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Simple Summary: Zinc and Copper are two important trace minerals, which are involved in
numerous vital biological activities in animal’s body, such as enzyme activation and enhancement
of immune function, growth, reproduction, DNA synthesis, cell division, and neurotransmitters
production. Recently, the application of trace mineral organic complexes in animal feed received
much more attention than the inorganic sources. The organic sources can contribute significantly
to improving animals’ health and reproduction, as the minerals are more biologically available and
absorbable than they are when coming from the inorganic sources. In this study, three injectable
varieties of Zn and Cu supplementation, sulfate, inorganic (loaded with montmorillonite), and novel
organic (ligand with triazine hydrazone), were tested with weaned rabbits. The results revealed
that these three mineral types vary at the most biological responses, and only one category of our
novel organic complexes provided consistent animal performance improvement, including weight
gain, serum antioxidant, meat quality, intestine morphometry, and the expression of peptide growth
factors and cytokine genes. To our knowledge, this is the first work on the Zn and Cu with triazine
hydrazone ligand as two organic complexes in rabbits.

Abstract: Two novel transitional organic Zn/Cu complexes based on a new biocompatible bidentate
triazine–hydrazone ligand (Thz) was designed, synthesized, and evaluated in this study. This study
evaluated the effects of injecting 60 mg of Zn and 40 mg of Cu in three different forms, twice per week,
for eight weeks on growth performance, expression of growth factors and cytokine genes, carcass
yield, blood biochemicals, and intestinal morphology in weaned rabbits. The tested complexes were
sulfate (Cu/ZnSO4), montmorillonite (Cu/Zn-Mnt), and triazine hydrazone (Cu/Zn-Thz). A total of 60
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V-line weaned rabbits at four weeks of age were assigned to four treatments (n = 15), which were
intramuscularly injected with 0.5 mL of either (1) saline (control) or saline containing (2) Cu/ZnSO4, (3)
Cu/Zn-Mnt, or (4) Cu/Zn-Thz. Compared to the controls, the rabbits injected with Cu/Zn-Thz showed
a higher (p < 0.01) growth rate, carcass yield (p < 0.05), and liver expression of insulin like growth
factor-1 (IGF-1), growth hormone receptor (GHR), fibroblast growth factor-1 (FGF1), and transforming
growth factor beta-1 (TGFB1) (p < 0.05), as well as better jejunum morphometric variables (p < 0.05).
On the other hand, mRNA of FGF1, TGF1, TCIRG1, and adenosine deaminase (ADA) were higher
expressed (p < 0.05) in the spleen tissues of Cu/Zn-Mnt group. Collectively, the results indicated that
our novel synthesized organic complexes of Zn/Cu-Thz proved to be a suitable feed supplement, as it
increased rabbit productive performance through enhancing expression of peptide growth factors
and cytokine genes.

Keywords: zinc and copper supplementation; organic feed supplements; triazine hydrazone complex;
peptide growth factor expression; rabbit growth rate

1. Introduction

Trace elements, especially copper (Cu) and zinc (Zn), have vital structural or catalytic roles in
many metal-binding proteins and metalloenzymes, which are important for immune system function,
nutrient metabolism [1–3], and health in rabbits; in addition, they had proven significant antimicrobial
effect [4–6]. Pharmacological amounts of Zn and Cu, either incorporated into the diet or injected
into the body, enhanced the growth performance of rabbits, particularly after/during the weaning
stage [7]. The various sources of supplemental trace minerals and particularly Zn and Cu, such as
oxide, nanoparticles, carrier loading, and ligand with complexes, showed different effects on animals’
growth rate; some sources have a poor mineral bioavailability, leading to irritation in the intestinal
mucosa or increase in the excretion of trace minerals to the intestinal environment [8]. In poultry, the
organic dietary sources of Zn and Cu show a higher mineral bioavailability when compared with that
of the inorganic resources in poultry [1–3] and pigs [9].

Montmorillonite (Mnt), being a natural silicate clay, possess a variety of excellent properties that
make it a good drug-delivery carrier. It, therefore, could be used as an effective carrier for Cu and Zn,
increasing their biological activity in animals, by increasing their bioavailability [10,11]. It was reported
that loading metal ions onto montmorillonite (Mnt) displayed obvious synergistic antimicrobial effects
in vitro [12,13]. Metal-loaded Mnt, in addition, has a high availability of metals, with great safety,
biological activity, and long-term effectiveness [14]. On the other hand, organic ligands, especially
hydrazones, can effectively trap metals via coordination, and some triazine hydrazones have been
reported to exhibit a selective recognition to a specific G-quadruplex DNA structure [15]. Based on
their good biocompatibility that make their absorption easier, their complexes with metals have a
double function. In some cases, they have desirable medicinal effects [16], aside from their main role
as element supplement sources. To the best of our knowledge, no previous studies investigated the
importance of such complexes as nutritional supplements in poultry. It is, therefore, anticipated that
this type of compound may serve as an acceptable source of metals.

The objective of this study was to evaluate the effects of injecting Cu and Zn loaded on three
forms, Zn/CuSO4, Zn/Cu-Mnt (Mnt as an inorganic carrier), and Zn/Cu in triazine hydrazone complex
(Thz as an organic complex), on the expression of IGF-1, GHR, FGF1, and TGFB1, as well as cytokine
genes (TCIRG1, IL10, and ADA), intending to improve the growth performance of growing rabbits.
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2. Materials and Methods

2.1. Ethics Approval and Consent to Participate

For the experimental field on animal, all protocols for all animal experiments were approved
by the Scientific Ethic Committee of Animal Production Department, Faculty of Agriculture, Benha
University, Egypt. The laboratory experiments and protocols were handled in accordance with the
guidelines described by Huazhong Agricultural University, Hubei Province, P.R. China.

2.2. Preparation of Modified Mnt (Zn-Mnt and Cu-Mnt)

The modified Mnt was prepared via ion-exchange reactions, as described previously by
Jiao et al. [10]. Briefly, 10.0 g of Mnt was added portion-wise to a stirred 0.2 M of NaCl solution (100 mL).
Agitation was continued for 8 h, at 600 rpm, and the Na-Mnt was separated by centrifugation, washed
many times with deionized water, oven-dried, and then ground to powder. Na-Mnt (2.0 g) was added
to 50 mL of a 0.2 M solution of zinc sulphate or copper sulphate. To increase the rate of the cation
exchange, each dispersion was stirred at 60 ◦C for 8 h. Centrifugation was also used to separate the
sediments that were washed with deionized water. Overnight drying at 80 ◦C and grinding produced
the powder. Zn-Mnt; off-white, FT-IR (KBr, cm−1) υ 3624, 3457, 1638, 1087, 1035, 914, 843, 794, 624, 519,
and 466. Cu-Mnt; cyan, FT-IR (KBr, cm−1) υ 3624, 3447, 1637, 1092, 1034, 914, 843, 795, 623, 522, and 471.

2.3. Synthesis of the Thz Ligand

This compound was synthesized according to Scheme 1 (Figure 1a). As is typical, a total of 586 mg
(2 mmol) of 6-hydrazinyl-N2, N4-diphenyl-1,3,5-triazine-2,4-diamine [17] was suspended in 25 mL
of absolute ethanol, and 386 mg (2 mmol) of 4-(diethylamino) salicylaldehyde and glacial acetic acid
(3 drops) were added. The mixture was then refluxed at 80 ◦C for 3 h. The precipitated product was
filtered, washed with petroleum ether, and air-dried to afford Thz as an off-white solid yielding 640 mg
(68%). FT-IR (KBr, cm−1) υ 3403, 3267, 3201, 3114, 2973, 2926, 1632, 1572, 1511, 1436, 1402, 1243, and
1131. 1H NMR (600 MHz, DMSO-d6) δ 11.49 (s, 1H), 10.88 (s, 1H), 9.28 (s, 1H), 9.15 (s, 1H), 8.21 (s, 1H),
7.91 (s, 2H), 7.82 (s, 2H), 7.30 (t, J = 6.6 Hz, 4H), 7.12 (d, J = 8.7 Hz, 1H), 6.99 (d, J = 7.3 Hz, 2H), 6.26
(dd, J = 8.7, 2.4 Hz, 1H), 6.15 (d, J = 2.0 Hz, 1H), 3.36 (q, J = 7.0 Hz, 4H), and 1.12 (t, J = 7.0 Hz, 6H).
13C NMR (150 MHz, DMSO-d6) δ 163.88, 159.77, 150.03, 146.56, 140.55, 131.62, 128.86, 122.30, 120.70,
107.48, 103.94, 98.13, 44.22, and 13.06 (Figure 2a–c).

Figure 1. (a) Scheme 1: synthetic route of triazine hydrazone (Thz). (b) Scheme 2: synthesis of Thz
complexes with zinc and copper.
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Figure 2. Spectroscopic characterization of the ligand; Thz. (a) FT-IR, (b) 1H NMR, and (c) 13C
NMR spectra.

2.4. Synthesis of M–Thz Complexes

The two complexes were synthesized, as depicted in Scheme 2 (Figure 1b). A mixture of Thz
(300 mg, 0.64 mmol) and metal acetates, namely zinc acetate dihydrate (145 mg, 0.66 mmol) or copper
acetate (120 mg, 0.66 mmol) in 25 mL of methanol, was heated, with stirring at 70 ◦C. A clear solution
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(yellow in the case of zinc, and green in the case of copper) was observed after 20 min. After refluxing
for 3–4 h, a new precipitate was formed that was collected by filtration and dried. Zn-Thz, yellow
crystals, FT-IR (KBr, cm−1) υ 3264, 2965, 2922, 1662, 1595, 1512, 1440, 1348, 1240, and 1133. Cu-Thz;
dark-green crystals, FT-IR (KBr, cm−1) υ 3270, 2968, 2926, 1666, 1597, 1516, 1443, 1351, 1242, and 1135.

2.5. Animals and Experimental Design

A total of 60 V-line weaned rabbits aged four weeks, having a similar body weight average
(400 ± 20 g), were divided into four groups (n = 15) and housed in twenty replicate cages
(45 × 55 × 30 cm), with each holding three animals; five cages were randomly assigned to one of four
treatments. The first group of animals was intramuscularly injected with 0.5 mL of saline solution (0.9%
NaCl); the other three groups were injected with 0.5 mL of saline containing 60 mg of zinc and 40 mg
of Cu, either in the form of Cu/ZnSO4, Zn/Cu-Mnt, or Zn/Cu-Thz. All animals were subcutaneously
injected, twice weekly (each Saturday and Tuesday), during the experimental period (8 weeks), between
4 and 12 weeks of age. All animals were fed the same standard iso-caloric/iso-nitrogenic diet during
the experimental period. The basal diet composition and calculated analysis followed the nutrient
requirements of rabbits from the National Research Council (NRC) [18], as shown in Table 1.

Table 1. Composition and calculated analyses (g/kg) of the experimental diet.

Ingredients Content

Alfalfa hay 350
Yellow corn 200

Soybean meal 96
Wheat bran 300
Corn Stover 30

Di-calcium phosphate 12.5
Sodium chloride 5

L-Lysine HCl 2.5
DL-Methionine 2

Vitamin/mineral premix a 2
Total 1000.0

Calculated analysis (g/ kg on dry matter basis)
Digestible energy (MJ/kg) 11.6

Crude protein 179
Crude fiber 125
Crude fat 32.0

Ca 10.9
Lysine 9.0

Available P 5.9
Methionine 4.2

a Contained per kg of diet: 2200 IU Vit. D3; 12,000 IU Vit. A; 10 IU Vit. E; 1.0 mg Vit. B1; 2.0 mg Vit. K; 4.0 mg Vit.
B2; 0.001 mg Vit. B12; 1.5 mg Vit. B6; 6.7 mg Pantothenic acid; 1.07 mg Biotin; 1.67 mg Folic acid; 10.0 mg Niacin;
400 mg Choline chloride; 80.0 mg Mn; 25.0 mg Fe; 50.0 mg Zn; 8.0 mg Cu; 2.0 mg I; 0.1 mg Se, and 133.4 mg Mg.

2.6. Growth Performance and Carcass Evaluation

The initial and final body weights (BW) were weekly recorded on an individual basis, using a
digital balance, and the average daily weight gain (ADG) was calculated as the difference between
final and initial BWs divided by the number of days of the experimental period. At the end of the
experimental period, a total of five animals (n = 5, the average weight of their group) were selected
for all further experiments; the animals were slaughtered to evaluate the carcass traits and weight of
internal organs. The weights of each carcass, abdominal fat, hind legs, saddle, thoracical neck, liver,
kidney, spleen, and lung were recorded and expressed vis-à-vis the final body weight.
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2.7. Physicochemical Analysis of Musculus Longissimus Dorsi (MLD)

Physicochemical analysis was conducted on Musculus longissimus dorsi (MLD) of the right and left
sides of rabbit (n = 5) carcasses. The pH grade (pHU) was measured directly on MLD, after 24 h, using
a digital pH-meter (Thermo Orion 710 A+, Cambridgeshire, UK). Water holding capacity (WHC) was
determined at 24 h after slaughter, by the low-speed centrifugation method at 10,000 rpm and 5 ◦C, for
20 min [19]. The drip loss (at 24 and 48 h) and cooking loss were evaluated according to the method
described by Honikel [20]. Warner–Bratzler shear force (WBSF) was measured (3343 universal test
system mono column, Instron, USA) according to the American Meat Science Association (AMSA) [21].
A chroma meter CR-410 (Konica Minolta Sensing INC., Osaka, Japan) was used to assess lightness
(L*), redness (a*), and yellowness (b*) of MLD. These color scores, therefore, were used for calculation
of color chroma as (C = (a*ˆ2 + b*ˆ2) ˆ0.5) and color saturation as (Hue angle, h◦ = arctg b*/a*). Total
aerobic plate count (APC) and total staphylococcus count of meat were enumerated after incubation at
37 ◦C, for 48 h, on an aerobic plate count agar and Baird–Parker agar, respectively [22].

2.8. Antioxidant Variables Assay

At the end of the experimental period, blood samples for five animals of each group (n = 5, the
average weight of their group) were collected from the marginal air vein of the ears into non-heparinized
tubes (10.0 mL). Thereafter, fresh serum samples were prepared by centrifugation at 3000 rpm for 12 min
in the laboratory. The concentration of malondialdehyde (MDA; biological marker of cell membrane
degradation), adenosine monophosphate (AMP; biological marker of cell energy degradation) and
endogenous nonenzymatic antioxidant of reduced glutathione (GSH), and oxidized glutathione (GSSG)
were detected in serum samples (n = 5) by HPLC method (Agilent HP 1200 series HPLC apparatus,
Midland, ON, Canada), according to Jayatilleke and Shaw [23] and Karatepe [24]. All standards
(MDA: 100683-54-3; AMP: Number: 4578-31-8; GSH: 200-725-4; GSSG: 103239-24-3) were obtained
from Sigma-Aldrich Chemie GmbH Export Co. Ltd., Taufkirchen, Germany. Additionally, the serum
activates of catalase (CAT) and superoxide dismutase (SOD) were measured by spectrophotometric
method, at 420 nm, for 1 min, on a UV-Vis Shimadzu spectrophotometer (2450) [25].

The concentration of 8-hydroxy-2′–deoxyguanosine (8-OHdG) in brain tissue (n = 5) was measured
to assess oxidative stress and carcinogenesis. Briefly, genomic DNA was extracted from brain tissue
by using a kit (QIAGEN, Hilden, Germany), according to the manufacturer recommendations. The
hydrolyzed mixture was centrifuged, and the supernatant was injected into the HPLC. The separation
of 8-OHDG was performed with an LC/Agilent 1200 series HPLC apparatus (USA), using a UV detector.
For chromatographic separation, we used C18 reverse-phase columns in series (Supelco, 5 pm, I.D.
0.46 × 25 cm); the eluting solution was H2O/CH3OH (85:15 v/v), with 50 mM of KH3PO4, pH 5.5,
at a flow rate of 0.68 mL/min. The UV detector was set at 245 nm. The resulting chromatogram
was used to identify the concentration of the sample as compared to that of the standard purchased
from Sigma-Aldrich.

2.9. Muscle Amino Acid Profile Assay

Each MLD muscle sample (n = 5) was weighed and homogenized in 75% aqueous HPLC grade
methanol (10% w/v). The homogenate was spun at 4000 rpm/10 min, and the supernatant was dried
with a vacuum (70 Millipore), at room temperature, and used for amino acid (AA) assay by HPLC,
using the precolumn PITC derivation technique [26].

2.10. Quantitative Histomorphometric Analysis of Jejunum Segments

Segments of the mid-jejunum (3 cm) were collected from five animals per group, fixed with formalin
for 48 h, and paraffin-embedded. Two sections (100 µm) from each sample were obtained, stained with
hematoxylin for 1 min, and counterstained with eosin for 10 s, to assess the maximum villus length
(measured from above the crypt to the tip of the villus), crypt depth, and submucosa/muscularis/serosa
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thickness. All targeted variables were measured with a camera (OLYMPUS; TH4-200; Tokyo, Japan)
coupled with computer-assisted digital-image pro plus (IPP) analysis software (Image-Pro Plus 4.5,
Media Cybernetics, Silver Spring, MD, USA).

2.11. Tissues Collection, RNA Isolation and cDNA Synthesis

A total of five samples from both liver and spleen tissue were immediately collected after
slaughtering each group. The samples were suddenly frozen in liquid nitrogen and stored at −80 ◦C
until the RNA isolation. Total RNA was independently extracted from liver and spleen samples (n = 5),
using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer instructions,
and then RNA was purified with DNase I (TaKaRa, Shiga, Japan) and an RNA clean kit (TIANGEN,
China). The quantity and quality of RNA were detected by NanoDrop spectrophotometer and gel
electrophoresis. The cDNA synthesis for liver and spleen (n = 5) of each group were performed
by using TAKARA Bio Inc., Japan, as per manufacturer’s instruction and was stored at −80 ◦C for
subsequent qRT-PCR.

2.12. Measurement of Gene Expression via qRT-PCR

Then, qRT-PCR was performed to determine the expression of seven target genes of insulin-like
growth factor-1 (IGF-1), growth hormone receptor (GHR), fibroblast growth factor 1 (FGF1), transforming
growth factor beta-1 (TGFB1), T-cell immune regulator 1 (TCIRG1), interleukin 10 (IL10), and adenosine
deaminase (ADA), in both liver and spleen tissues, using the ABI 7500 Realtime Detection System
(Applied Biosystems, Foster City, CA, USA) and qRT-PCR reagents (TransGen Biotech, Beijing, China).
Each 20 µL PCR reaction system contained 10 µL of 2 × TransStart Top/Tip Green Qpce, 0.4 µL (10 pM)
of each primer, 0.4 µL of Passive Reference Dye (50×), 0.8 µL of cDNA (100 ng), and 8 µL of ddH2O.
After an initial denaturing for 30 s at 95 ◦C, there were 40 cycles of amplification (95 ◦C for 15 s, 57 ◦C
for 30 s, and 72 ◦C for 85 s), followed by thermal denaturing, to generate melting curves. The primers’
information for targeting genes are shown in Table 2.

Table 2. Primers used for quantitative real-time PCR analysis of genes expressions.

Gene
Name

Gene Bank Accession
Number Primer Sequence (5′–3′) Product

Length (bp)
Amplification

Efficiency (E Value)

IGF-1 NM_001082026.1
F: AACAAGCCCACAGGATACGG

98 1.97R: TCCAGCCTCCTCAGATCACA

GHR NM_001082636.1
F: ACGTGTCGAGCCAAGCTTTA

91 1.91R: GTCTTCTGCTGTCCCAGACC

FGF1 NM_001171488.1
F: GTGTTTGTTCCTGGAACGGC

98 2.00R: CGTTTTTCTTCAGCCCCACG

TGFB1 XM_008249704.2
F: TGTCCACCTGCAAGACCATC

86 2.02R: CCGCAGTTTGGACAGGATCT

TCIRG1 AF393372.1
F: TGTCCACCTGCAAGACCATC

86 1.96R: CCGCAGTTTGGACAGGATCT

IL10 XM_008268045.2
F: AGCTCTGCTATGTTGCCTGG

94 1.96R: GCCTGGAAAGTGAATGCAGC

ADA XM_002721061.3
F: TCAAGAAGGACCAGGCGAAC

108 2.01R: CAGTAAAGCCCATGTCCCGT

GAPDH NM_001082253.1
F: GTCAAGGCTGAGAACGGGAA

95 2.00R: CCAGCATCACCCCACTTGAT

β-actin NM_001101683.1
F: CGCAAGTACTCGGTGTGGAT

94 2.02R: CCGACTCGTCATACTCCTGC

IGF-1: insulin-like growth factor 1; GHR: growth hormone receptor; FGF1: fibroblast growth factor 1; TGFB1:
transforming growth factor beta-1; TCIRG1: T-cell immune regulator 1; IL10: interleukin 10; ADA: adenosine
deaminase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; β-actin: beta-actin.

To normalize target genes, each sample for qRT-PCR was conducted in triplicate, and the
experimental genes levels were quantified relative to the geometric mean of both beta-actin (β-actin)
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as two of endogenous control. Serial
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dilutions of PCR templates (cDNAs) were used to calculate amplification efficiency (E) for each gene
(the slope values of the curves were converted to the E values, using the qPCR Primer Efficiency
Calculator available at https://toptipbio.com/primer-efficiency-calculator/). The efficiency score of the
primers is presented in Table 2.

2.13. Statistical Analysis

All data were expressed as mean with SEM and were subjected to analysis of variance (ANOVA)
in a one-way analysis of variance, using LM procedure of R software version 3.2.2, R Core [27]. The
individual animal was considered as the experimental unit and included one fixed effect of source
type of trace minerals in the statistical model. Duncan multiple-range tests were used to define the
differences among treatments. The analyses of the relative gene expression quantification by qRT-PCR
were performed by using the 2−∆∆CT method [28,29]. Comparisons between qPCR datasets were
calculated by using ANOVA. All differences were considered significantly different at p < 0.05 and were
indicated as trends when p < 0.10. Means comparisons were performed by using Duncan’s multiple
range test.

3. Results

3.1. BW, ADG, and Carcass Traits

As shown in Table 3, the results revealed that injecting 100 mg of Cu/ZnSO4, Zn/Cu-Mnt, and
Zn/Cu–Thz increased (p < 0.05) the BW8, BW12, ADG 4-8, ADG 8-12, and ADG 4-12 compared to the
controls; as an important finding here, the results of our organic complex “Zn/Cu-Thz” were better
(p < 0.05) than those obtained with Zn/Cu-Mnt. The injection of 60 mg of Zn + 40 mg of Cu in the form
of Cu/ZnSO4, Zn/Cu-Mnt, and Zn/Cu-Thz showed significant effects, but not consistent, on the relative
weights of the carcass cuts and internal organs (p < 0.05) (Table 4). The group injected with Zn/Cu–Thz
showed the highest (p < 0.05) final BW at 12 weeks and highest carcass relative weight (p < 0.05).
Zn/Cu-Mnt and Zn/Cu-Thz treatments displayed a higher spleen weight (%) than the controls, and the
Zn/CuSO4 treatment showed the highest (p < 0.05) abdominal fat (%). The liver weight in all treatments
was higher than in the controls (p < 0.05).

Table 3. Nutritional impacts of dietary Zn/Cu loaded in montmorillonite (Mnt) and triazine hydrazone
(Thz) complexes on growth performance of weaned V-line rabbits aged 4–12 weeks.

Growth
Parameters

Type of Zn and Cu Supplementation b

SEM p-Value
Control Zn/CuSO4 Zn/Cu–Mnt Zn/Cu–Thz

BW4 (g) 498.86 517.93 497.46 506.01 7.95 0.257
BW8 (g) 834.66 c 908.11 c 1038.05 b 1112.33 a 16.48 0.001
BW12 (g) 1533.66 c 1626.94 c 1689.33 b 1862.46 a 15.61 0.001

ADG8-4 (g/d) 12.31 c 13.93 c 19.30 b 21.65 a 2.56 0.001
ADG12-8 (g/d) 24.64 bc 25.66 ab 23.26 c 26.79 a 1.89 0.048
ADG12-4 (g/d) 36.95 c 39.57 c 42.56 b 48.44 a 3.62 0.058

All data are expressed as the mean with SEM in same row; a, b, c letters indicate significant differences between
means (p < 0.05). Rabbit/group, n = 15; Zn/CuSO4: zinc and copper sulfate; Zn/Cu-Mnt: zinc and copper in loaded
montmorillonite; Zn/Cu–Thz: zinc and copper in hydrazone complexes; BW4: initial body weight at four weeks;
BW8: body weight at eight weeks; BW12: final body weight at 12 weeks; ADG8-4: average daily gain from 4 to
8 weeks; ADG8-12: average daily gain from 8 to 12 weeks; ADG4-12: average daily gain from 4 to 12 weeks.

3.2. Physical Characteristics and Microbial Abundance of MLD Muscle

The influences of parenteral supplementation of Zn/CuSO4, Zn/Cu–Mnt, and Zn/Cu–Thz compared
to the control group in physical characteristics of MLD and microbial abundance of the Biceps femoris
(BF)/semimembranosus muscles are shown in Table 5. Generally, significant differences were observed
between groups for six out of nine meat-quality attributes. The cooking loss of Zn/CuSO4 animals was

https://toptipbio.com/primer-efficiency-calculator/
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higher (p < 0.05) than the controls and Zn/Cu–Mnt treatment. The shear force results indicated that a
higher force was needed to shear the cooked meat of the Zn/Cu–Mnt treatment versus those of the
controls, Zn/CuSO4, and Zn/Cu–Thz groups (p < 0.05), i.e., the treatments here did not result in any
improvement in this variable. Further, significant differences were observed between raw MLD of
separate groups for lightness (L*) and yellowness (b*), as well as color saturation (h◦). The results
here are equivalent to most meat-quality traits (pHU, WHC, drip loss ratio after 24 h, a *, c, APC,
and staphylococcus) among distinct groups (p > 0.05), except that the drip loss 24-hour percentage in
Zn/CuSO4 treatment tended to be higher, and those of Zn/Cu–Mnt and Zn/Cu–Thz treatments tended
to be lower (p > 0.05) than in controls; the same trend was obtained in the drip loss measured after 48 h
of slaughter.

Table 4. Nutritional impacts of dietary Zn/Cu loaded in montmorillonite (Mnt) and triazine hydrazone
(Thz) complexes on the relative weights of carcass cuts and internal organs of weaned V-line rabbits
aged 12 weeks.

Parameters
Type of Zn and Cu Supplementation b

SEM p-Value
Control Zn/CuSO4 Zn/Cu–Mnt Zn/Cu–Thz

Live body weight (g) 1341.62 c 1436.81 c 1593.60 b 1836.40 a 49.25 0.001
Carcass rate (%) 55.59 a 50.07 ab 48.16 b 55.05 a 1.87 0.021

Adipose fat rate (%) 1.64 ab 1.81 a 1.46 b 1.53 b 1.05 0.029
Hind legs rate (%) 9.61 b 10.34 b 12.92 a 10.19 b 1.74 0.028

Saddle rate (%) 8.78 c 10.44 b 12.02 a 9.89 bc 1.44 0.001
Fore legs rate (%) 6.37 6.46 6.89 6.61 0.33 0.712

Thoracical neck rate (%) 6.50 b 6.65 b 8.04 a 7.12 ab 0.43 0.079
Liver index (%) 2.26 b 3.75 a 3.29 a 3.19 a 0.37 0.048

Kidney index (%) 0.99 1.06 0.96 0.90 0.04 0.127
Spleen index (%) 0.08 c 0.12 bc 0.18 a 0.13 b 0.01 0.001
Lung index (%) 1.88 a 1.51 bc 1.49 b 1.43 b 0.11 0.054

All data are expressed as the mean with SEM in same row; a, b, c letters indicate significant differences between means
(p < 0.05). Rabbit sample/group, n = 5. The parameters rate and organ index were calculated as follows: parameters
rate or organ index = (organ weight/living weight) × 100%. Zn/CuSO4: zinc and copper sulfate; Zn/Cu-Mnt: zinc
and copper in loaded montmorillonite; Zn/Cu-Thz: zinc and copper in hydrazone complexes.

Table 5. Nutritional impacts of zinc and copper in loaded montmorillonite and their triazine hydrazone
complexes on the physical muscle quality of weaned V-line rabbits aged 12 weeks.

Meat Quality
Type of Zn and Cu Supplementation b

SEM p-Value
Control Zn/CuSO4 Zn/Cu–Mnt Zn/Cu–Thz

pH grade 5.79 5.80 5.72 5.75 0.027 0.777
WHC 88.06 88.50 90.16 88.59 1.173 0.960

Drip loss (24 h) 1.99 2.20 1.63 1.60 0.105 0.065
Drip loss (48 h) 2.50 ab 3.07 a 1.91 b 2.19 b 0.175 0.029

Cooking loss 11.81 b 18.05 a 12.01 b 16.01 ab 1.093 0.041
WBSF 3.85 b 3.33 b 4.79 a 3.32 b 0.160 0.003

Lightness (L*) 55.21 ab 56.73 a 53.21 c 53.76 bc 0.449 0.007
Redness (a*) 11.48 10.56 10.95 10.55 0.230 0.474

Yellowness (b*) 5.0975 a 4.8 a 3.7125 b 5.18 a 0.189 0.005
Color Chroma (c) 12.58 11.60 11.56 11.76 0.232 0.400

Hue angle (h◦) 24.01 a 24.46 a 18.80 b 26.19 a 0.899 0.006
APC (CFU/g) 3.58 4.00 4.28 3.88 0.137 0.409

Staphylococcus CFU/g 3.31 3.95 3.60 3.27 0.123 0.137

All data are expressed as the mean with SEM in same row; a, b, c letters indicate significant differences between
means (p < 0.05). Rabbit sample/group, n = 5. Zn/CuSO4: zinc and copper sulfate; Zn/Cu–Mnt: zinc and copper
in loaded montmorillonite; Zn/Cu–Thz: zinc and copper in hydrazone complexes; WHC: water holding capacity;
WBSF: Warner–Bratzler shear force; APC: total aerobic plate count.
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3.3. Blood Biochemical Parameters

As shown in Table 6, the Zn/Cu–Thz treatment had a lower serum MDA (p < 0.05) and higher
GSH and CAT content (p < 0.05) than those in the other treatments. The same treatment (Zn/Cu–Thz)
displayed the same result with respect to the serum SOD activity, which was higher (p < 0.05) than
those in the other treatments and tended to be higher (p > 0.05) than the controls.

Table 6. Nutritional impacts of injecting zinc and copper loaded in montmorillonite and their triazine
hydrazone complexes on the variables of serum antioxidant in the weaned V-line rabbits aged 12 weeks.

Antioxidant
Variables a

Type of Zn and Cu Supplementation b

SEM p-Value
Control Zn/CuSO4 Zn/Cu–Mnt Zn/Cu–Thz

MDA (nmol/mL) 19.82 a 18.07 a 20.18 a 12.67 b 1.51 0.013
GSH (µmol/mL) 4.75 b 4.70 b 5.89 b 7.14 a 0.80 0.045
CAT (µmol/mL) 18.18 b 12.86 c 17.44 bc 23.52 a 1.63 0.002

GSSG (µmol/mL) 0.50 0.45 0.46 0.44 0.03 0.642
SOD (Ul/µmL) 54.18 ab 48.32 b 51.64 b 63.64 a 3.51 0.039
AMP (µg/mL) 6.62 7.08 7.67 5.58 0.71 0.667

8-OHdG (pgl/mL) 73.72 72.54 87.56 77.65 4.96 0.172

All data are expressed as the mean with SEM in same row; a, b, c letters indicate significant differences between means
(p < 0.05). Rabbit sample/group n = 5. Zn/CuSO4: zinc and copper sulfate; Zn/Cu–Mnt: zinc and copper in loaded
montmorillonite; Zn/Cu–Thz: zinc and copper in hydrazone complexes; MDA: Malondialdehyde; ADP: Adenosine
monophosphate; GSH: reduced glutathione; GSSG: Oxidized glutathione; CAT: catalase; SOD: superoxide dismutase;
8-OHdG: 8-hydroxy-2’ –deoxyguanosine; AMP: Adenosine monophosphate.

3.4. Profile of Essential Amino Acids in the MLD Muscle

The results of muscle EAA profile as affected by injecting the growing V-line rabbits with Zn/CuSO4,
Zn/Cu–Mnt, and Zn/Cu–Thz are shown in Table 7. Compared to the controls, the muscle content of
arginine was lower in Zn/Cu–Mnt and Zn/Cu–Thz treatments, the histidine was lower in Zn/Cu–Thz
treatment, and the leucine content was lower in Zn/CuSO4 and Zn/Cu–Thz treatments. The muscle
content of the other AAs, in terms of alanine, aspartic, glycine, serine, isoleucine, lysine, threonine,
phenylalanine, tyrosine, and valine, in the tested treatments did not differ (p > 0.05) with the controls.

Table 7. Nutritional impacts of zinc and copper in loaded montmorillonite and their triazine hydrazone
complexes on the essential amino acid profile in MLD basis on dry matter of weaned V-line rabbit aged
12 weeks.

Amino Acid a
Type of Zn and Cu Supplementation b

SEM p-Value
Control Zn/CuSO4 Zn/Cu–Mnt Zn/Cu–Thz

Alanine 25.60 ab 27.15 a 22.46 b 25.12 ab 2.04 0.041
Arginine 19.45 a 17.68 ab 15.62 bc 13.74 c 0.77 0.001
Aspartic 7.79 7.91 7.04 6.96 0.45 0.343
Glycine 83.73 82.18 71.12 72.43 4.34 0.055

Serin 13.67 ab 14.52 a 11.76 b 11.52 b 0.79 0.048
Histidine 7.30 a 6.76 a 6.55 a 5.24 b 0.32 0.003
Isoleucine 7.96 8.88 8.31 8.06 0.33 0.247
Leucine 17.03 a 14.07 b 15.83 ab 14.15 b 1.81 0.050
Lysine 33.33 29.69 31.76 33.47 1.45 0.260

Threonine 3.04 3.09 2.27 2.95 0.14 0.406
Phenylalanine 14.78 16.56 14.81 14.92 0.69 0.243

Tyrosine 14.87 14.24 13.50 14.28 0.63 0.516
Valine 15.80 16.54 16.35 16.18 0.82 0.972

a Muscle amino acids content per mmol/g tissue; b all data are expressed as the mean with SEM in same row;
a, b, c letters indicate significant differences between means (p < 0.05). Rabbit sample/group, n = 5. Zn/CuSO4:
zinc and copper sulfate; Zn/Cu–Mnt: zinc and copper in loaded montmorillonite; Zn/Cu–Thz: zinc and copper in
hydrazone complexes.
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3.5. Villus Morphology and Morphometry

The effects of Cu/ZnSO4, Cu/Zn–Mnt, and Cu/Zn–Thz injection on the rabbit villi morphology
and morphometry are shown in Figure 3a,b. The results indicated that the villus length (p < 0.01), the
lamina diameter (p < 0.05), and the villus width (p < 0.05) in the treatments were higher than in the
controls, whereas the diameter of tunica muscularis was not affected by the treatment (p > 0.05).

Figure 3. (a) Effect of Cu/ZnSO4, Cu/Zn–Mnt, and Cu/Zn–Thz on the intestinal morphology of weaned
rabbits. (b) Morphometric analysis of villi length, lamina propria, villi width, and tunica muscularis
diameter. The a, b, and c letters indicate significant differences between means at p < 0.05. Scale bar =

50 and 100 µm; rabbit/group, n = 5. Zn/CuSO4: zinc and copper sulfate; Zn/Cu–Mnt: zinc and copper
in loaded montmorillonite; Zn/Cu–Thz: zinc and copper in hydrazone complexes.

3.6. Growth Factors and Cytokine Genes Expression

As shown in Figure 4, the relative mRNA expression in the tissues of liver and spleen in the
Zn/Cu–Mnt and Zn/Cu–Thz treatments was significantly high compared with those of Cu/ZnSO4 and
control. The highest liver mRNA expressions for IGF-1, FGF1, TGFB1, and TCIRG1 were observed in
the Zn/Cu–Thz group, whereas the highest spleen mRNA expression for IGF-1, FGF1, TCIRG1, TGFB1,
and ADA were obtained in the Zn/Cu–Mnt treatment.
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Figure 4. The qRT-PCR validation of mRNA expression for IGF-1, GHR, FGF1, TGFB1, TCIRG1, IL10,
and ADA in liver and spleen tissue among groups of control, Zn/CuSO4, Zn/Cu–Mnt, and Zn/Cu–Thz.
IGF-1: insulin like growth factor 1, GHR: growth hormone receptor, FGF1: fibroblast growth factor 1,
TGFB1: transforming growth factor beta-1, TCIRG1: T-cell immune regulator 1, IL10: interleukin 10,
ADA: adenosine deaminase. cDNA samples, liver/group (n = 5) and spleen/group (n = 5).

4. Discussion

Zn and Cu are very important for biosynthesis of more than 200 metalloenzymes and co-factors in
many enzymes, regulating the physiological functions maintaining healthy and productive eukaryotic
cells [30–32]. The use of inorganic sources of trace minerals in animal feed, currently, is cause for
environmental concern, and these inorganic sources of trace minerals have poor availability in the
intestinal tract due to the interaction with other minerals [33,34]. In the present study, in contrast, the
supplementation with an organic source of Zn/Cu in the form of triazine hydrazone displayed a higher
final BW and ADG than those of the inorganic forms (sulfate and montmorillonite). A previous study,
compared between the efficiency of organic and inorganic resources of trace minerals, indicated that
the higher mineral bioavailability was observed with the organic source compared to the inorganic
ones [1–3,33]. Likewise, there was considerable digestion and absorption of minerals with a nutritional
organic source of trace minerals (zinc, copper, manganese, iron, calcium, and phosphorus) compared to
an inorganic source in pigs [34]. To our knowledge, there have been several reports that showed varied
responses of animals supplemented with Zn and Cu from different sources [1–3,35,36], but the triazine
hydrazone complexes had not been investigated yet. Our findings, therefore, could contribute a new
potential organic complex of trace minerals that would facilitate the research of the growth-promoting
products and develop some novel pharmacological drugs.

The increase in growth rate obtained here with the new complexes goes in harmony with the results
of villus morphology and morphometry, which were better than the controls. Supporting results were
reported, where using different organic sources of trace minerals, including Zn and Cu, improved the
villus length, villus width, and crypt depth in broiler chickens [37,38] and weaned rabbits [39] than the
inorganic forms. Zinc is known to have an important function in cell proliferation and differentiation,
especially in the regulation of DNA synthesis and mitosis [40]. In rats, Southon et al. [41] found that
the Zn deficiency caused a significant reduction in jejunal villus height, whereas Zn supplementation
returned the normal morphology within a short period. These results imply that the tested complexes
with improved villus morphology and growth rate had more available Zn and Cu in their intestines.

In our study, to improve the effectiveness of Zn and Cu, the Mnt was suggested as a
controlled-release carrier for Cu and Zn delivery; particularly, Mnt has been utilized as an effective drug
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delivery carrier for sustained release of bioactive molecules, drugs, and nutrients [42,43]. Both metals
here (Zn and Cu) were loaded onto Mnt through ion-exchange reactions. Moreover, the novel organic
ligand (Thz) was successfully synthesized through the reaction of a hydrazino-triazine derivative and
a substituted salicylaldehyde (Scheme 1). Its chemical structure was correctly confirmed from 1H and
13C NMR spectra. Two new complexes with zinc and copper (Zn–Thz and Cu–Thz) were synthesized
by refluxing the ligand with equimolar amounts of metal acetate in methanol (mixed before injection)
for an appropriate time (Scheme 2).

The results here indicate that the injection of three Zn/Cu sources, Cu/ZnSO4, Zn/Cu–Mnt, and
Zn/Cu–Thz, upregulated the expression of genes intended for growth and their enhancing effect
on performance of weaning rabbits; the responses were significant, with few exceptions. The liver,
in particular, is the major storage organ of Cu and Zn, and the stored Cu is largely bound to the
metallothionein in most species, which have the capacity to bind both physiological (such as zinc,
copper, and selenium) and xenobiotic (such as cadmium, mercury, silver, and arsenic) heavy metals
through the thiol group of its cysteine residues [44,45]. The blood biochemical variables of calves were
improved under Zn and Cu administration [6,46].

The obtained results in the present study showed that the relative mRNA expression for the
peptide growth factors of IGF-1, GHR, FGF1, TGF1, and TCIRG1 in the Zn/Cu–Thz treatment was
higher than those in the other treatments, which implies an enhanced bioavailability of Zn and Cu.
The peptide growth factors play an important role in several intracellular processes, such as cellular
growth and differentiation, angiogenesis, and carcass quality [47–49], enhancing their expression due
zinc administration [50–52]. Cu and Zn were higher provided from the triazine hydrazone, as liver Cu
and Zn were greater with supplementation with Zn/Cu–Thz compared to those in the other treatments,
but plasma Cu and Zn levels were not affected by the treatment. This observation suggests greater
availability of Zn/Cu with the complex Zn/Cu–Thz, which could be attributed to the high utilization
rate in enhancing the growth performance and deposition rate in the animal tissues and carcass weight
obtained in this treatment.

The current study recorded pHU values of intermediate range compare to the results by [53].
Meat quality attributes, including WHC, drip loss, shear force, and carcass color, are always impacted
by pH level [54]. Statistically, the pHU and WHC were not significantly influenced by combined Zn/Cu
complexes, yet WHC values were still higher in the tested treatments than in the control. This was
partially in accordance with the results of [55], who used different dietary Zn and Cu forms in poultry.
Additionally, drip loss24h and drip loss48h percentages generated from supplemented rabbits were close
to those in the controls and seems to be rather constant (p > 0.05). Supporting results were reported by
Liu, et al. [56], who used Zn in broilers. Moreover, cooking-loss percentages negatively increased by
Zn/CuSO4 than in the controls (p < 0.05). In contrast, the Zn/Cu–Mnt and Zn/Cu–Thz treatments here,
as well as those in previous studies, which tested various complexes of Zn, positively reduced the
cooking loss [57]. In terms of meat tenderness, no differences between treatments were observed, but
Zn/Cu–Mnt produced higher WBSF value than in other treatments (p < 0.05), which mean tougher
meat. In addition, Zn/Cu–Mnt lowered the meat lightness, yellowness, and color saturation of MLD
than their controls (p < 0.05), which implies darker meat. Meanwhile, the Zn/CuSO4 and Zn/Cu–Thz
injections did not influence any of the meat color scores, compared to the controls; and this is consistent
with the results of Yang et al. [57] in broilers’ meat. In the present study, the APC and Staphylococcus
count (CFU/g), similarly, did not differ (p ≥ 0.05) due to parenteral supplementation with Zn/CuSO4,
Zn/Cu–Mnt, and Zn/Cu–Thz in respect to the control group (Table 5).

In the current study, injected rabbits with Zn/Cu–Thz showed lower serum MDA concentrations
than those injected with Zn/CuSO4 and Zn/Cu–Mnt, as well as in the control group (Table 6). The
serum concentration MDA is a generally indicator of the lipid peroxidation activity in cells. On the
other hand, the highest activities of GSH, CAT, and SOD were observed with serum of Zn/Cu–Thz
group, which generally thought to act as enzymatic free-radical scavengers in cells, dissipating of
O2 to H2O2 and oxygen and then scavenge H2O2 from cells for removing reactive oxygen species
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(ROS). Antioxidant enzymes function as a defensive system against deleterious free radicals in cells, to
enhance immunity, health, and growth response, consistent with the results reported by Sahin et al. [58].
Therefore, the high weight gain in the Zn/Cu–Thz group led to a decrease in some amino acid content in
MLD (Table 7). In addition, alanine, arginine, glycine, serine, and histidine decreased in the Zn/Cu–Thz
group compared to the control group, which may be consistent at a low concentration of dry matter in
MLD with weight-gain activity [59].

5. Conclusions

Parenteral supplementation of growing V-line rabbits with Zn/Cu complexes, regardless of the
source, did not negatively affect meat quality traits compared to the controls. Additionally, the results
indicated that our novel synthesized Zn/Cu complexes loaded onto triazine hydrazone could be a
suitable feed supplement to increase productive performance activities through enhancing villus
morphology and expression of peptide growth factors and cytokine genes.
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