain 55% coarse minerals containing quartz (34%),
dolomite (11%), and feldspars (6%) and 44% clay minerals constituting corrensite (26%), il-
lite (10%), and kaolinite (8%). The total CEC of the sample was found to be 26.5 cmol(+)/kg.
The presence of Ca2+ and Mg2+ is primarily related to the dissociation from dolomite
whereas that of Na+ and K+ is associated with feldspars and clay minerals. These data indi-
cate that the predominant exchange complex as Ca2+-corrensite that resulted in moderate
water adsorption on the clay surfaces.

Table 2. Summary of soil and pore water compositions.

Property Value

Minerals (%) *

Coarse (55)
Quartz (34), Dolomite (11), Plagioclase (4),

K-Feldspar (2), Calcite (2), Others (2)
Clay (44)

Corrensite (26), Illite (10), Kaolinite (8)
Exchangeable cations (cmol(+)/kg) Na+ (0.2), K+ (0.9), Ca2+ (19.1), Mg2+ (6.2)

Total CEC (cmol(+)/kg) 26.5
pH 7.5

Electrical conductivity (µS/cm) 1725
Exchangeable sodium percentage (%) a 0.75

Zeta potential (mV) −20.4

* Accuracy ± 1%. a ESP = Na+
CEC 100%.
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The pore water was found to be slightly basic (pH = 7.5) with EC = 1725 µS/cm,
which is in the range of clayey soils (100 to 10,000 µS/cm), as measured by Azam [59].
The exchangeable sodium percentage (ESP) was calculated to be 0.75%. This value is
lower than 2% thereby indicating a flocculated fabric [10]. Similarly, ZP was measured
to be −20.4 mV, which falls within the range of Ca2+ dominated clay minerals (−5 mV
to −30 mV, as reported Chorom and Rengasamy [60]). The flocculated morphology is
expected to affect the engineering behavior of the investigated clay [13].

4.3. Water Retention

Figure 5 gives the WRC for the investigated soil on a semi-logarithmic scale. The initial
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In the above equation, ws (30%) is saturated water content, and s (0.37) is related to
volumetric ratio of larger pores to all pore sizes. The fitting parameters related to larger
pores are a (525), n (−0.85), and m (45), whereas those related to smaller pores are j (500),
k (−1.25), and l (0.45).

All the fits showed two air entry values (AEV) and two residual suction values (RSV).
This is attributed to the compacted state of soil and is close to the results of a similar till
(with w = 13%, γd = 17 kN/m3), as reported by Vanapalli et al. [62]. Compacted soils
are characterized by the presence of sub-millimeter size and irregular shapes of lumps
(collection of soil particles due to water adsorption [63]), such that the larger pores (pore
spaces between the lumps) have more than a 0.1 µm radius, while smaller pores (pores
within the lumps) have less than a 0.1 µm radius [64–66]. Furthermore, the number of large
pores is comparatively larger than the small pores [67]. This means that the numerous
larger pores easily released most of the capillary water at low suction values thereby
governing the initial portion of the curve from 0.1 kPa to 700 kPa. Conversely, the fewer
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smaller pores released the remainder of capillary water and part of the adsorbed water only
with the application of high suction values, that is, in the range of 700 kPa to 106 kPa [68].

Irrespective of the index property on the y-axis, the WRC comprised two air entry val-
ues and two residual suction values associated with capillary water drainage [69,70]: from
larger pores (AEVL = 2 kPa and RSVL = 20 kPa) and from smaller pores (AEVS = 700 kPa
and RSVS = 5 × 104 kPa). Beyond RSVS, vapor flow is dominant until complete dry
conditions at 106 kPa [71], such that the adsorbed water is removed by evaporation [11].
Furthermore, the plastic limit (w = 15%, θ = 30% and S = 75%) was found to match AEVS,
because drainage of capillary water through smaller pores ceases when no more contraction
can occur [72]. The various types of WRC have their respective utilities: w-based is most
accurate because it is directly measured, θ-based is useful for the determination of water
storage capacity, and S-based is the most clear in depicting soil behavior. However, none of
these curves can capture volumetric changes due to capillary water through soil pores and
adsorbed water on clay particles within lumps [73].

4.4. Volumetric Changes

Figure 6 illustrates the SC with the various S lines were plotted using phase relation-
ships and a Gs of 2.72. The test data was found to best fit the following equation:

e = ed +
es − ed

1 + bexp−cw (2)
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In the above equation, ed (0.46) is the void ratio under completely dry conditions, and
es (0.82) is the saturated void ratio. Likewise, the fitting parameters related to the transition
points (w = 26% and w = 14%) are b (350) and c (29.5).

The shrinkage path of an initially saturated sample followed an s-shaped curve
consisting of the following stages [74–76]. Table 3 describes the shrinkage path in terms
of e, w, θ and S highlighting the ratio of soil volume change to water volume change
(R): stage I (R = 0.4), water from most large pores between the lumps was removed with
low soil volume change; stage II (R = 0.8), water from the remaining larger pores and
most of the smaller pores within the lumps was removed with an almost equal value of
soil volume change; stage III (R = 0.3), water from some of the smaller pores within the
lumps were released with low soil volume change; and stage IV (R = 0.0), water from the
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remaining smaller pores within the lumps was drained with no change in soil volume.
The data indicate that about 90% of volume change in the soil occurred in the plastic
zone (from liquid limit of 29% to shrinkage limit of 12%) with a change in S from 100% to
60% and negligible thereafter, albeit a change in S from 60% to 0. Given the deformable
nature of the investigated clay till, SC must be determined to correlate flow through with
volumetric changes.

Table 3. Various stages along the shrinkage path.

Stage w Range (%) e Range θ Range (%) R * S Range (%)

I 30–26 0.82–0.79 45–40 0.4 100–90
II 26–14 0.79–0.51 40–24 0.8 90–70
III 14–5 0.51–0.47 24–9 0.3 70–30
IV 5–0 0.47–0.47 9–0 0.0 30–0

* Soil volume change divided by water volume change.

Figure 7 shows swelling potential (change in height with respect to the initial height)
versus time. The transient behavior followed an s-shaped curve, comprising an initial
swelling (up to 0.3% in 10 min), primary swelling (up to 1.6% in 70 min), and secondary
swelling (up to 2.5% in 18 days). During initial swelling, water entered through the larger
pores and initiated the expansion of peripheral clay particles of the lumps. The H+ in the
dipolar water molecules were attracted to the net negatively charged clay surfaces, whereas
the O2− were pushed away. This generated a gradient that facilitated additional water flow
into the pores, thereby increasing the thickness of the diffuse double layer [77]. During pri-
mary swelling, water gradually moved from the larger pores into the smaller pores within
the lumps. Expansion occurred because the repulsive forces (diffuse double layers between
adjacent clay particles in the lumps) exceeded the van der Waals’ attractive forces due to
fluctuating dipole–dipole bonds [10,78]. During secondary swelling, expansion of the few
remaining clay particles within lumps occurred due to the slow movement of water in the
smaller pores. The low swelling potential is attributed to the expansion of clay particles
within the larger pores that could not be observed in the vertical direction [79]. Therefore,
the transient swelling behavior comprises combined water flow through soil pores and
expansion of water film on clay particles in the lumps.
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Figure 8 plots the swelling-consolidation test results. The test data were adjusted to
account for equipment deformability. The e increased from 0.55 to 0.59 during swelling,
followed by a decrease to 0.27 during consolidation, and then increased to 0.39 during
rebound. The compression index (Cc) was calculated to be 0.164, and the rebound index
(Cs) was found to be 0.047. These data fall within the ranges of 0.08–0.26 and 0.03–0.09,
respectively [3,80]. The low swelling potential (2.5%) under the seating stress (5 kPa) is
attributed to the presence of numerous larger pores, which consumed clay expansion in all
directions between the lumps. Further decrease in e under applied stresses is attributed to
the gradual reduction in the number of large pores and the expulsion of water and air from
these pores [68,81]. The adjacent particles slipped due to the presence of water, thereby
resulting in re-arrangement of soil particles and reduced pore space. At the end of the
test, S was found to be 100% (at w = 15% and γd = 19 kN/m3), pertaining to the complete
air removal during consolidation [82]. The rebound curve is predominantly governed by
water adsorption on clay particle surfaces with part of the deformations recovered [83].
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4.5. Hydraulic Conductivity

Figure 9 plots the variation of saturated hydraulic conductivity with respect to the void
ratio and applied stress. The ks decreased by three orders of magnitude from 8 × 10−9 m/s
to 8 × 10−12 m/s when e reduced from 0.59 to 0.27, as the applied stress increased from
10 kPa to about 2600 kPa. The decrease in ks is attributed to size reduction in large pores that
brought the soil particles closer and an increase in resistance to water flow [84]. The data
scatter at high e (low applied stress) is associated with the presence of entrapped air in
the compacted soil sample [85]. The ks values were close to the results of similar tills
(ks = 10−9 m/s to 10−11 m/s) reported by Ferris et al. [2] and Vanapalli et al. [62].
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Figure 10 shows the estimated HCC of the clay till using a logarithmic scale and
starting at the median ks value (5 × 10−10 m/s). The HCC was estimated using the
modified equation [86]:
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In the above equation, ku is the unsaturated hydraulic conductivity, and p (5.5) is
the fitting parameter associated with typical hydraulic conductivity curve for clayey soils
along with identical WRC parameters (a, n, m, j, k, and l) for the two pore sizes. Based
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on statistical analyses of the p parameter for a wide range of soils, the bimodal HCC is
considered to accurately represent the behavior of clays [87,88].

The estimated HCC closely followed the bimodal WRC transition points. The ku
remained constant at 5 × 10−10 m/s up to AEVL and decreased to 8 × 10−11 m/s at RSVL.
Thereafter, ku slightly decreased to 2 × 10−11 m/s at AEVS and then significantly decrease to
10−14 m/s at RSVS. The low initial ku decrease is associated with discontinuous water flow
and increased tortuosity between the lumps [69], whereas the final significant ku decrease
is mainly attributed to water flow within the lumps only and may not be continuous across
the lumps [70]. Beyond RSVS, flow occurs in vapor form due to evaporation of adsorbed
water from clay particles within the lumps [11].

The HCC correlates well with the observed SP stages, that is, slow rate of initial
swelling around ku = 10−14 m/s (RSVS), significant high rate of primary swelling due to an
increasing ku reaching up to 10−11 m/s (AEVS), and slow rate of secondary swelling under
slight ku increase around 10−10 m/s (AEVL). The low ku over the entire process resulted in
an 18 days test required to fully develop the SP. Finally, and as discussed earlier, the rate of
consolidation is related to ks, which was found to decrease with applied stress.

5. Summary and Conclusions

Glacial geology, marine environment, and arid climate govern the composition and
behavior of clay tills. The primary contribution of this research is the conceptual under-
standing of engineering behavior under two independent state variables of soil suction
and applied stress. The effect of soil and water composition on water retention, volume
changes, and hydraulic conductivity was investigated. The main conclusions of this paper
are given as follows.

The investigated clay till showed moderate water adsorption capacity (wl = 29%
and wp = 15%) due to the presence of minerals such as corrensite (26%), illite (10%), and
kaolinite (8%), which resulted in a CEC of 26.5 cmol(+)/kg with Ca2+ as the dominant
cation. The pore water was slightly basic (pH = 7.5), and the ESP (0.75%) indicated a
flocculated fabric.

The WRC comprised four transition points associated with capillary water drainage from
larger pores (AEVL = 2 kPa and RSVL = 20 kPa) and from smaller pores (AEVS = 700 kPa
and RSVS = 5 × 104 kPa). Beyond RSVS, vapor flow is dominant until 106 kPa, such that the
adsorbed water is removed by evaporation.

The ratio of soil volume change to water volume change best described the s-shaped
shrinkage path. The curve showed drainage from most large pores with low volume
change; from the remaining large and most of the small pores with almost equal volume
change; from some small pores with low volume change; and from the rest of the small
pores with no volume change.

The s-shaped SP curve comprised three stages and correlated well with bimodal HCC:
slow initial swelling (ku around 10−14 m/s) due to expansion of peripheral clay in lumps;
high primary swelling rate (ku up to 10−11 m/s) due to increased double layer thickness on
clay; and slow secondary swelling rate (albeit ku around 10−10 m/s) due to expansion of
remaining particles.

Soil compression (Cc = 0.164) was due to a gradual reduction in number of larger
pores, whereas the rebound (Cs = 0.047) was due to water adsorption on clay particles
with part of the deformations recovered. Finally, the consolidation rate is related to ks that
varied from 8 × 10−9 m/s to 8 × 10−12 m/s with an applied stress increase from 10 kPa to
2600 kPa.

The correlation of soil and pore water compositions with the engineering behavior of
earth structures is crucial in the initial design for new construction and long-term monitor-
ing of constructed facilities. This comprehensive research provides a clear understanding
of the saturated and unsaturated soil properties of clay tills.
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