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Abstract: The Erosion Potential Method is a model for qualifying the erosion severity and estimating
the total annual sediment yield of a catchment. The method includes a diverse set of equations,
which are influenced by different factors such as geology, morphology, climate and soil use. This study
describes a PyQGIS YES plug-in, which allows a semiautomatized use of the Erosion Potential Method
in Geographic Information System (GIS) environment. In detail, we developed a plug-in using
Python programming language that is made up of a series of operations allowing one to estimate
sediment production through a wizard procedure. The first stage consists of data preprocessing
and involves: (i) loading of the layers (e.g., geological map); (ii) spatial selection of the catchment
area; (iii) elaboration of loaded layers (e.g., clipping). During the second stage, the user assigns a
relative coefficient to each factor either by selecting a preloaded value from bibliographic sources or
by inserting a value inferred from field observations and data. The third stage includes the addition
of rainfall and temperature values loaded as: average values, point shapefiles (the plug-in calculates
the average monthly values) or tables (the plug-in creates the linear regression depending on altitude).
During the final stage, the plug-in executes the equation of EPM Model obtaining the sediment
yield value at basin scale. Additionally, the user can use the “squared cell” method choosing the
appropriate option in the setting dialogue of the plug-in. This method divides the catchment area in a
regularly-spaced grid which allows one to carry out the distribution map of the sediment production
during the final stage.

Keywords: erosion potential method; python; QGIS; YES plug-in

1. Introduction

Quantifying erosion and sediment production in river catchments is a key issue in land use
management, as well as in hydrological risk analysis [1–3] and the management of coastal erosion [4,5].
The qualitative and quantitative understanding of the processes of sediment erosion and transfer,
their spatial and timing distribution and their relationship to anthropogenic factors are indeed crucial
aspects to be considered in successful land use planning and coastal-hydrogeological mitigation
risks [6,7].

In literature there are several semiquantitative methods developed for assessing erosion and
sediment yield at the catchment scale, some of which are summarized in Table 1. These methods
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are based on empirical equations that take into account several parameters such as climate, rainfall
erosivity, land use, ground cover, soil, geology, geomorphology and topography (see [8] and [9]).

Table 1. Overview of semiquantitative model and their factors.

Empirical Models Factors

PSIAC Surface geology; Soil, Climate; Runoff; Topography; Land use; Ground cover; Upland
erosion; Channel erosion and sediment transport;

FSM Topography; Vegetation Cover; Gullies; Lithology; Catchment shape;
VSD Vegetation; Surface material; Drainage density;
EHU Relief; Rainfall; Vegetation; Soil;

CORINE Soil erodibility; Rain erosivity; Slope angle; Land cover.
FKSM Slope Rainfall erosivity; soil erodibility; land cover type; Soil disturbance,

CSSM
Land use; Ground cover; Topography; Soil erodibility Sediment delivery; Upland

contribution; Channel contribution; Future supply; Sediment control;
Disturbance period;

WSM Soil type; Vegetation condition; Sign of active soil erosion; Catchment slope; Mean
annual rainfall; Catchment area.

GLASOD Water erosion; Wind erosion; Chemical degradation; Physical deterioration;

FLORENCE Catchment area; Digital terrain model; Land use; temperature and rain; hydrographic
network; landslide;

WATEM-SEDEM Rainfall erosivity; Soil erodibility; Topography; Crop and management; erosion
control practice;

SPADS Vegetation Cover; Topography; Lithology; Rainfall intensity; Gully; Inverse distance
from a river stream.

USLE Rainfall erosivity; Soil erodibility; Digital elevation model; Cover management;
Support practice

RUSLE Digital elevation model; Rainfall erosivity; Soil erodibility; cover and management
factor; the support practice.

INRA Landuse; Soil crustability and soil erodibility (determined by pedotransfer rules from
the French soil database); Digital Elevation model; Meteorological data (250 × 250 m)

LISEM

Aggregate stability, crop height, cohesion, additional cohesion caused by roots and leaf
area index, Manning’s n., percentage vegetation cover, random roughness parallel to
slope, random roughness perpendicular to slope, total width of wheeltracks within a

pixel, winter-wheat, winter-barley, oats, coleseed and flax.

EUROSEM
Runoff based on water balance; Soil detachment based on kinetic energy of rain, unit

stream power, the transport capacity deficit, shear strength of the soil and the
settling velocity.;

WEPP Runoff based on water balance; Soil detachment based on Slope; Vegetation; Shear
stress; Shear strength; Roughness; Organic matter; Root mass.

LAPSUS Digital elevation model; Precipitation; Soil erodibility; Land use related infiltration

PESERA
Erodibility based on land use, soil and vegetation cover; digital elevation model; runoff
and climate/vegetation soil erosion potential based on gridded data, vegetation cover,

water balance and a plant growth model.
SLEMSA Relief; Rainfall; Vegetation; Soil

One of the first empirical approximations to the assessment of erosion at the basin scale was
developed by [10,11] and is based on a scoring approach for only three descriptive variables, namely
soil cover, soil resistance, type and extent of erosion. Other quantitative factors are considered as
descriptors of the catchment conditions. The model is fitted with empirical coefficients that allow one to
quantify the average annual sediment yield. This method takes into account five factors depending on:
geology, soil use, climatic factors (mean annual rainfall and temperature) and topographic features. [12]
developed the Erosion Potential Method (EPM) based on empirical values of each parameter. The EPM
method is based on the following equation:

Wy = T × hy ×π×
√

Z3 × S (1)
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where Wy is the estimated annual sediment production (m3/year), T is the Temperature coefficient and
is calculated as:

T =

√
T0

10
+ 0.1 (2)

where T0 is the average temperature (◦C), hy is the mean annual rainfall (mm), S is the area of the
watershed (km2) and Z is the coefficient of relative erosion calculated as:

Z = X ×Y ×
(
φ+

√

Im
)

(3)

where X is the coefficient of land cover, Y is the coefficient of soil resistance (related to the outcropping
rocks), φ is the coefficient of type and extent of erosion; Im is the average slope of the watershed.

The EPM method has been successfully used in Mediterranean areas such as Italy, Switzerland,
Greece, Slovenia and Croatia [13–16]. In recent decades, the Gavrilović method has been extensively
applied in Geographic Information System (GIS) environment [17–23]. However, one of the challenges
in the application of the EPM model in GIS environment is the time required in the geoprocessing,
calibration and validation processes.

In this paper we present a newly developed PyQGIS plug-in Yield Erosion Sediment (YES),
which allows a semiautomatized application of the EPM in GIS environment. The plug-in carries out
automatically a series of GIS operations during the data preprocessing, e.g., the clipping of geological
and soil use maps based on the selected catchment area. Furthermore, the plug-in saves all the
operations needed for the final calculation, allowing the user to correct possible errors (e.g., parameters
assignation) without having to reiterate all processing.

Unlike previous GIS application of the EPM model, our plug-in provides an estimate of sediment
erosion and transfer at the scale of single cell [24,25], which makes it possible to produce maps of
sediment production, in order to recognize the areas with higher and lower sediment yield. Furthermore,
YES permits the application of the EPM by dividing the catchment area in squared cells of the desired
size and consequently to obtain the distribution map of the sediment production, while the previous
GIS application allowed one to calculate only the total sediment yield and not information about its
arrangement in the basin. The plug-in YES provides a powerful tool for choosing the best location for
field measurements and calibration and validation processes.

In this paper we present the plug-in, along with an application in the catchment area draining to
the Savuto Lake located in the Calabria Region (southern Italy), which is widely affected by coastal
erosion due lack of river sediments nourishment (e.g., [26,27]).

2. Methodology

We developed the plug-in as an application based on QGIS API (Application Programming
Interface). The plug-in was developed using the Python language and consists of a series of operations
(Figure 1), which drive the user toward the sediment production calculation through a wizard procedure.
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In the following sections we will describe each stage included in the application step by step.

2.1. Stage 1—Preprocessing

At the first launch the application pops up a dialog, which allows one to choose between the
standard and “squared cell” methods and to set the workspace folder where all the output data (vector
and raster) will be stored (Figure 2). The next step consists of the following operations:

• loading layers needed for the geoprocessing analysis as the Digital Elevation Model (DEM) (in
ASCII or GeoTIFF formats), geological map, soil use map, drainage network, thermo-pluviometric
values or maps, landslides map;

• spatial selection of the catchment area;
• selection of loaded layers for the following operations, e.g., clipping and buffering of the input

vector layer, clipping of the Digital Elevation Model and reclassify for the analysis of slope data
(using the desired slope classes). At the end of stage 1 all the necessary layers (with the coordinate
system selected by the user) are ready for the EPM application.

Geosciences 2020, 10, x FOR PEER REVIEW 4 of 13 

 

 

Figure 1. Flowchart summarizing all the operations carried out by the plug-in. 

In the following sections we will describe each stage included in the application step by step. 

2.1. Stage 1—Preprocessing 

At the first launch the application pops up a dialog, which allows one to choose between the 

standard and “squared cell” methods and to set the workspace folder where all the output data 

(vector and raster) will be stored (Figure 2). The next step consists of the following operations: 

• loading layers needed for the geoprocessing analysis as the Digital Elevation Model (DEM) 

(in ASCII or GeoTIFF formats), geological map, soil use map, drainage network, thermo-pluviometric 

values or maps, landslides map; 

• spatial selection of the catchment area; 

• selection of loaded layers for the following operations, e.g., clipping and buffering of the 

input vector layer, clipping of the Digital Elevation Model and reclassify for the analysis of slope data 

(using the desired slope classes). At the end of stage 1 all the necessary layers (with the coordinate 

system selected by the user) are ready for the EPM application. 

 

Figure 2. Graphical User Interface of stage 1 including the preprocessing dialog (on the left) and the 

dialog for the slope reclassify (on the right). 

2.2. Stage 2—Selection of the Gavrilović Coefficients 

For each parameter (geology, soil use, etc.) the relative empirical coefficients must be decided. 

The user can select the default option suggested by [28] and [12] (Coefficient description in Figure 3) 

or type them into the Coefficient box (Figure 3). The choice of new coefficients is usually based on 

bibliographic sources (e.g., [16,29,30]), field surveys (e.g., geomechanical rocks characterization and 

weathering grade) and laboratory measurements (e.g., cutting tests, petrographic, mineralogical and 

geochemical analysis). 

Figure 2. Graphical User Interface of stage 1 including the preprocessing dialog (on the left) and the
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2.2. Stage 2—Selection of the Gavrilović Coefficients

For each parameter (geology, soil use, etc.) the relative empirical coefficients must be decided.
The user can select the default option suggested by [28] and [12] (Coefficient description in Figure 3)
or type them into the Coefficient box (Figure 3). The choice of new coefficients is usually based on
bibliographic sources (e.g., [16,29,30]), field surveys (e.g., geomechanical rocks characterization and
weathering grade) and laboratory measurements (e.g., cutting tests, petrographic, mineralogical and
geochemical analysis).

2.3. Stage 3—Thermopluviometric Data

The rainfall and temperature data can be loaded as average values (for the analyzed period), point
vector layer or table (.csv, .txt). In the latter case, the plug-in calculates the linear regression (Figure 4a)
rainfall-altitude and temperature-altitude, which allows one to obtain a distribution map by using the
elevation values, as described by [31]. If the thermo-pluviometric data are loaded as point vector data,
the plug-in also displays the relative histogram plot (Figure 4b).
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2.4. Stage 4—Final Calculation

During the last stage, the user must assign a layer (previously loaded and elaborated) to each
parameter of the Gavrilović equation (Figure 5). Finally, the sediment production estimation (Wy)
(m3/year) is obtained along with a final report which shows all applied parameters.

During stage 1, if the user chooses the “squared cell” method in addition to the final report,
the plug-in creates the distribution maps (in grid format) of the Gavrilović parameters (X, Y and φ),
for estimation of the relative erosion coefficient Z and of the sediment production estimation (Wy).
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3. Test Application to the Savuto Lake Catchment

We tested the plug-in using several catchment areas of Calabria Region (southern Italy). Here we
describe the case study of the catchment to the Savuto Lake (Figure 6).
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Figure 6. Location of the analyzed catchment area.

The Savuto Lake is an artificial reservoir located in the upstream sector of the Savuto River along
the west side of the Sila Massif (middle Calabria). The latter represents a section of the Hercynian
orogenic belt [32] and consists of a massif with a plateau characterized by an average altitude of
about 1200 m a.s.l. The massif is made up by Paleozoic intrusive and metamorphic (from low to high
grade) rocks representing the so-called Sila Units [33], which are characterized by a deep long-term
weathering [34,35]. During Quaternary the Sila Massif was affected by uplift [36,37] due to regional
geodynamics. Subsidence phenomena are recorded in the surrounding areas up to now [38,39].

The Savuto Lake catchment has an area of 44.68 km2, low slope (average value of 17.65%) and
an altitude ranging from 1170 to 1600 m a.s.l. From 1978 to 2007, an average annual rainfall and
temperature of 1224 mm and 13 ◦C, respectively, had been reported [40].



Geosciences 2020, 10, 324 7 of 13

During stage 1, the adopted data consist of (Figure 7a–c): geological map [41], soil use map [42],
landslides and drainage network [43], DEM 20 × 20 m (WCS The National Geoportal of the Ministry of
Environment and Protection of Land and Sea).
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Figure 7. (a) Simplified geological map (modified from [41]). (b) Soil use map form Corine Land
Cover [42]. (c) Slope map obtained starting from 20 × 20m DEM.

The first calculation was carried out by applying the standard method obtaining a sediment
production estimation of 21,821.6 m3/year for the whole catchment area. The second computation
was performed by using the “squared cell” method (using 250 × 250m cell), in order to obtain the
distribution maps of Gavrilović parameters and that of sediment production estimation (Figure 8).

The parameters X, Y and φwere obtained through the following equation for both the standard
and the squared cell methods:

X, Y,φ =
n∑

i=1

(
Ai ×Vi

AT
) (4)

where Ai is the area in km2 of the element (soil use, soil resistance, geomorphology), AT is the total
area (basin area for standard method and cell area for squared cell) and Vi indicates the value of the
coefficient assigned (see Table 2).
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Figure 8. Distribution maps of soil use index X (a), geology index Y (b), geomorphology index φ (c)
and sediment production Wy (d).

Table 2. Coefficient values for soil resistance, soil use and geomorphology used for the estimation of
sediment production in the Savuto Lake catchment.

Soil Use (X). Value

Land (loose) denuded 1.0
Fields cultivated according to the maximum slope 0.9

Orchards and vineyards without vegetation on the ground 0.7
Pastures and forests 0.6

Arable meadows and cultures 0.4
Forests 0.05

Soil Resistance (Y) Value

Hard rocks 0.4
Moderately resistant rocks 0.8

Crumbly rocks (shales, overconsolidated clays) 1.15
Little resistant rocks) 1.55

Loose sediment or not very resistant to erosion 1.95

Geomorphology (φ) Value

Diffuse erosion (low slope) 0.15
Diffuse erosion (medium slope) 0.4

Diffuse erosion (high slope) 0.65
Linear erosion 0.85

Landslides 1.0
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The multiplicative values (Table 3) used to calculate the sediment volume through the Equations
(1)–(3) were calculated taking into account the values proposed by [28] and allowing for some changes
to adapt them to the climatic conditions of the study area.

Table 3. Coefficient and parameters used for the estimation of sediment production in the Savuto
Lake catchment.

Coefficient Value

X (Soil use) 0.282
Y (Soil resistance) 0.83
φ (Geomorphology) 0.213

Z 0.15
Catchment average slope (Im) (%) 17.65

Catchment area (km2) 44.68
Rainfall (mm) 1224.27

Temperature (◦C) 15.06
sediment production estimation (Wy) (m3/year) 21821.6

4. Discussion

GIS plays a key role in the execution of algorithms allowing us to solve complex spatially
distributed mathematical equations of models such as the EPM. Using the Python programming
language, we were able to add new features useful to customize EPM application by means of
QGIS software.

The EPM application requires a series of geoprocessing operations on both vector and raster layers
before reaching the final calculation. For example, in order to obtain the slope map required during
stage 1, the user needs to: (i) clip the DEM; (ii) extract slope values from clipped DEM; (iii) reclassify
slope map; (iv) export raster to vector; (v) erase landslides area and rivers buffer from slope vector
map; (vi) insert a field in the vector table to fill in with relative parameters. Using the PyQGIS plug-in,
all the mentioned geoprocessing operations are automatically and quickly carried out. For instance,
the Savuto Lake application required about 18 and 1 h without and with the use of the plug-in,
respectively. In addition, the use of GIS interface allows an easy calibration and validation by using
direct measurements of sediments accumulation in a closed basin (e.g., a lake) and/or the comparison
with other semiquantitative estimation of soils erosion.

The EPM analysis provided an estimation of the sediments production in the whole river catchment
area but it does not show the sectors characterized by higher and lower production. For this reason,
we introduced a new calculation method based on the subdivision of the river catchment area in a
gridded matrix with cell size of 250 m. The “squared cell” model performs the calculation by the
algorithm iteration in each cell; the result is a new information representing the spatial distribution
of the estimated sediments production. Moreover, the representation of the cells by QGIS graphical
interface eases the representation of the spatial distribution for the sediments production values
expressed in m3/year for each cell. Considering several tests for different catchment areas, we compared
the sediments production values obtained both with standard and “squared cell” method (Figure 1).
The results derived by “squared cell” method are 10% lower than the results obtained with the standard
one. This difference is due to the smaller area involved in the cells method calculation along the
catchment perimeter.

The plug-in and the “squared cell” model were calibrated using a small artificial lake located
in the upstream sector of the Savuto River (Sila Massif, middle Calabria). The application of the
“squared cell” model allowed us to recognize cells with anomalous values of sediments production
(e.g., cells located very close to the dam) and to exclude them from the total calculation.

The use of the plug-in for the estimation and spatial visualization of the sediments productions
allows a fast and highly detailed (depending on the quality of the input data) identification of critical
sites at the scale of basin, worth further and more detailed investigations. This information can be used
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in the medium-short time (>1 year) for planning the use of soil, the management of dikes and river
sediments for beach nourishment and also for the mitigation of hydrogeological and coastal risks.

The plug-in YES is an experimental software which we are testing in different catchments of
Mediterranean and Alpine area and South America. Currently, an applied study is in progress in
Sardinia Region (Italy) as well as the MAREGOT Project [44] in collaboration with ARPA Sardegna.

Table 4 shows the results of the estimation of sediment production comparing the standard model
and squared cell one in some river catchments within the Italian territory.

Table 4. Results of sediment yield between standard and squared cell method on some river basins.

River
Catchments Region (Country)

Lon, Lat
(Catchment
Centroid)

Area (km2)
Wy by Standard

Method (m3

year−1)

Wy by “Squared
Cell” Method

(m3 year−1)

Difference
(m3 year−1)

(%)

Aron Calabria (Italy) 15.99, 39.54 37.48 30,864.03 28240.59 2623.44
(−8.5%)

Sfalassà Calabria (Italy) 15.82, 38.24 24.03 54,769.66 49,785.62 4984.04
(−9.10%)

Cancello Calabria (Italy) 16.45, 38.95 18.27 8,723.38 7,938.27 785.10 (−9%)

Riu Solanas Sardinia (Italy) 9.45, 39.17 44.03 12,623.84 11,298.34 1325.50
(−10.5%)

Esaro (Dam) Calabria (Italy) 16.93, 39.64 245.48 169,030.16 153,648.42 15,381.74
(−9.1%)

Savuto
(Dam) Calabria (Italy) 16.52, 39.17 44.68 21,821.60 19,639.54 2182.17

(−10%)

At present, we are working on the development of web service and databases of the parameters
(geology, geomorphology, soil use, rain, temperature, drainage network) acquired by integration of
traditional and innovative tools (remote sensing; weathering, sedimentological and geomorphological
studies; geomechanical petrographic-mineralogical, textural analyses) and vectorized by GIS-procedure
in several projects (e.g., VEROCOST and SMORI POR projects [45,46]), necessary to achieve a high
resolution of input data required by plug-in YES. The web service will allow researchers to simplify
the plug-in use to encourage the collaboration with university and EPM, making it attractive for public
authorities and freelance professionals.

5. Final Remarks

The estimation of sediment production in river catchments represents a basic topic in many fields
of application such as management of coastal erosion, hydrological risk analysis, prediction of the
dams siltation, etc.

Starting from the existing semiquantitative methods for assessing erosion and sediment yield at
the catchment scale, mainly the EPM method by [12], we developed the PyQGIS YES plug-in which
simplifies and speeds up the EPM application. Thanks to the automated geoprocessing operations of
the needed layers (e.g., geological and soil use maps), the plugin allows one to decrease the calculation
time of 90%. Furthermore, using YES plug-in it is possible to not use average values of rainfall and
temperature for the whole catchment but to consider its variation depending on the altitude and
consequently to refine the final calculation. A great innovation of the YES plug-in “squared cell” is
the possibility to obtain a map of erosion and sediment production which can be very useful for, e.g.,
identifying areas which need hydrogeological arrangement.

Finally, the new tool we developed would bring added value to facilitate the application of the
EPM method, providing quickly useful information for the calibration and validation processes of the
catchment area investigated. Furthermore, the improvement of the plug-in presented in this work,
compared to the classic Gavrilovic method, is that it also provides a quantitative measure of the
potential soil loss of the areas inside the catchment area.
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