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Abstract: Probabilistic models for sub-daily rainfall predictions are important tools for understanding
catchment hydrology and estimating essential rainfall inputs for agricultural and ecological studies.
This research aimed at achieving theoretical probability distribution to non-zero, sub-daily rainfall
using data from 1467 rain gauges across the Australian continent. A framework was developed for
estimating rainfall data at ungauged locations using the fitted model parameters from neighbouring
gauges. The Lognormal, Gamma and Weibull distributions, as well as their mixed distributions were
fitted to non-zero six-minutes rainfall data. The root mean square error was used to evaluate the
goodness of fit for each of these distributions. To generate data at ungauged locations, parameters of
well-fit models were interpolated from the four closest neighbours using inverse weighting distance
method. Results show that the Gamma and Weibull distributions underestimate and lognormal
distributions overestimate the high rainfall events. In general, a mixed model of two distributions
was found better compared to the results of an individual model. Among the five models studied,
the mixed Gamma and Lognormal (G-L) distribution produced the minimum root mean square error.
The G-L model produced the best match to observed data for high rainfall events (e.g., 90th, 95th,
99th, 99.9th and 99.99th percentiles).

Keywords: sub-daily rainfall; ungauged catchment; statistical modelling; probability distribution

1. Introduction

Rainfall data have been used as basic inputs in hydrological, agricultural, ecological and
other environmental models and have applications in planning, design and management of water
resources [1-5]. Better estimates of runoff and soil infiltration and drainage were achieved when
sub-daily, rather than daily rainfall intensities were used as model inputs [6,7]. Studying characteristics
of sub-daily rainfall helps understanding incidence of extremely intense events causing flash-flood [8,9].
Sub-daily rainfall is also important in biogeochemical and nutrient cycle modelling [10]. Because
of inadequate data availability, the use of sub-daily rainfall is limited. The rain gauge network
lacks in continuous long-term records, spatial representativeness and climate homogeneity [11,12].
For example, Australia has only 184 pluviograph stations with coverage exceeding thirty years [13].
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Probabilistic models fitted to rainfall data are useful in imputing missing records in terms of length
and spatial coverage [14].

Theoretical probability distributions have been used for decades for modelling rainfall data
aggregated at coarse scale (seasonal or monthly). The presence of dry events with continuous rainfall
demands complex models for even seasonal or monthly data from arid regions [15]. Modelling finer
scale (daily to sub-daily) data faces greater challenges because of the presence of a larger number
of dry events coupled with a highly skewed distribution of the amount of rainfall in wet events.
In contemporary literature, the Gamma, Exponential, Kappa, Wakeby, Generalized Extreme Value
(GEV) and Weibull distributions have been used to model daily non-zero rainfall intensities [16-18].
Distributions within the Tweedie family were fitted to model both components (occurrence and
amounts of rainfall) simultaneously [19,20]. Gamma for rainfall intensities (three hours) [21,22].
However, a single distribution is found inappropriate for modelling the rainfall intensities at finer
timescales, such as daily or sub-daily. Previous studies showed that mixed distributions fit significantly
better than a single model [23-25]. However, the possibility of generating rainfall data at ungauged
locations using these models were not explored.

The aim of this research is to achieve appropriate theoretical probability distribution to sub-daily
rainfall totals from Australian stations. The possibility of using the observed distributions to generate
distributions for ungauged locations were also explored [26]. This was done by fitting single
(Lognormal, Gamma and Weibull) distributions as well as mixed distributions. Fit of the distributions
were compared using the Root Mean Square Error (RMSE), which has the same unit as the observed
rainfall. Statistical properties of the observed rainfall amount of studied stations were compared
with those obtained through generated data with interpolated parameters from neighbouring stations.
The outputs of the research have implications in understanding rainfall characteristics and generating
data for ungauged locations and may have potential applications in ecological, hydrological and flood
forecasting models.

2. Materials and Methods

2.1. Data

This study considered sub-daily (six-minute interval) rainfall data from 1467 Australian
pluviograph stations (Figure 1). Approximately 16.9% of the stations have data for less than one year,
whereas, 22.5% of stations have data for more than ten years. A detailed analysis was performed on
nine case study stations obtained from both inland and coastal regions. Grey dots on Figure 1 show the
rainfall stations included in this study and the black squares shows the locations of case study stations.
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Statistical properties of rainfall intensities of the case study stations are presented on Table 1.
Column 1 of the table represents the percentages of dry events. The other statistics, such as, the median,
mean, maximum, coefficient of variation and skewness were estimated for non-zero rainfall events.
Reasonable variations exist among the case study stations in terms of centre (mean, median), extreme
values (percentages of non-rainfall events, maximum rainfall), variations (co-efficient of variation)
and skewness of the data. For example, among the case study stations, located at the centre and west
coast of Australia, Corrigin, Palmer and Learmonth are relatively dry in terms of percentages of dry
events (approximately 96%). Stations located at tropical north Australia, Jabiru and Mt House are
relatively wet stations in terms of mean (0.49 mm and 0.43 mm) and median (0.10 mm and 0.13 mm)
rainfall amounts. The stations were very similar in terms of variations, as measured by coefficient of
variation (CV) and skewness, however, the maximum rainfall from a single event is higher in Jabiru
(30.89 mm) than Mt House (17.17 mm). Though, the distribution of rainfall amounts from wet events
are highly positive skewed, higher mean in rainfall produces lower skewness. As expected, higher
differences in mean and median produced higher skewness and also higher coefficient of variation.
Launceston, the only case study station from Tasmania (an island located at the south-east Australia)
has very similar mean rainfall amounts to the mean for those from east-coast. However, Launceston
has fewer extreme events, lower variation and the distribution is less skewed than the other three.

Table 1. Statistical measures of sub-daily rainfall totals for the case study stations.

% Zero Median Mean Maximum  Coefficient of Variation Skewness
Corrigin 96.35 0.02 0.12 8.93 286.22 10.05
Mt Stanley 91.56 0.04 0.19 17.53 300.73 9.66
Bundarra 90.56 0.05 0.18 14.89 238.53 9.99
Toolangi 81.87 0.07 0.15 25.04 175.05 11.64
Launceston 89.27 0.09 0.16 9.18 150.72 6.11
Learmonth 95.96 0.06 0.25 14.27 229.61 6.77
Mt House 94.90 0.13 043 17.17 224.58 5.59
Jabiru 90.98 0.10 0.49 30.89 243.44 5.58
Palmer 96.98 0.03 0.15 12.35 316.18 11.00

2.2. Probability Distribution Models

This study used the Lognormal, Gamma and Weibull distributions as well as mixed Lognormal and
Gamma (L-G), Gamma and Weibull (G-W) and (Lognormal and Weibull) distributions. The distribution
functions and their properties are briefly described here.

The gamma distribution: Mathematical form of the gamma distribution is expressed as

. xk1e75
f(x,k,@):ekr—(k), forx>0andk, 0 > 0. 1)
where k is the shape parameter, 6 is the scale parameter and I'( ) is called the gamma function and
is defined by I'(k) = fooo xF-le=*dx. The shape parameter may govern the shape of the rainfall
distribution and the scale parameter may determine the variation of rainfall amount series which is
given in the same unit as the random variable X.
The gamma family of distributions is related to the exponential and x? distribution of families.
In particular, when k = 1, the gamma distribution is equivalent to an exponential distribution with
parameter 6. Moreover, the F(%, %) distribution follows the x?2 distribution with r degrees of freedom.
The lognormal distribution: Mathematical form of the lognormal distribution is

1 (mep)
(x;p,0) = e x>0 @
Sl u xo V21

where p and 02 are the mean and variance of the normal density for InX respectively. The natural
logarithm transformation is taken as an attempt to symmetrize the data.
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The Weibull distribution: Mathematical form of the Weibull distribution is

a-1
f(x; a/ﬁ) = %(%) e—(x/ﬁ)“x >0;a,>0 3)

where a and f are the shape and scale parameters, respectively. Note that X* is an exponential with
mean . If o < 1, the Weibull distribution will have relatively ‘heavier tails’ than any exponential
distribution. If &« = 1, then X is exponential with mean §. Finally, @ > 1, results in distributions with
relatively ‘lighter tails” than any exponential distribution.

2.3. The Maximum Likelihood Estimates (MLE)

Through simple algebra, the log-likelihood for an independently and identically distributed (IID)
sample of size n from a gamma distribution can be expressed as:

n

n
I(k, 0) = —nkIn 6 — nIn{T(k)} + (k—l)Zh‘xi‘ %in
i=1 i=1

This gives the score equations as:

The mean and variance of the distribution can be expressed as:

fvie = kO, 63, = k62

For the Lognormal distribution, the MLE of the parameters are as follows:

n

R — 1
fmrg = Inx = - Z;lnxi
1=

S 2
612\/1LE = (Inx)* - (m)z = % Zn:(lnxi)z —[ %ilnxi]
i=1

i=1
Through some simple algebra, the log-likelihood for an IID sample of size n from a Weibull
distribution is (2, ) = nlna-nInp+ (a—1) L1 Inx; - § LI, x¥ This gives the score equations

as:
e, B)  n & -
= —+ Inx;— = ¥inx; =
do a ; IZ; !
dl(a, ﬁ) n 1 & N
i R PP

These equations do not have a closed form, and hence cannot be solved directly. Alternatively,
complex computational algorithm is used to solve the equations.

The mixture distributions: The single distributions may not capture well the lower and heavy
upper tails of observed rainfall totals at finer timescales (six-minute pluviograph). To capture both the
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tails of the distribution of positive sub-daily rainfall intensities, along with single models, mixture of
the distribution with the following form have been fitted:

¢ (x) = filx) + q2f2(x)

where, g1 and g are respective weights for the two distributions with probability functions, respectively.
One of the distributions is lognormal and the other is the gamma or the Weibull. The fit of the models
has been evaluated using the RMSE. The RMSE measures the differences between the modelled values
and the observed rainfall totals using the formula:

RMSE =

Once the optimal distribution(s) for modelling rainfall is decided upon, the study examined the
performance of the mixture models (G-L and W-L) in terms of generating extreme rainfall events. For
the purpose, 1000 samples each of the size of the observed data were generated using the G-L and
W-L distributions. The statistics, 90th, 95th, 99th and 99.9th percentiles, for each of the samples were
estimated as a presentation of extreme events. For data from a specific station, the median of each of
the percentiles over the samples were estimated. These statistics from simulated data were compared
with respective statistics from the observed dataset.

The possibility to utilize the parameters of optimal distribution(s) from neighbouring stations to
generate data for ungauged locations were also explored. This is done as the contemporary literature
indicates that, climate data from close neighbours are highly correlated and the degree of correlation
becomes weaker as the distance increases [14]. The parameters of the distributions for the ungauged
locations were interpolated from four closest neighbouring stations using inverse weighted distance
method. The method works well only when the parameters are spatially consistent, and the targeted
location has close neighbours. Figure 1 shows that, except for the middle and south-west parts of
Australia, the rainfall gauges have close neighbours. However, the regions with less density are not of
much hydrological or ecological importance. Hence, generating data for ungauged locations with the
interpolated parameters form the neighbouring gauges is applicable for most regions of Australia with
significant agriculture and economic activities. This was done by applying the method to generate
data for the gauged locations and comparing these with the observed data for the location. This is
done in four steps. First, the parameters were interpolated for the specific location with the estimated
parameters from neighbouring locations using inverse weighting distance method. Then, using the
interpolated parameters of G-L and W-L distributions, data were generated for the location. Similar
percentiles as used in drawing the previous figure were estimated for the observed and generated data.
Finally, the percentiles for observed and generated data were presented.

3. Results

The results from the gamma, Weibull and lognormal fit to positive rainfall intensities from nine
Australian pluviograph stations have been presented on the plots in Figure 2. For better visualization,
normalised probability is plotted against the logarithm of observed rainfall data and fitted data using
the models mentioned above. Variations in the fit exist based on the choice of the model or nature of the
case study station. For example, the gamma models fit relatively well to the data from wet stations of
Northern Australia (Jabiru and Mt House). Whereas, among the three models considered in the study,
log-normal distribution fits better to the sub-daily rainfall data from the case study stations located at
east coast and Tasmania. For the dry stations, Palmer and Corrigin, gamma distribution overestimate
and Weibull distribution underestimate the average rainfall intensities. In general, the gamma and
Weibull distributions systematically underestimate extreme rainfall events. The Lognormal distribution
fits reasonably well to most parts of the data; however, has a tendency of overestimating the extreme
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events. Hence, all the distributions considered in the study has specific limitation in modelling
sub-daily rainfall intensities of Australian stations.

Corrigin Mt Stanley Bundarra

Log rain

Launceston Learmonth

Log rain

2 4 3 2 1 0 1 2
Palmer
@ Observed
""" Lognormal
2 === Weibull

L, —— Gamma

Log rain

4 3 2 A 0 1 2 4 -3 -2 A 0 1 2 4 3 2 A1 0 1 2

Mormalised probability MNormalised probability Mormalised probability
Figure 2. Logarithm of rainfall verses normalised probability of observed and modelled rainfall using
Gamma, Weibull and Lognormal distributions.

To overcome the limitation, the study explored the possibility to utilize the mixtures of the
distributions. For the purpose, the mixture of Weibull-lognormal (W-L) and Gamma-lognormal (G-L)
distributions are used. The fit for all single (Lognormal, Gamma and Weibull) models is compared
with the mixture (W-L and G-L) models. This is done for the sub-daily rainfall intensities from all the
studied 1467 Australian pluviograph stations. To achieve the optimal mixture distributions, the single
location parameter (as estimated from the fit of single model) was considered, however, ten percent
variations in the dispersion parameter were allowed. The weights were considered from 0.1 to 0.9 with
the sum of weights equals to one. Data were generated with each combination of the parameters and
weights. Using the RMSE, generated data for each combination were compared with the observed
data. The optimal combinations of parameters and weight were achieved for the minimum of the
RMSE. Data of size equal to the number of rainfall events in the historical dataset were generated
with the fitted parameters of the single distributions and optimal combination of the parameters for
mixture distributions.
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The generated data were compared with the observed data using the RMSE statistics. The RMSE
for the data generated using various distributions from all 1467 studied stations were presented by the
boxplots in Figure 3. Among the single models considered in the study, the gamma distribution had
the highest (0.66) and the lognormal distribution had the lowest (0.29) median of RMSE. However, the
both distributions produced larger variations (interquartile range (IQR) = 0.61 for gamma and 0.54 for
lognormal) than the Weibull distribution (IQR = 0.21). The median RMSE for W-L and G-L models
were 0.06 and 0.04, respectively. The IQR for the mixture distributions are 0.11 and 0.04 for W-L and
W-L distributions, respectively.
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Figure 3. Root Mean Square Error (RMSE) of observed versus simulated rainfall using single and
mixed distributions. The boxes represent the interquartile range (IQR), the dotted lines are extended to
1.5 times of IQR, the circles represent observations outside the dotted lines (extreme observations).

The fit of the two mixed models has been compared based on their performance in generating
data with similar statistical properties. The observed and simulated statistics for all the 1467 stations
were presented in the scatterplots in Figure 4. Two scatterplots compare the performance of G-L (left
panel) and W-L (right panel) models. The solid lines in the figures represent the exact fit, that is when
the generated data produce the same statistics as those of the observed data. Points close to the dotted
line indicate that the statistics obtained from the generated and observed data are very similar. The left
panel of Figure 4 represents the relationship between the statistics from observed data and the data
generated using G-L model. A higher spread in the points have been observed for the W-L model
(the right panel). This indicate that the G-L model simulates non-zero, sub-daily rainfall intensities
better than the W-L model. The G-L model fit is equally good in generating data for all the percentiles
considered in this study. The exception is for the middle values for which the model overestimates the
observed rainfall intensities. Alternatively, the W-L distribution showed a curvilinear relationship.
The model overestimated the lower to middle and systematically underestimate the higher rainfall
intensities. The results indicate that the G-L model is better than the W-L model in generating non-zero
sub-daily rainfall intensities.
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Figure 4. The scatter plot presenting various percentiles of observed and simulated (by fitted parameters)
sub-daily rainfall.

Finally, the possibility of generating parameters at ungauged locations has been explored. For
this purpose, parameters were generated for the locations having pluviograph station. The observed
percentiles are then compared with similar percentiles of data generated with the parameters obtained
through spatial interpolation. The performance of spatial interpolation of parameters for respective
mixture distributions are presented in the scatterplots of Figure 5. From the figure, we observe that,
the percentiles of generated data using the G-L distribution are close to those from observed data. No
systematic variation in the scatterplot was observed. This result indicates that G-L model can be used
to generate reasonably well sub-daily rainfall data for ungauged locations. Right panel of the figure
representing the percentiles of observed data and simulated data using W-L data showed relatively
higher scatter. The W-L model systematically underestimates various percentiles representing the
extreme rainfall events. Hence, within the models considered in the study, the G-L models were proven
ability to generate sub-daily rainfall totals of the Australian stations.
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4. Discussion

The Gamma, Lognormal and Weibull are commonly used theoretical distributions in modelling
skewed data with heavy tail at the right [17,18]. None of these single distributions, however, are
capable of modelling both lower and upper parts of the non-zero sub-daily rainfall totals; though the
models fit relatively better for the high rainfall stations. One key finding is that the Gamma and Weibull
models systematically underestimate and the Lognormal overestimates the extremely high rainfall
events. In case of low rainfall events, the Gamma and Weibull models overestimate and the Lognormal
model underestimates sub-daily rainfall. This is one of the main limitations of individual probability
model in predicting sub-daily rainfall and the results are supported by the previous studies [27].

The mixed models (e.g., W-L, G-L) fits observed rainfall better compared to any single model.
While there are not many differences between mixed models, the G-L model performs slightly better
compared to the W-L model. The performances of mixed models in predicting sub-daily rainfall for
ungauged catchments using parameters from neighbouring catchments are reasonably good. Again,
the G-L model was found to be the best to generate sub-daily rainfall for ungauged catchments. It is
important to note that shorter data period may lead to bias in the estimated parameters. Moreover,
there should be a common data period to compare the fitted parameters between stations.

5. Conclusions

The research is designed to search for well-fit models for sub-daily rainfall data (skewed with
long tail at the right) using single and mixed probability distribution functions and to evaluate the
fitted models for predicting rainfall in ungauged catchments. The study used data from 1467 rainfall
stations across the Australian continent and tested three commonly used probability distribution
functions (Gamma, Lognormal and Weibull). Results show that none of the single distribution models
are capable of modelling tail end rainfall totals (both low and high rainfall events). The predictions are,
however, reasonably good for the gauges with high rainfall totals. In general, Gamma and Weibull
models underestimate and Lognormal model overestimates extremely high rainfall events, and the
Gamma and Weibull models overestimate and the Lognormal model underestimates low rainfall
events. In comparison to a single probability model, all mixed models (e.g., G-L, G-W, W-L) produce
better fit to historical rainfall data. The parameters obtained from the fitted model can be used to
characterize rainfall across the region. The framework developed as a part of this study, could be used
in generating sub-daily rainfall at ungauged locations. However, while generating data at ungauged
locations using information from neighbouring stations, it is important to consider the distances of
neighbouring stations and their intercorrelations. If the locations of the neighbours are far enough to
invalidate their relation, the generating data may be misleading. For the rainfall gauges located at
middle and south-west parts of Australia do not have neighbours close enough to generate reasonably
valid rainfall data for a station. For other parts of Australia, the stations have close neighbours to
interpolate the parameters to the ungauged locations form the gauged locations, and consequently, to
generate data to ungauged locations.

The research has developed a knowledge base to understand the probabilistic features of rainfall
in Australia at finer timescale. The understanding may be transferred to the physical properties of
rainfall that have implications in understanding catchment level hydrology, ecology and occurrence of
extreme events. The model outputs can be used basic inputs in a wide range of environmental models.
They may have applications in planning, design, and management of water resources.
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