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Abstract: In Kyrgyzstan, outburst flood disasters from glacial lakes are increasing. An example is
the sudden drainage on 8 August 2019 of the Toguz-Bulak glacial lake in the Tosor river basin of the
northern Tien Shan region. In this study, we used remote sensing and field surveys to examine the
reasons for the outburst. We found that the lake area changed from 0.021 km2 to 0.002 km2 due to the
outburst, in which most of the initial 130,000 m3 of water discharged within four hours. In examining
the longer-term behavior of this lake, we found that from 2010 through 2019, it appears in June and
disappears in September every year. Its maximum area occurs in late July and early August. With the
expansion of the lake basin between 2010 and 2019, the lake also increased greatly in size, particularly
so in the three years before the outburst, linked to high summer temperatures and the resulting higher
inflow of glacier meltwater, finally leading to the sudden drainage in 2019. Before this outburst, a 2-m
high moraine dam retained the lake. Continuously inflowing meltwater and the related increasing
pressure by the lake water mass eventually broke the moraine dam. Satellite radar interferometry
revealed active displacement fringes in the lake basin and moraine dam due to the melting and
subsidence of buried ice. An analysis using digital elevation models from 1964 and 2010 also confirms
the surface lowering in the lake basin by up to 8.5 m and on the moraine dam by 2 m. Such lowering
of the proglacial moraine complex destabilized the moraine dam.
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1. Introduction

A warming climate continues to degrade glaciers in high mountains, producing numerous new
glacial lakes with their associated outbursts every year [1–4]. The Himalayas [5] and the Andes [6] have
the most frequent glacial lake outburst floods (GLOFs) that result in severe damage and casualties [7,8].
These floods arise when a moraine-dammed lake has a dam failure due to an overtopping wave
induced by mass movements, ice falls, ice and snow avalanches or rock-slope failure upslope from the
dam [9,10], and/or piping [11] and ice-cored degradation [12] of the dam. In addition, a rising water
level and intra-morainal seepages can erode the dam, thus reducing the shear strength of the dam [11].
Such mass-movement triggers of dam failures are common in the Himalayas and Andes [10,13].

Moraine dams consist of weakly-connected sediments that were deposited when a glacier expanded
during the Little Ice Age (LIA) [13–15]. In the Andes, the moraine dams that failed were composed
of non-cohesive coarse material (boulders and blocks), glaciofluvial deposits, bedrock and ice-cored
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deposits [16]. In the Himalayas, the stability of moraine dams has also been investigated [17–19].
In general, the possibility of dam failure mainly depends on the geometry, material properties,
stability and internal structure [15,20,21].

In the northern Tien Shan, most glacial lakes that could cause an outburst flood are small,
short-lived and seasonally varying. In some cases, an outburst may depend on the closure of an ice
tunnel inside a moraine complex [22–25]. These factors make it difficult to assess their susceptibility
to outbursts. Although moraine-dam failures are not the most common cause of outburst floods
here, they do occur. Examples include debris flows from such failures in the Kungoy Range in
Kyrgyzstan [26] and in the Ili Range in Kazakhstan [27]. Such dam failures here tend to be caused
by destabilization of the structure of the moraine dam due to melting of buried ice on the moraine
complex [26–30]. In this situation, an increase in the water volume in the lake and a change of stream
channel causes the dam to overflow, thus initiating the breach. In addition, the lake basin expands,
allowing the lake volume to increase every year. Such an outburst type of moraine-dam failure differs
from many cases of mass-movement triggers in the Himalayas and the Andes. A good example is the
outburst flood from the Toguz-Bulak lake of the Tosor River basin, Teskey Range, due to a moraine-dam
failure on 8 August 2019.

To help understand and eventually reduce the risks from GLOFs, regional characteristics of their
development and outburst should be studied. We examine here the behavior of the Toguz-Bulak lake
to find the reason for its outburst on 8 August 2019. The lake dynamics are analyzed using remote
sensing, climatic conditions and field data. We also investigate the history of the Toguz-Bulak lake’s
formation and evolution over the past nine years.

2. Study Area

The Toguz-Bulak glacial lake lies in the upstream region of the Toguz-Bulak River, the left tributary
of the Tosor River, in the northern part of the Teskey Range of the Issyk-Kul basin (Figure 1a). This lake
formed on a moraine complex (debris landform including ice) of the Toguz-Bulak Glacier. In 2019,
the Toguz-Bulak Glacier had an area of about 5 km2 and the moraine complex had an area of about
1.5 km2. The rocks of the moraine complex originate from Late Ordovician granitoids [31].Geosciences 2020, 10, x FOR PEER REVIEW 3 of 17 
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Data obtained from the Tien Shan meteorological station (3614 m, 45 km ESE of the lake; small-
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between 1964 and 2019, while the area of the Toguz-Bulak Glacier decreased by 0.56 km2. Over the 
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each year 2010–2019. We also examined the changes in the Toguz-Bulak Glacier area during 1964–
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On 8 August 2019, we learned about the outburst incident from local staff at the Ministry of 
Emergency Situations of the Kyrgyz Republic (MES KR). The day after the outburst, our team ran a 
field survey of the lake. The area and bottom of the lake basin after the outburst were investigated 
using a GPS (Trimble GeoExplorer 6000). Digital elevation model (DEM) data created from GPS data 
were then used to determine the lake basin volume before and after the outburst, which we assumed 
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and its volume for 2010 were assessed based on the method used by Narama et al. [23,35] and others 
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Figure 1. The study area. (a) The Toguz-Bulak river basin (white line) and the glacial lake investigated
(red dot). Black rectangle is region of (b) and (c). (b) The moraine complex at the Toguz-Bulak Glacier
front revealed from a Corona KH-4A image for 6 October 1964. (c) Same as (b) except from a PlanetScope
image for 15 August 2019.

The moraine complex at the Toguz-Bulak Glacier front formed after the retreat of the Toguz-Bulak
Glacier, where the glacier terminated at its maximum extent in the Little Ice Age. Now, the glacier
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terminates 175 m higher in elevation than its lowest Little Ice Age position. Corona KH-4A (Figure 1b)
and PlanetScope (Figure 1c) images reveal a horizontal retreat of the Toguz-Bulak Glacier terminus by
680 m between 1964 and 2019. The elevation of the glacier tongue has also increased, to 3752 m a.s.l.
in 2019, an increase of 72 m since 1964. These changes are consistent with those in nearby glaciers,
which·have lost 8% of their area during the period 1971–2002 [32].

The period 1964–2019 also shows changes to the stream channel from the lake (Figure 1b,c).
In 1964, the stream channel was small. However, over time, stream water widened the main channel,
with more meltwater flowing through it. For example, glacial runoff flowed through the left side of
the lake-basin in 1964. In 2019, the glacial runoff began flowing directly to the north of the glacier,
through the lake basin and the lake dam.

Data obtained from the Tien Shan meteorological station (3614 m, 45 km ESE of the lake; small-scale
map of Figure 1a) show that the average summer temperature increased by almost 0.5 ◦C between 1964
and 2019, while the area of the Toguz-Bulak Glacier decreased by 0.56 km2. Over the period 1964–2019,
the average precipitation at the same station was 299.7 mm per year.

3. Methods

3.1. Remote Sensing and Meteorological Data

For the remote sensing analysis, we used satellite data from Landsat5/TM (2010–2011),
Landsat7/Enhanced Thematic Mapper Plus (ETM+, SLC-off, 2010–2015), Landsat8/Operational Land
Imager (OLI, 2013–2019), Sentinel-2 (MSI, 2016–2019) and PlanetScope (2018–2019) (Table 1). As a result,
the lake characteristics, including seasonal area, were analyzed from June to September for each year
2010–2019. We also examined the changes in the Toguz-Bulak Glacier area during 1964–2019 based
on Corona KH-4A (6 October 1964), ALOS/PRISM (2010), Landsat8/OLI (2013), Google Earth-Pro
(2013), Sentinel-2/MSI (2017) and PlanetScope (2019) satellite data (Table 1). The glacier outlines were
extracted manually following Kääb [32–34]. The lake outlines were delineated manually within the
ArcGIS 10.5 software.

Table 1. List of satellite images used for the study.

Satellite Date Resolution (m) Satellite Date Resolution (m)

Corona KH-4A 6.10.1964 2.7 Sentinel-2 9.8.2016 10
Landsat-5 TM 11.6.2010 30 Sentinel-2 18.9.2016 10
Landsat-5 TM 13.7.2010 30 Sentinel-2 8.10.2016 10
Landsat-5 TM 16.7.2011 30 ALOS-2 30.10.2016 9.1 m × 5.3 m
ALOS/PRISM 10.8.2010 2.5 Google Earth-Pro 8.6.2017 0.5

ALOS/PRISM DSM 10.8.2010 2.5 ALOS-2 11.6.2017 9.1 m × 5.3 m
Landsat-7

ETM+/SLC-off
13.8.2010 30 Sentinel-2 12.6.2017 10

Landsat-7
ETM+/SLC-off

22.8.2010 30 Landsat-8/OLI 30.6.2017 15 (pan)

Landsat-7
ETM+/SLC-off

6.6.2011 30 Sentinel-2 7.7.2017 10

Landsat-7
ETM+/SLC-off

24.7.2011 30 Sentinel-2 22.7.2017 10

Landsat-7
ETM+/SLC-off

26.8.2011 30 Sentinel-2 27.7.2017 10

Landsat-7
ETM+/SLC-off

8.6.2012 30 Sentinel-2 9.8.2017 10

Landsat-7
ETM+/SLC-off

10.7.2012 30 Sentinel-2 31.8.2017 10

Landsat-7
ETM+/SLC-off

11.8.2012 30 Landsat-8/OLI 2.9.2017 15 (pan)
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Table 1. Cont.

Satellite Date Resolution (m) Satellite Date Resolution (m)

Landsat-7
ETM+/SLC-off

27.8.2012 30 ALOS-2 17.9.2017 9.1 m × 5.3 m

Landsat-7
ETM+/SLC-off

28.9.2012 30 Sentinel-2 20.9.2017 10

Landsat-8/OLI 19.6.2013 15 (pan) Sentinel-2 10.10.2017 10
Landsat-8/OLI 5.7.2013 15 (pan) Sentinel-2 10.6.2018 10

Landsat-7
ETM+/SLC-off

29.7.2013 30 Sentinel-2 27.6.2018 10

Landsat-8/OLI 6.8.2013 15 (pan) Sentinel-2 25.7.2018 10
Landsat-8/OLI 7.9.2013 15 (pan) Sentinel-2 16.8.2018 10

Google Earth-Pro 11.9.2013 0.5 Sentinel-2 5.9.2018 10
Landsat-7

ETM+/SLC-off
14.6.2014 30 Sentinel-2 13.9.2018 10

Landsat-7
ETM+/SLC-off

16.7.2014 15 (pan) Sentinel-2 5.7.2019 10

Landsat-8/OLI 25.8.2014 15 (pan) Sentinel-2 10.7.2019 10
Landsat-8/OLI 10.9.2014 15 (pan) Sentinel-2 12.7.2019 10

Landsat-7
ETM+/SLC-off

18.9.2014 15 (pan) Sentinel-2 15.7.2019 10

Landsat-8/OLI 18.9.2014 15 (pan) Sentinel-2 27.7.2019 10
Landsat-7

ETM+/SLC-off
17.6.2015 15 (pan) Sentinel-2 30.7.2019 10

Landsat-8/OLI 11.7.2015 15 (pan) Sentinel-2 1.8.2019 10
Landsat-8/OLI 12.8.2015 15 (pan) Sentinel-2 6.8.2019 10

Landsat-7
ETM+/SLC-off

20.8.2015 15 (pan) Landsat-8/OLI 7.8.2019 15 (pan)

Landsat-8/OLI 29.9.2015 15 (pan) Planet Scope 8.8.2019 3
ALOS-2 4.10.2015 9.1 m × 5.3 m Sentinel-2 11.8.2019 10

Landsat-8/OLI 11.6.2016 15 (pan) Planet Scope 30.8.2019 3
Sentinel-2 30.6.2016 10 Sentinel-2 3.9.2019 10
ALOS-2 24.7.2016 9.1 m × 5.3 m Google Earth-Pro 1.11.2019 0.5

On 8 August 2019, we learned about the outburst incident from local staff at the Ministry of
Emergency Situations of the Kyrgyz Republic (MES KR). The day after the outburst, our team ran
a field survey of the lake. The area and bottom of the lake basin after the outburst were investigated
using a GPS (Trimble GeoExplorer 6000). Digital elevation model (DEM) data created from GPS
data were then used to determine the lake basin volume before and after the outburst, which we
assumed to be the volumes of the glacial lake and used to estimate the water discharge. The lake
basin area and its volume for 2010 were assessed based on the method used by Narama et al. [23,35]
and others [36,37] using a digital surface model (DSM) from data of the Advanced Land Observing
Satellite/Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS/PRISM) [38,39]. We also
used the High Mountain Asia 8-meter DEM on 16 July 2017 to calculate basin volume in 2017.

Using the lake volume data for 2019 and an empirical formula reported earlier [40–42], we estimated
the outburst’s peak discharge. The empirical formula of Popov [40] is based on the outbursts in the
Ili Range, Kazakhstan, whereas those in [41] and [42] are based on outbursts in the European Alps.
Their estimates were all in close agreement, but we report here just those using Popov’s formula.
We also interviewed local residents and local staff at the Ministry of Emergency Situations of the
Kyrgyz Republic to obtain information about the outburst event.

For the meteorological data, we used average summer temperature (June–October) data from the
Tien Shan meteorological station during 2010–2019 (Figure 1a).
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3.2. Geomorphological Conditions of the Toguz-Bulak Glacial Lake

To clarify how the geomorphological conditions might have influenced the lake evolution,
we examined the surface features of the moraine complex at the Toguz-Bulak Glacier using the
ortho-rectified satellite images from Corona KH-4A data taken on 6 October 1964 and from PlanetScope
taken on 15 August 2019. The image from Corona KH-4A was created using ground control points
(GCPs) extracted from ALOS/PRISM DSM data on 10 November 2010 with a 2.5-m resolution, and then
a DSM was generated from the Corona data using the software Metashape (Agisoft, St. Petersburg,
Russia). For GCPs, we used valley bottoms and large, stable rocks. The height errors of the PRISM
DSM without GCPs against reference DSMs ranged between 4.9 and 8.7 m [43,44]. In the outside
(stable area) of the moraine complex, the DSM differences between the Corona KH-4A DSM (1964) and
ALOS/PRISM DSM (2010) averaged −0.57 ± 1.78 m. The average difference between the Corona DSM
and the High Mountain Asia 8-meter DEM is −0.75 ± 1.94 m, whereas that between the ALOS/PRISM
and High Mountain Asian DSMs is −0.37 ± 1.66 m. These uncertainties are significantly less than the
lake-level variations that could vary up to 8.5 m.

Concerning lake-area uncertainty, we compared the lake areas taken manually on 6 August 2019
(Sentinel-2) and 7 August 2019 (Landsat8/OLI) with the maximum lake area on 8 August that was
measured by GPS after the outburst. The resulting differences in lake areas of 0.019 km2 (Sentinel-2),
0.018 km2 (Landsat8/OLI), and 0.021 km2 (GPS) are considered small because their effect on the volume
uncertainty is less than that from uncertainty in DSM. Thus, we consider the uncertainty in volume to
be small.

To understand how the Toguz-Bulak lake basin changed over 2010, 2013, 2017 and 2019 and
how the changes influenced the lake, we analyzed the evolution of the lake basin using ALOS/PRISM
(2010) and Google Earth-Pro (2013, 2017 and 2019) satellite data. The outlines of the lake basin were
delineated manually as polygon data using ArcGIS 10.5. Then, we calculated the volume of the lake
basin based on the ALOS/PRISM DSM data for 2010. For 2017, we used the High Mountain Asia 8-m
DEM, and for 2019, the DEM from GPS data. The GPS data from 2019 and DSMs from the Corona
KH-4A (1964) and ALOS (2010) satellites were also examined to obtain information about vertical
surface changes at the lake basin and to compute a profile.

We also studied the potential role of vertical subsidence of the moraine complex around the
lake-basin. For that purpose, we applied a differential interferometric SAR (DInSAR) analysis using
radar image pairs of phased array type L-band synthetic aperture radar-2 (PALSAR-2) data from the
ALOS-2 satellite [45–47]. The GAMMA SAR software was used for processing [48–50]. In total, we used
6 image pairs from 4 October 2015 to 24 July 2016, from 24 July 2016 to 30 October 2016, and from
11 June 2017 to 17 September 2017. Using a series of repeated DInSAR interferograms at intervals
of 1–2 years or a few summer months enabled to map short- or long-term vertical displacements,
respectively [46,51]. Vertical subsidence and horizontal motion due to ground ice melting were detected
based on displacement fringes [25,33,46,48].

4. Results

4.1. Outburst of Toguz-Bulak Glacial Lake on 8 August 2019

During each summer of 2010–2019, the lake area gradually increased. The area increased until
the lake began to overflow through a spillway channel. The maximum area varied significantly from
year to year. In the summer of 2019, the lake area increased as in other years but became significantly
larger than that in the previous years.On about 5 July 2019, the glacial lake appeared in the lake
basin (Figure 2a) and steadily increased in size (Figure 3). Within a month (Figure 2b), the lake area
increased 36-fold with a daily expansion rate of 574 m2/day. On 7 August, its surface height reached
the maximum level of the lake basin (Figure 2c). The next day a slight further expansion induced
overtopping, leading to the outburst flood (Figure 2d). From Figure 3, a high rate of lake-area expansion
can be seen between 5 July and 8 August 2019. During this time, the lake area expanded at a rate of
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660 m2 per day. Then, on 8 August, the moraine dam of the Toguz-Bulak glacial lake breached and
caused an outburst flood in the upper left tributary of the Tosor River (Figure 2d).
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are outline of the lake.
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station (MS)).

The field survey showed that the lake area decreased from 0.021 km2 before the outburst to
0.002 km2 after the outburst, while the water level in the lake dropped by 6 m. The resulting calculation
of the water volume loss is about 130,000 m3.

People living downstream reported that the outburst event from the lake started at around
15:00 o’clock, local time. About 30 min later, a large wave came through and then the flood slowly
decreased, ending at about 19:00 o’clock. Our calculation, based on an estimated volume of the lake
basin (following the empirical formula in [40]), gives a peak discharge rate during the four-hour long
outburst of 183 m3/s. This peak discharge is close to that from other moraine-dam failures [41,42].

The outburst incident coincides with an increase in average air temperature in August (orange
rectangle, Figure 3). In addition, the air temperature measured at 14:00–15:00 o’clock on 8 August
exceeded 30 ◦C, which must have induced a strong temporary increase in glacier meltwater coming
into the lake basin. The lake emptied, to a large extent, within four hours, with an average discharge
rate of 32,500 m3 per hour.

Images from the field survey show the trace of the earlier lake level. Before the outburst, water from
the lake overflowed through a well-developed V-shaped surface channel to the southeast of the lake
(Figure 4a). Hence, the dam-breach at the northern lake shore (Figure 4b) changed the course of water
runoff (Figure 1b,c). The outburst flood eroded the valley flanks, forming deep ravines to a depth of
3 m (Figure 4c). The water and debris mixture flowed into the Tosor River, depositing on the riverbed
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(Figure 4d) and reaching Lake Issyk-Kul after 30 km. The flood damaged two bridges, as well as
destroying pastures and parts of the road in Bokonbaev Village.
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Figure 4. The Toguz-Bulak glacial lake outburst flood. All photos taken on 9 August 2019. (a) Lake
condition after the outburst. (b) Drainage channel through the dam. (c) Lake outlet from below and
eroded stream banks. (d) Flooded area along the Tosor River. Large white arrows show the flow direction.

4.2. Toguz-Bulak Glacial Lake Area Variability during 2010–2019

During 2010–2019, the lake appeared every year in June with a seasonally increasing air temperature
and disappeared in September with a decreasing air temperature. The satellite image analysis in
Figure 5 shows relatively small peak lake areas over the summers of 2010–2012. The peak lake area
increased significantly more in 2013–2016, and the largest peak lake areas occurred in 2017, 2018 and
2019. Thus, we divided the lake area variation into two phases: (1) a phase of rather small seasonal
variations, from 2010 to 2016 (red shading, Figure 5), and (2) a phase of large variations, from 2017 to
2019 (blue shading).
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4.3. Meteorological Factors Behind the Increase in Lake Area

To assess a relationship between the lake dynamics and summer air temperature, we analyzed
the average summer temperature for June–July in 2010, 2013, 2017 and 2019. An increase in summer
temperature by 0.2 ◦C (light blue line, Figure 6a) over the last 9 years correlates with the loss of 0.17 km2
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in area of the Toguz-Bulak Glacier (dark blue line). In the period 2010–2013, the glacier area decreased
by 0.07 km2, over 2013–2017, the area lost was 0.08 km2, and during 2017–2019, the loss was 0.02 km2.
Averaging over the 9 years, the Toguz-Bulak Glacier area decreased 0.019 km2/year.
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The glacier area reduction must have been accompanied by a corresponding ice volume loss,
causing an increase in glacial runoff volume. For instance, we found a similar increase in glacial runoff

to the Chong-Kyzylsuu river in the Teskey Range that was a prerequisite for the rapid rise (and later
drainage) in the water level of the w-Zyndan glacial lake [22]. In the present case, an increase in
the glacier runoff would have expanded the Toguz-Bulak lake basin every year (red line, Figure 6b).
Incoming glacial runoff controlled the behavior of the Toguz-Bulak lake, that is, the lake area varied
with the incoming volume of glacial runoff (orange line, Figure 6b). As the peak lake area (Figure 6b)
increases with the increasing loss of glacial area (Figure 6a), we suggest that the peak lake area primarily
depends on the incoming rate of glacial runoff. The large glacial runoff caused particularly large peak
lake areas in 2017–2019. These larger peak lake areas are likely related to the higher air temperature
in June–July 2017–2019 compared to the years 2010–2016. Furthermore, more rapid melting of snow
and ice under the higher air temperatures in June–July 2017–2019 would lead to the more rapid rise
in the lake level, shown in Figure 5. We rule out precipitation as the cause of the higher lake levels
because, according to the Tien Shan MS, (1) the total summer precipitation decreased through the years
2017–2019 and (2) the precipitation amount during June–July was negligible (for 2019, just 85.5 mm).

4.4. Geomorphological Processes Influencing the Development of the Toguz-Bulak Glacial Lake

We now consider the formation and size of the lake basin. In 1964, the lake basin had not yet
formed. At this time, as shown in Figure 7a, glacier meltwater flowed through the upper edge of
a sector “A” (Figure 1b). However, an increase in glacial runoff (blue arrows in Figure 7) on the
moraine complex contributed to the formation of the lake basin. In 2010, water stagnated in the region
just left of sector “A” and had begun expanding its area by mechanical erosion, and likely also by
thermal erosion. Until this time, ravines were formed to a depth of about 1 m. Then, during each
year between 2010 and 2017, glacier meltwater flowed into the lake basin and out again through the
upper margin of sector “A”. The stagnant water in the lake basin helped to erode the basin bottom
and shoreline. In particular, ALOS/PRISM satellite data from 2010 show a small lake basin of 0.0058
km2 in area (Figure 7b). Later, by 2013, the basin size had doubled in area (Figure 7c). By 2017,
the lake basin area had grown to 0.016 km2 (Figure 7d), and by 2019, to 0.021 km2 (Figure 7e). Thus,
over 2010–2019, the lake basin area increased over three-fold, eventually reaching the moraine dam at
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the north side of the lake basin, a distance of 100 m (Figure 7f). When the moraine dam (ridge) failed in
2019, the meltwater flowed through the northern dam instead of the eastern shore (Figure 1c).Geosciences 2020, 10, x FOR PEER REVIEW 10 of 17 
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(b) Advanced Land Observing Satellite/Panchromatic Remote-sensing Instrument for Stereo Mapping
(ALOS/PRISM) image in 2010. (c–e) Images from Google Earth (World View), 2013–2019. (f) Boundaries
of the lake basin during 2010–2019 (background image from Google Earth (World View), 2019).
The dashed blue lines show the direction of meltwater flow.

With the increase in lake basin area, the lake basin volume also increased. For example, in 2010,
the lake basin volume was 63,000 m3. Over 2017–2019, the volume of the lake basin had increased by
44,000 m3, then totalling about 130,000 m3. Thus, over the period 2010–2019, the lake basin volume
had risen by almost 1.7 times.

In addition, the lake basin region lowered during 1964–2010. Figure 8a shows how the elevation
changed over the entire basin region. Around the basin’s dam area, the surface had lowered by 1.0 to
2.0 m, whereas along a slice through the center of the basin, the surface shows a lowering by up to
8.5 m (Figure 8b). Such surface lowering of a moraine complex is consistent with that found nearby at
the Jeruy Glacier front in the Teskey Range [25].
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Figure 8. Surface elevations at the lake basin and moraine dam area in 1964 and 2010. (a) Digital
surface model (DSM) differences on the surface in the map and (b) longitudinal profile of the two DSMs
along a–a′. Profile location showed in Figure 1C. Data based on DSMs generated from Corona KH-4A,
taken on 6 October 1964, and from ALOS, taken on 10 November 2010.
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Using the GPS data from 2019, we examined more recent profile changes along the lake basin and
moraine dam. Over the last nine years, a significant height loss or subsidence occurred in the middle
part and the dam area of the lake. During this time, the bottom of the lake lowered by 1 m. However,
changes in lake bottom are quite different in other areas of the lake-basin. In particular, Figure 9a
shows that the surface elevation in the basin center lowered by 4 m and in the dam area by 2 m (a
sudden drop by 2 m after drainage). Thus, since 2010, the lake basin’s surface has continued to lower
and its size has increased.
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Figure 9. Basin profiles and moraine dam region. (a) Longitudinal profiles along the lake basin and
moraine dam before and after outburst (along a–a′ in Figure 8). The blue square shows elevation
changes at the dam. The profiles were compiled based on ALOS DSM (2010) and GPS data (2019).
Background orange profile from Corona KH-4A/DSM for 1964. (b) The breached dam region the day
after the outburst (9 August 2019).

Before the outburst event, a 2-m high, 27-m wide and 1.5–2.0-m thick stretch of the moraine dam
held back the glacial lake (Figure 9b). The moraine dam resisted for two days, on 6 th and 7 th August,
and then failed (Figure 2b,c).

4.5. Surface Changes on the Moraine Complex

To better understand the changes around the lake basin, we used DInSAR interferograms to measure
the surface motion on the moraine complex. We analyzed three periods: between 4 October 2015 and
24 July 2016, between 24 July 2016 and 30 October 2016 and between 11 June 2017 and 17 September 2017.
Results in Figure 10 show that significant movement occurred on the surface of the moraine complex
during all three years, with sectors “1”, “2” and “3” being the most active areas. The largest surface
displacements occurred in the lake basin area, marked as sector “3”. Here, the line-of-sight deformation
rate exceeds 11.9 cm per year.

This sustained surface motion in all three sectors suggests melting and movement of ground ice and
related subsidence [25,33,46]. This indicates that, as with other moraine complexes in the area [23,25],
the moraine complex contains ground ice. This ground ice degrades, leading to development of the lake
and its dam failure. According to the mean annual ground surface temperature (MAGST), mean annual
air temperature (MAAT) [25] and a global 1-km resolution permafrost model [52], the study site is very
likely within the regional permafrost limit. Thus, either the debris cover on top of the ground ice within
the moraine complex is relatively thin or the ice core of the moraine complex is not in equilibrium.
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5. Discussion

5.1. Lake Development and Outburst on a Moraine Complex

The lake development and failure mechanism here differ from the ice avalanches or intra-morainal
seepages that lead to similar failures in the Himalayas and the Andes [11,13,15,53,54]. In the eastern
Himalayas [55], the formation of large lake basins is mainly due to glacier recession on debris-covered
glaciers. Melting of ground ice inside the moraine is promoted [12,20] because the large-scale
moraine-dammed lakes are located below the permafrost zone [25,56]. However, in those areas,
ice melting in the moraine is not the main reason for moraine-dam failure.

The study region here contains many other moraine complexes with ice. Using DInSAR analysis,
Daiyrov et al. [25] found evidence for many moraine complexes with ground ice at glacier fronts in the
Teskey Range. Further evidence for ground ice came from the analysis of two DSMs generated from
Corona (1964) and ALOS/PRISM (2010) data that showed surface subsidence [25]. Many lake basins
(depressions) here can be formed by either glacier recession or by surface subsidence due to melting on
the moraine complex in the permafrost zone above 3000–3200 m a.s.l. [22,23,25,30,56]. The Toguz-Bulak
glacial lake is a moraine-dammed lake that developed in a depression on an ice-cored moraine complex.
The lake appears in spring–early summer and disappears in autumn, due to the discharge of glacier
runoff. Each year, the lake basin area and volume increased due to degradation and back wasting of
ground ice and erosion by stream water and later reached the edge of the moraine complex.

Another cause is an increase in glacier runoff occurring with an increase in summer temperature.
We found a large area increase in the years 2017–2019, partly due to greater glacial runoff, induced
by particularly high summer temperatures. Hence, in addition to the role of glacier recession, in this
region, the basins can then grow via thermal erosion [57] and the flow of glacier meltwater (this study).

In addition, the melting of ground ice decreases dam stability, thus increasing the probability
of a dam failure [12,15,20,58]. For example, debris flow due to moraine-dam failures has occurred
in the Kungoy Range in Kyrgyzstan [26] and the Ili Range in Kazakhstan [27]. These failures were
caused by destabilization of the moraine-dam structure due to surface subsidence and seepages of
the lake through ground channels that opened up when ice melted [26]. Through surface changes on
the moraine complex, triggers of the outburst include (1) piping under a step hydraulic head with
backward erosion from the air side of the dam, (2) a mechanical breach under high water pressure,
and combinations of these factors, (3) overtopping and backward erosion or incision into the dam and
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(4) melting of an ice core and subsequent dam failure. In the present case, the main factors are likely
(3) and (4). These might also be applied to mountain permafrost regions in Asian mountains.

5.2. Two Types of Water Storage and Drainage Systems on a Moraine Complex

The Toguz-Bulak glacial lake is a recurring lake type, similar to the Koltor glacial lake in the Tong
River basin [25]. Both glacial lakes have an annual cycle of appearing in spring–early summer and
disappearing in autumn. However, only the Toguz-Bulak has a surface drainage channel from the lake.
The Koltor lake instead drains through an ice tunnel. In the case of the Toguz-Bulak lake, appearance
of the lake depends on the inflow of meltwater, so with increasing amounts of meltwater, the lake basin
and lake expanded from year to year. Eventually, more than a decade after it started forming, the lake
basin perimeter reached, and then breached, its moraine dam top. In contrast, the Koltor lake basin
formed almost a century ago, when the glacier started to retreat, with only slight subsequent changes in
basin size. Therefore, despite their apparently similar geomorphological conditions, the water storage
and discharge systems of these two lakes differ significantly from each other.

When the Toguz-Bulak lake dam failed, the lake completely drained within hours. The estimated
maximum discharge was 183 m3/s. Such rapid drainage has so far been uncommon in the Teskey
Range. Here, all large-scale drainages during the last ten years have been from short-lived lakes via
an underground ice channel, producing rates of only 12–27 m3/s [22,23,25]. The current study also
revealed a short-lived lake, but one that drained through a breached moraine dam. The reason behind
past drainages was ice-tunnel closure due to ice-debris blockages or due to freezing of stored water
inside the tunnel. In those cases, the lake water quickly filled up the lake basin, and then, under
high water pressure and thermal erosion, the ice tunnel opened, producing a large drainage [22,23,25].
A similar tunnel system is typically well developed at supraglacial lakes [35,59].

Given the large differences in maximum discharge from lakes having these two types of drainage
systems, we should determine whether other lakes in the region are of the same type as that of
Toguz-Bulak. The work will involve monitoring the surface changes and lake development on
moraine complexes. With global warming, both types of outburst may occur in the study region more
frequently in the future, particularly near the bottom of the permafrost zone [55], giving such work
greater importance.

6. Conclusions

We used satellite images and a field survey to study the dynamics and geomorphology of the
Toguz-Bulak glacial lake, before and after its outburst that caused flooding on 8 August 2019. Because of
the outburst, the lake area decreased from 0.021 to 0.002 km2 in four hours, releasing about 130,000 m3

of water.
Satellite image analyses for the years 2010–2019 revealed that the lake appeared each year in June

and vanished in September. The peak lake size would occur in late July to early August. We found
a large area increase in the years 2017–2019 and argued that this was mainly due to greater glacial
runoff induced by particularly high summer temperatures. In addition, each year, the lake basin area
and volume increased due to degradation and back wasting of ground ice and erosion by stream water.
Periods of high air temperatures that initiated increases in glacier runoff in 2017–2019 expanded the
lake basin area by 0.016 km2 and volume by 44,000 m3, and subsequently, the seasonal variations in
lake area increased in amplitude.

We also found that between 1964 and 2010, the lake basin lowered by up to 8.5 m. The bottom of
the lake lowered 1 additional meter by 2019. The vertical changes in the lake bottom are significantly
different within the lake basin. Using DInSAR analyses between 2015 and 2017, we found active
surface motion with line-of-sight displacements of over 11.9 cm/year around the lake. These surface
displacements likely stemmed from subsidence and lateral motion associated with the melting and
movement of ground ice.
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The factors identified here as likely causes for the lake outburst might also be important influences
on other glacial lakes in the Tien Shan mountains. Therefore, other glacial lakes on moraine complexes
should be studied and monitored. However, short-lived lakes having an ice-tunnel drainage are
very unpredictable and difficult to monitor from optical satellites. Such cases require high-frequency
monitoring based on medium- to high-resolution optical and SAR satellites with short revisit times,
such as ALOS-2 and PlanetScope as well as Sentinel-2 and Sentinel-1, preferably in combination.

Currently, more than 400 glacial lakes exist in the northern Tien Shan region [60]. Especially the
ones on moraine complexes pose a particularly high risk from outburst floods. It is impossible to
investigate all of these glacial lakes on site but the use of remote sensing methods allows their
monitoring [25,60]. Such an approach can save much time and money.
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