
geosciences

Article

Displacements of Object Founded on Expansive
Soils—A Case Study of Light Construction
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Abstract: The paper presents results of observations of a light structure damaged by irregular
vertical and horizontal deformations on Neogene expansive clays, typical for area in Central Poland.
The sensitivity to environmental changes of humidity in such subsoils can activate volume changes,
which causes the destruction of many objects susceptible to deformation. Detailed geotechnical
investigations, including seasonal fluctuations of natural moisture content, were carried out for
over a year, describing the dynamism of conditions of clays in the foundation zone. Parallel
geodetic measurements of vertical and horizontal displacements were carried out, using classical
precision leveling and the coordinate method of the Leica TDRA 6000 laser station. The network of
measurement points has been specially designed and implemented to follow the spatial displacements
of the structure. The network points were placed at the bottom of pillars and on the flooring of the
structure located in the upper part. In the paper, the results of the vertical and horizontal periodical
measurement of displacements of an investigated construction over the year were discussed to
identify the main factors influencing the mechanism of damage of the observed structure.

Keywords: light construction; expansive clays; geodesy investigation

1. Introduction

Geodetic monitoring of displacements of damaged buildings is often the most effective method of
investigating the causes of their cracks and failures [1–3]. This approach can give satisfactory results
also in the case of damage having a geotechnical background. One of the most problematic subsoils
causing numerous cases is expansive clay soil [4–6].

Expansive soils experience significant volume change associated with changes in water content.
These volume changes can either be in the form of swell or in the form of shrinkage. The mechanism of
expansivity is strongly related to the mineralogical composition. The content of layered aluminosilicates
from the montmorillonite group is pivotal. The swelling pressures and the swell ratio are considered
to be the primary parameters defining the swelling in clays when subjected to moisture changes [7,8].

The moisture fluctuations in these reactive subsoils can induce significant ground movements
and, in consequence, construction displacements due to the reduction of evaporation under buildings,
seasonal and long-term effects of tree roots as well as infrastructure, especially heat pipes, and leaks
from the water supply [9,10]. These movements usually include subsidence as a result of clay shrinkage
and, alternately, heave through of its swelling upon the water content changing. Such displacements
in the temperate climate zone are often periodic and depend on the influence of weather factors on
clay and they are often intensified by the influence of vegetation [11,12]. Geodetic monitoring of
building objects shows that fluctuations in the range of a few millimeters are typical, and their size
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mostly depends on the rigidity and weight of the structure [13]. Such movements, mainly occurring
repeatedly, can in particular damage the influenced construction.

The article presents the method of monitoring an example structure, located on expansive soil
in Bydgoszcz (Poland) and considerations of the causes of its damage. Results of the geotechnical
investigation over a year, especially seasonal fluctuations of natural moisture content, were analyzed
to detect if the volume changes of expansive subsoil are the main factors influencing the displacements
of the observed structure. For this purpose, we also consider in detail the vertical and horizontal
periodical displacements of an investigated construction. The comprehensive analysis allows us to
verify whether the most probable cause that appears at first sight, i.e., the volume changes of the
expansive clay, is the actual reason for structural damage.

2. Investigated Object and Methods

The analyzed object is an overhead passage (Figure 1). It is a relatively light structure with a
low rigidity of construction due to its slenderness. The overhead part is a reinforced concrete frame
structure filled with hollow brick, supported on 12 pillars with lengths from 1.0 and 3.6 at the edge to
4.7 m in the middle part. The foundation footings, one for every two neighboring pillars, are located
from 1.7 m b.g.l. (below ground level) to a maximum of 4.0 m b.g.l.
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Figure 1. A view of the investigated object.

Since the completion of the construction process in 2000–2001, and despite ongoing repairs,
increasing damage has occurred (Figure 2a,b). The reasons were seen in geotechnical conditions,
mainly in the soil sensitive to changes in the natural water content. In particular, several dozen year-old
poplars growing under the passage were able to dry the ground. The entire row of these trees was
removed a few years after the construction had been completed. A detailed description of the object
and the history of its failure can be found in reference [14].

After general repairs in 2016, internal cracks developed, indicating further movements to the
structure. In this case, the damage was less significant, and it appeared mainly in the dilatation zone,
where the passage is connected to the main building (Figure 2c).
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Figure 2. Typical damage: (a) internal cracks on the contact between frame concrete construction and
filling walls (b) cracks in the corner of the window (c) cracks in dilatation zone.

Systematic monitoring of the investigated object was initiated in July 2017 and continued over the
year. Geodetic monitoring included both vertical displacements of supports as well as the vertical and
horizontal displacements of the flooring of the overhead part of the passage. The terms of geodetic
measurement and the thermal conditions of the object’s external environment are presented in Table 1.
The arrangement of the measurement network is shown in Figure 3.

Table 1. Terms of geodetic measurements.

Measurement No. Date Temperature

0 21.07.2017 23 ◦C
1 04.09.2017 14 ◦C
2 10.11.2017 6 ◦C
3 10.03.2018 3 ◦C
4 27.08.2018 27 ◦C

As part of geotechnical monitoring, the properties of expansive soils were investigated and
analyzed. Samples of the clayey soil were periodically taken from two test boreholes in the foundation
zone in terms of close to geodetic measurements, presented in Table 1. Natural water content in the soil
was determined by the oven drying method in accordance with EN ISO 17892-1: 2015 [15]. The plastic
limit was tested in November 2017 in accordance with EN ISO 17892-12: 2004 [16]. The localization of
testing boreholes is shown in Figure 3.

The vertical displacements of the control points located at the base of the pillars were made by
using classical precision leveling. A view of the marks is shown in Figure 4a.
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Figure 3. The network of control points.

However, for the pillar vertices, which were defined as the pillar axis projections on the overhead
passage floor, both vertical and horizontal displacements were examined. These points were marked
permanently on the passage floor in the form of special sockets, adapted for mounting the measuring
instrument, a precise measuring reflector. For measuring the displacement of the points network we
used the Leica TDRA6000 coordinate laser station. A view of the marks is shown in Figure 4b. The use
of precise measurement in the 1.5" RRR (Red-Ring Reflector) prism mode (Figure 4c) enabled the
displacement determination of control points with the required accuracy. Previous studies have shown
that this method is an excellent tool for monitoring engineering structures [17,18].
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Figure 4. Measurement marks: (a) stabilization of outdoor marks at the base of the pillar; (b) stabilization
of indoor marks on the floor of overhead passage; (c) view 1.5" RRR prism on the floor mar3. Results.

2.1. Results of Geotechnical Monitoring

In the foundation level of the investigated object, expansive clays were found (Figure 5). These
clays represent the Neogene clays, which occur in a large area of Poland, and are also typical for
Bydgoszcz subsoil. These are calcium sodium montmorillonite clays, characterized by high and very
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high expansivity [13,19,20]. Swelling parameters in a natural state (liquidity index IL = 0.01) for
standard clayey samples from Bydgoszcz are presented in Table 2.
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Figure 5. Geotechnical cross-section under the investigated overhead passage.

Table 2. Swelling pressure value (pc) and swelling ratio (εp) for clays in a natural state from Bydgoszcz
(after [20]).

Sample Clay
Content *

Plasticity
Index *

Liquidity
Index *

Natural
Water

Content *

Volume
Density *

Swelling
Ratio **

Swelling
Pressure **

fi [%] IP [%] IL [1] wn [%] ρ [Mg/m3] εp [%] pc [kPa]
1/Cf 59.2 48.2 0.01 29.28 1.81 30.94 173.1
2/Fc 74.4 77.3 0.01 32.18 1.83 5.68 68.3

* Determined in accordance with EN ISO 17892 Geotechnical investigation and testing [15,16]. ** Determined in
accordance with ASTM D 4546: 2014-04. Test methods for one-dimensional swell or collapse of soils [21].

Results of the field and laboratory tests for clays are presented in Figure 6. In November 2017,
the plastic limit was marked (Figure 6a). Natural water content seasonal fluctuations of the clayey soil
in the foundation zone were investigated in the A-borehole in June and November 2017 and in March
and September 2018 (Figure 6b,c). Tests were performed in accordance with [15,16].

The values of plasticity limits (wp) depending on the depth varied in the range of 17%–42%.
This variability is reflected in the natural water content (wn) graphs, so the wn-wp value (the difference
between natural water content and plastic limit) was almost unchanged for the most of the studied
profiles. During the monitoring period, noticeable fluctuations of natural water content (up to 10%)
we noted at a depth of about 1.0 m b.g.l., near the clay surface. Below this level, the moisture of the
subsoil did not show noticeable changes.
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natural water content in the monitored period in borehole A, (c) wn-wp index in monitored boreholes.

2.2. Results of Geodetic Measurements

The applied geodetic method allowed us to measure the values of the vertical (Figure 7) and
horizontal displacements (Figure 8) of the network of control points on the supports (columns) and
of top control points on the flooring of the overhead part of the passage. The measurement taken at
21.07.2017 (measurement No. 0) was establish as a reference state. In Figures 7 and 8, all displacements
were presented with reference to measurement No. 0.

The vertical displacements shown in Figure 7 amounted to a maximum of just over 1 mm for
bottom control points on pillars and over 2 mm for the overhead part of the structure whereas relative
displacements (the difference between the support and the top control points) were up to 1.8 mm (at
control point No. 9).

During all-year tests, the maximum temperature difference occurred between measurements No.
3 and 4. It was 24 degrees Celsius. Maximum vertical displacements were also recorded between these
observations. The results of the calculations for these displacements are presented in Table 3.
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Table 3. Vertical displacements and changing length of the pillars between measurements 3 and 4.

Point No.
Vertical Displacements of

Support Control Points
between Measurement 3 and 4

Vertical Displacements of Top
Control Points between

Measurement 3 and 4

Changing the Length of
the Pillar between

Measurement 3 and 4

dZ [mm] dZ [mm] dl [mm]
1 −0.31 0.75 1.07
2 - 0.61 -
3 0.26 2.45 2.19
4 0.28 2.28 2.00
5 −0.12 2.46 2.58
6 −0.14 2.27 2.40
7 −0.52 2.14 2.66
8 −0.79 1.71 2.50
9 −0.06 2.24 2.30

10 −0.20 1.99 2.19
11 −0.68 1.03 1.72
12 −0.48 −0.18 1.55

According to Table 3, the displacements of the bottom of pillars also do not exceed 1 mm
(max. 0.79 mm for pole No. 8) whereas the vertical displacements of points located in the flooring of
the overhead structure take the value max. 2.46 for pole No. 5. The most significant changes in length
were observed for the longest pillars (with numbers from 3 to 10), and the maximum value occurs for
pole No. 7 and was 2.66 mm.

There were also significant horizontal displacements of the flooring of the structure in the direction
of the main axis, reaching up to 5.0 mm (Figure 8). Due to the characteristic shape of the structure
(geometry breakdown at points 7, 8, 9, and 10), there were also displacements in the transverse direction,
up to 2.8 mm at point 8. The maximum extension towards the X-axis was observed for the maximum
temperature difference (between measurements 3 and 4) and was 8.2 mm.

3. Discussion

Based on the results obtained, we stated that over the year the water content observation in
the monitored profile, below the level of the pillars’ foundations (46.30 m a.s.l.), did not show any
changes that can activate intensive expansive processes. Generally, the distribution of water content
corresponds to the depth and values of the plastic limit in the tested profile. During the analyzed
period, significant water content occurred only in the thin zone at the clay surface about 1.0 m b.g.l.,
where the changes in natural water content reach even 10% but without any regular and seasonal
fluctuations (Figure 6). Although slightly more significant changes were observed at a depth of about
1.6–2.0 m b.g.l., there is a silt interbedding of lower plasticity and lower expansiveness. At a depth of
approximately 2.0 m b.g.l. (46.74 m a.s.l.) the moisture content of the clay in the borehole stabilizes.
Below the foundation level, water content fluctuations are sporadic and do not show clear tendencies.
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This is similar to previous studies in other cases [13] which have shown that moisture changes
in the clay subsoil due to weather effects are usually more significant in similar soil and climatic
conditions. Natural water content fluctuations occur up to 2–2.5 m b.g.l. and reach 6–10%, often
showing a strong tendency to periodicity—a decrease after the dry summer season and an increase
after the spring thaws. These changes clearly cause the displacements of buildings founded on such
reactive soils, depending on the weight and stiffness of the objects. For single-story buildings with low
stiffness (comparable to the analyzed object), 4–7 mm cyclic seasonal displacements were observed.

In the analyzed case, any significant vertical displacements of the control points located on the
supports are not observed (Figure 7). The vertical displacements of control points on the pillars do
not show outstanding values. Higher dynamics of position changes were observed for benchmarks
placed in the flooring of the overhead part of the object. This is shown for the points 5 and 7 in the
near distance from the monitored geotechnical profile (Figure 9). This clearly indicates other than
geotechnical reasons for the displacements and damage of the tested object.
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Figure 9. Vertical relative displacements’ dependence on the ambient temperature.

The analyses of the control points observations show the significant differences between relative
displacements of top control points to bottom ones. Furthermore, both the vertical and horizontal
displacements of top control points show a strong dependence on the ambient temperature. This may
indicate the thermal expansion of the supporting pillars and also the overhead part of the passage.
Thermal expansion can be the cause of significant horizontal displacement of the overhead construction
in the direction of the main axis, and in the transverse direction. The dimensions change of the structure,
following the temperature influence, is evidenced by the controlled points’ displacements along the
X-axis (points No. 11. and No. 12). It is also visible almost the return of control points to the original
position in the annual cycle in the horizontal plane (Figure 10).
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Figure 10. Horizontal displacements of top control points at different temperatures (measure terms),
shown in Table 1.
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The significant effect of temperature on the displacements and, consequently, damage to the
examined object may be the result of its specific construction. The analyzed construction is relatively
light and slender.

4. Conclusions

Due to the frequent occurrence of various types of structural damage, the displacements caused
by swelling or shrinkage of the building object founded on expansive soils, are usually the first cause
of failure. In particular, this applies to light objects that exert only a low pressure on the subsoil.
As shown for the presented object, causes that are not always apparent are responsible for the damage
to the structure. The leading cause of observed damage, like cracks in the corners of the windows,
cracks in the dilatation zones, is the thermal expansion of construction. In this case, displacements
of the clayey subsoil do not occur and, consequently, cannot affect the structure. The presented case
shows how important are the comprehensive monitoring of the damaged building and individual
approach to each case.

In the future, the displacement results obtained should be confronted with theoretical values
determined by finite element method (FEM) numerical modeling. It would be beneficial to take into
account the expansive parameters of the subsoil, depending on its humidity, in such considerations.
For this purpose, an unsaturated soil model with appropriate suction parameters and characteristics
could be applied.
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p. 87. (In Polish)
10. Nelson, J.; Miller, D.J. Expansive Soils: Problems and Practice in Foundation and Pavement Engineering; John Wiley

& Sons: Hoboken, NJ, USA, 1997.

http://dx.doi.org/10.1515/ceer-2016-0041
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000729
http://dx.doi.org/10.1016/S0360-1323(97)00048-6
http://dx.doi.org/10.2113/gseegeosci.I.1.41
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0001078


Geosciences 2020, 10, 153 13 of 13

11. Biddle, P.G. Tree root damage to buildings. Expansive clay soils and vegetative influence on shallow
foundations. ASCE Geotech. Spec. Publ. 2001, 116, 1–23.

12. Driscoll, R. The influence of vegetation on the swelling and shrinking of clay soils in Britain. Geotechnique
1983, 33, 93–105. [CrossRef]
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