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Simple Summary: We estimated genetic parameters and conducted genomic prediction for five types
of sperm morphology abnormalities in a large Duroc boar population. Results reflect that the studied
traits showed moderate to low heritability and moderate to high repeatability. Both genomic best linear
unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) showed comparative predictive
abilities, and ssGBLUP outperformed GBLUP under many circumstances. To our knowledge, this is
the first time that the genetic parameters and genomic predictive ability of sperm morphology
abnormalities were reported in such a large Duroc boar population.

Abstract: Artificial insemination (AI) has been used globally as a routine technology in the swine
production industry. However, genetic parameters and genomic prediction accuracy of semen
traits have seldom been reported. In this study, we estimated genetic parameters and conducted
genomic prediction for five types of sperm morphology abnormalities in a large Duroc boar
population. The estimated heritability of the studied traits ranged from 0.029 to 0.295. In the
random cross-validation scenario, the predictive ability ranged from 0.212 to 0.417 for genomic best
linear unbiased prediction (GBLUP) and from 0.249 to 0.565 for single-step GBLUP (ssGBLUP). In the
forward prediction scenario, the predictive ability ranged from 0.069 to 0.389 for GBLUP and from
0.085 to 0.483 for ssGBLUP. In conclusion, the studied sperm morphology abnormalities showed
moderate to low heritability. Both GBLUP and ssGBLUP showed comparative predictive abilities
of breeding values, and ssGBLUP outperformed GBLUP under many circumstances in respect to
predictive ability. To our knowledge, this is the first time that the genetic parameters and genomic
predictive ability of these traits were reported in such a large Duroc boar population.

Keywords: Duroc boars; genetic parameters; genomic prediction; single-step GBLUP;
sperm morphology abnormalities

1. Introduction

Genomic prediction (GP) [1], also termed genomic selection in the fields of animal and plant
breeding, has advantages in precisely predicting genetic values, phenotypic values, and disease risks
by integrating dense genetic marker panels into prediction models. The basic idea of GP is to trace the
effects of all quantitative trait loci (QTL) using dense genomic markers that are in linkage disequilibrium
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(LD) with the neighbor candidate QTL. Total genetic values can be obtained by summing the effects of
all markers [1] or solving mixed model equations (MMEs) with a marker-derived relationship matrix
as a covariance matrix [2]. Currently, many methods for either marker effect estimation [1,3,4] or direct
genetic value prediction [2,5–7] have been established. Among the previously proposed GP approaches,
single-step genomic best linear unbiased prediction (ssGBLUP) [5,6] is preferable for genetic evaluation
in populations with large numbers of phenotyped individuals but few genotyped individuals, especially
in the breeding programs of domesticated animals. The estimated breeding values (EBVs) are calculated
by solving MMEs with H (a blend of both pedigree- and genetic-marker-derived relationship matrices)
as a relatedness matrix. The ssGBLUP approach has been used in the genetic evaluation of pigs [8,9],
dairy cattle [10,11], dairy goats [12], and beef cattle [13]. Previous studies have shown that ssGBLUP is
perceived to be better or at least comparable in performance to conventional BLUP and the standard
GBLUP in respect to predictive ability.

Artificial insemination (AI) has been used globally as a routine technology in the swine production
industry. The advantages of elite boars can be disseminated in larger populations rapidly through
the implementation of AI. Production of high-quality semen (in terms of boar genetic merits, sperm
motility, number of sperm cells per ejaculate, etc.) is essential to guarantee good AI results. Duroc
boars have been used as a terminal sire breed in most commercial pig production systems. However,
due to small single-boar populations and difficulties in obtaining large-scale measurements of these
traits, the genetic parameters and genomic prediction accuracy of economically important semen traits
have seldom been reported. Previously, it has been reported that the heritability of boar semen traits is
moderate to low [14,15], suggesting the possibility of conducting genetic improvement programs on
these traits. Among the usual semen parameters, the proportion of sperm morphology abnormalities
(ABN) is a key factor that affects semen quality and fertility. However, the routine assessment of
semen morphology abnormalities as a whole may be inadequate for sperm quality evaluation [16].
Using the UltiMateTM CASA system (Hamilton Thorne Inc., Beverly, MA, USA), different types of
morphology abnormalities (for detailed definitions, refer to the Materials and Methods section) can be
distinguished. Genetic analysis by treating the subtypes as different traits may provide insight into
how these abnormalities contribute to sperm quality and fertility.

In this study, we estimated genetic parameters and conducted genomic prediction for five types
of sperm morphology abnormalities in a large Duroc boar population. Random cross-validation and
forward prediction scenarios were designed to assess the predictive ability or EBV reliability of GBLUP
and ssGBLUP. Furthermore, the predictive performance of ssGBLUP was compared to GBLUP.

2. Materials and Methods

2.1. Ethics Statements

This study was carried out in accordance with the principles of the Basel Declaration and
recommendations of the Institutional Animal Care and Use Committee of Foshan University.
The protocol was approved by the Institutional Animal Care and Use Committee of Foshan University.

2.2. Phenotypes, Genotypes, and Pedigree

The Duroc boar population used in this study was kept in the AI station of Guangxi Yangxiang Co.,
Ltd., Guigang, China, which is one of the largest boar AI stations in the world. The dataset consisted
of 5284 pigs, which can be traced back to 12 generations in the pedigree. Fresh semen of 2693 boars
collected from 2015 to 2018 was evaluated using the UltiMateTM CASA system (Hamilton Thorne
Inc., Beverly, MA, USA). After ejaculation, 10 µL of fresh semen was diluted 10–30 times (based on the
sensory concentration) with a special diluent and 1 µL of the diluted semen was used for evaluation.
Among the phenotyped boars, 29,526 observations of morphology abnormality traits for 1304 boars
were available and used in this study (Table 1).
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Table 1. Descriptive statistics of sperm morphology abnormalities in the Duroc boar population.

Traits 1 #obs. 2 #indiv 3 Min. Mean Max. SD CV (%)

CT (%) 29,526 1304 0 0.15 5.3 0.24 162.22
BT (%) 29,526 1304 0 2.41 48 2.12 88.17
PD (%) 29,526 1304 0 4.94 41.7 3.07 62.12
DD (%) 29,526 1304 0 7.25 50.4 4.77 65.73

DMR (%) 28,973 1232 0.10 2.82 38.1 2.58 91.22
1 CT: Coiled tail; BT: Bent tail; PD: Proximal droplet; DD: Distal droplet; DMR: Distal midpiece reflex. 2 The number
of phenotypic observations, #. denotes “the number of individuals”. 3 The number of boars with phenotypic records.

The definitions of the five types of sperm morphology abnormalities are described in the CASA
system as below:

• PD: Proximal droplet—a droplet of cytoplasm attached to the base of the head where the
midpiece emerges.

• DD: Distal droplet—a cytoplasmic droplet attached further down the midpiece/tail from the base
of the head. If the droplet is located at more than 4 µm from the base of the head, the droplet is
defined as distal. It may indicate an immature sperm and is considered a defect.

• BT: Bent tail—the bending rate of the tail exceeds 20◦/µm.
• CT: Coiled tail—the tail bends 180◦ or more over its length.
• DMR: Distal midpiece reflex—the tail is wrapped around a distal cytoplasmic droplet, typically at

the end of the midpiece (close to 4 µm from the end base of the sperm head), and the tail returns
to the sperm head, usually becoming visible at the top of the head.

DNA was extracted from a total of 1733 pigs (fresh semen of boars and ear tissues of sows) using
genome extraction kits (Wuhan NanoMagBio Technology Co., Ltd., Wuhan, China) and genotyped
using the GGP 50k SNP array (GeneSeek, Lincoln, NE, USA), which contains 50,703 SNPs in total.
Genotypic data were filtered using Plink software [17] for an individual call rate of ≥90%, an SNP call
rate of ≥90%, a minor allele frequency (MAF) of ≥0.01, and a Hardy–Weinberg equilibrium p-value of
≥10−5. After quality control, 1623 individuals with 36,254 SNPs remained for further analysis. Among
the genotyped boars, 1231 had phenotypic data.

Missing genotypes were simply treated as heterozygotes since the SNPs of unknown physical
position were not removed from the dataset, which made LD-based imputation difficult. Considering the
low proportion of missing genotypes (0.14%) and the number of markers of unknown physical position
(7144), the strategy used in this study may be preferable compared with removing position-unknown
SNPs and imputing the missing genotypes.

2.3. Statistical Model

In this study, the single-trait repeatability model used was as follows:

y = Xb + Za + Wp + Age + Intv + e

where y is a vector of phenotypic records; X, Z, and W are incidence matrices associated with b, a, and p,
respectively; b is a fixed-effect vector (combining the year and season of ejaculation); a~N (0, Kσa

2) is a
vector of the individual additive genetic values; K is the relatedness matrix (H, G, or A matrices); σa

2

is the additive genetic variance; p~N(0, Iσp
2) is a vector of random permanent environmental effects

for each individual; I is the identity matrix; σp
2 is the variance of permanent environmental effects;

covariates Age and Intv are the age of the boar in months at the time of ejaculation and collection
interval (days), respectively; e~N(0, Iσe

2) is a vector of residuals; and σe
2 is the residual variance.

The relationship matrices used in different methods are defined as follows:
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BLUP: The conventional BLUP [18] model was fitted to obtain the breeding values, which were used
for calculating the de-regressed proofs (DRPs) for assessing predictive ability. The pedigree-derived
relationship matrix A was used as covariance.

GBLUP: In the standard GBLUP [2], the relatedness matrix was constructed as
K = G = ZZ’/

∑m
i = 12pi(1 − pi), where Z is a MAF-adjusted genotype matrix (0–2p, 1–2p, and

2–2p represents AA, Aa, and aa, respectively), pi is the MAF of the ith SNP, and m is the total number
of SNPs.

ssGBLUP: The inverse of the relatedness matrix H, using both pedigree and genetic markers [5,6],
can be obtained as follows:

K−1 = H−1 = A−1 +

[
0 0
0 G−1

ω −A−1
22

]
where A is the pedigree-based additive genetic relationship matrix, A22 is a submatrix of A for the
genotyped individuals, and Gw = 0.9G + 0.1A22, the weights were the same as our recent paper [19].

2.4. Estimation of Genetic Parameters

The variance components were estimated from the full dataset via the same model as Equation (1)
using average information restricted maximum likelihood (AI-REML) [20]. The variance component
estimation was conducted using the ASReml-R package (VSN International, https://www.vsni.co.uk/).
We additionally estimated the genetic correlations among the traits using a multitrait model, where the
model is similar to Model (1) except that the response variable was replaced with an n × t matrix (n
and t are the number of observations and traits, respectively).

2.5. Assessment of Genomic Predictive Ability

The breeding value estimations described in this section were performed using the BLUPF90
software family [21].

DRPs: In order to assess predictive ability, DRPs with the removal of the parental average (PA) for
all individuals in the pedigree (with the exception of parents-unknown individuals) were calculated
as described by Garrick et al. [22]. A BLUP model based on Equation (1) with a pedigree-derived
numerator relationship matrix as a covariance matrix was solved to obtain the conventional breeding
values, which were then converted into DRPs [8,22].

Cross-validation: We designed a 5-fold cross-validation to assess the predictive ability of GBLUP
and ssGBLUP. In order to ensure comparability between GBLUP and ssGBLUP, only genotyped
individuals were included in the test sets. The genotyped individuals were randomly divided into
five groups, and each group was treated as a test set once. For GBLUP, the remaining four groups of
genotyped individuals were used as training sets. For ssGBLUP, all individuals in the pedigree except
those in the test set were used as a training set. The predictive ability was calculated as the Pearson’s
correlation between the DRP and the predicted genetic values in the test set. The cross-validation
(random grouping among the genotyped individuals and prediction) was repeated 20 times.

Forward prediction: In real pig breeding programs, historical records are used to predict genetic
values of newly born individuals. Therefore, a forward prediction was designed to assess the predictive
ability of different models to mimic the real pig breeding situation. In this scenario, boars from the first
to ninth generations were treated as a training set and used to fit the prediction model. Boars from the
10th and 11th generations were treated as a test set and used to validate the model. Table 2 shows the
data structure in the forward prediction scenario. Predictive ability was calculated as the Pearson’s
correlation between the DRP and the predicted genetic values in the individuals from the 10th and
11th generations. In order to directly compare the EBVs estimated by GBLUP and ssGBLUP, scatter
plots of EBVs for individuals from the 10th and 11th generations were additionally drawn.

https://www.vsni.co.uk/
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Table 2. Data structure of the training and test population in the forward prediction scenario. Boars
from the 1st to 9th and the 10th to 11th generations were treated as training and test groups, respectively.

Dataset #. Pedigree 1 #. Genotypes 2 #. Phenotypes 3 #. Pheno & Geno 4

Training 4256 1247 1012 657
Test 1028 376 292 172

1 The number of pigs in the pedigree, #. denotes “the number of individuals”. 2 The number of pigs with
genotypes. 3 The number of boars with phenotypic records. 4 The number of boars with both phenotypic records
and genotypic data.

3. Results

The estimated variance components, heritability, and repeatability are shown in Table 3.
The estimated heritability (repeatability) values of the traits coiled tail (CT), bent tail (BT), proximal
droplet (PD), distal droplet (DD), and distal midpiece reflex (DMR) were 0.029 (0.113), 0.138 (0.298),
0.244 (0.550), 0.295 (0.468), and 0.267 (0.599), respectively. The studied traits showed moderate to
low heritability and moderate to high repeatability. Positive correlations between the studied traits,
ranging from 0.052 (between PD and DMR) to 0.955 (between BT and CT), were observed (Table 4).

Table 3. Genetic parameters for five types of sperm morphology abnormalities estimated by a single-trait
linear mixed model in the Duroc boar population.

Traits 1 σa
2 σp

2 σe
2 h 2 (SE) r (SE)

CT 0.0016 0.0047 0.0494 0.0287 (0.0106) 0.1133 (0.0068)
BT 0.5960 0.6929 3.0432 0.1376 (0.0299) 0.2975 (0.0123)
PD 2.5734 3.2141 4.7412 0.2444 (0.0453) 0.5497 (0.0131)
DD 7.2729 4.2530 13.1157 0.2951 (0.0453) 0.4677 (0.0147)

DMR 2.2786 2.8257 3.4195 0.2673 (0.0481) 0.5988 (0.0127)
1 CT: Coiled tail; BT: Bent tail; PD: Proximal droplet; DD: Distal droplet; DMR: Distal midpiece reflex; σa

2: additive
genetic variance; σp

2: permanent environmental variance; σe
2: residual variance; h2: heritability; r: repeatability;

SE: standard error.

Table 4. Genetic correlation (upper triangle), covariance (lower triangle), and heritability (diagonal)
of sperm morphology abnormalities estimated by a five-trait linear mixed model in the Duroc boar
population (estimate (SE)).

Traits 1 CT BT PD DD DMR

CT 0.036 (0.011) 0.955 (0.027) 0.329 (0.158) 0.207 (0.161) 0.403 (0.159)
BT 0.033 (0.009) 0.134 (0.029) 0.325 (0.134) 0.305 (0.131) 0.378 (0.134)
PD 0.023 (0.014) 0.394 (0.199) 0.239 (0.045) 0.607 (0.091) 0.052 (0.142)
DD 0.025 (0.020) 0.631 (0.301) 2.609 (0.639) 0.297 (0.045) 0.207 (0.123)

DMR 0.027 (0.012) 0.434 (0.181) 0.124 (0.345) 0.845 (0.550) 0.264 (0.048)
1 CT: Coiled tail; BT: Bent tail; PD: Proximal droplet; DD: Distal droplet; DMR: Distal midpiece reflex.

In the random cross-validation scenario, ssGBLUP outperformed GBLUP for all traits in respect to
predictive ability (Table 5). The correlations between EBVs from GBLUP (ssGBLUP) and de-regressed
proofs were 0.212 (0.249), 0.373 (0.439), 0.330 (0.565), 0.386 (0.507), and 0.417 (0.561) for the traits CT,
BT, PD, DD, and DMR, respectively. On average, the predictive ability was improved from 0.344
(ranging from 0.212 to 0.417) to 0.464 (ranging from 0.249 to 0.565) when comparing GBLUP to ssGBLUP.
The predictive ability of ssGBLUP was improved by 17.45%, 17.69%, 71.21%, 31.35%, and 34.53% (with
an average of 35.10%) for the coiled tail, bent tail, proximal droplet, distal droplet, and distal midpiece
reflex, respectively, compared with GBLUP.
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Table 5. Predictive abilities for sperm morphology abnormalities in the Duroc boar population.

Traits 1
Cross-Validation Forward Prediction

GBLUP ssGBLUP GBLUP ssGBLUP

CT 0.212 ± 0.004 0.249 ± 0.004 0.069 0.085
BT 0.373 ± 0.003 0.439 ± 0.003 0.311 0.311
PD 0.330 ± 0.003 0.565 ± 0.002 0.250 0.311
DD 0.386 ± 0.003 0.507 ± 0.002 0.389 0.442

DMR 0.417 ± 0.003 0.561 ± 0.002 0.344 0.483
Average 0.344 0.464 0.273 0.326

1 CT: Coiled tail; BT: Bent tail; PD: Proximal droplet; DD: Distal droplet; DMR: Distal midpiece reflex; GBLUP:
genomic best linear unbiased prediction; ssGBLUP: single-step GBLUP.

In the forward prediction scenario, ssGBLUP outperformed GBLUP in four out of five traits,
with the exception of the bent tail, for which the predictive ability of ssGBLUP was similar to that of
GBLUP (Table 5). The correlations between EBVs from GBLUP (ssGBLUP) and de-regressed proofs
were 0.069 (0.085), 0.311 (0.311), 0.250 (0.311), 0.389 (0.442), and 0.344 (0.483) for the traits CT, BT, PD,
DD, and DMR, respectively. On average, the predictive ability was improved from 0.273 (ranging from
0.069 to 0.389) to 0.326 (ranging from 0.085 to 0.483) when comparing GBLUP to ssGBLUP. For the
traits coiled tail, proximal droplet, distal droplet, and distal midpiece reflex, the predictive abilities of
GBLUP were improved by 23.19%, 24.40%, 13.62%, and 40.41%, respectively, compared with ssGBLUP.

Figure 1 shows the correlations of estimated breeding values of the test set in the forward prediction.
Overall, the correlations increased when comparing EBV versus GEBV to EBV versus ssGEBV and
increased when comparing EBV versus ssGEBV to GEBV versus ssGEBV as well. The correlations of
EBV versus GEBV, EBV versus ssGEBV, and GEBV versus ssGEBV ranged from 0.409 to 0.647, 0.661 to
0.842, and 0.774 to 0.942, respectively (Figure 1).
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4. Discussion

In the pork industry, production of high-quality semen depends on different factors including
appropriate nutrition, a comfortable environment, good air quality, sufficient movement, and so
forth [23]. However, the selection of boars with better genetic backgrounds and semen production
management is important to ensure long-term genetic and economic benefits [23,24]. Using low-dose
insemination technology [25], the genetic merits of selected elite boars can be rapidly disseminated to
large populations. In addition, studies have shown that boar semen traits are heritable, with moderate
to low heritability, suggesting that these traits can be genetically improved [14,15]. Currently, dense
markers covering the whole genome can be obtained at an acceptable price. Development of novel
genomic selection approaches and software has provided a number of opportunities and tools that can
be used to implement genomic selection and accelerate genetic improvement of boar semen traits.

We estimated the genetic parameters of five types of sperm morphology abnormalities in a large
Duroc boar population. The results showed that the traits were all heritable, though moderate to
low heritability was observed (Table 3). The heritability estimates in this study were in the same
scale as that for other semen traits in large White and Landrace boars [14,15] and fit well with the
usual knowledge regarding the heritability of pig reproductivity traits [26]. These results reflect the
complex underlying polygenic background of the studied traits and indicate the possibility of genetic
improvement of these traits by selection based on BLUP models.

The accuracy of the genetic evaluation of sperm morphology abnormalities was further investigated
by integrating pedigree, genetic markers, and phenotypic records simultaneously. The ssGBLUP
was implemented for the genetic evaluation of the studied sperm morphology abnormalities,
with comparison to GBLUP. DRP was calculated and used to evaluate the predictive ability, but it was
not used as a response variable in the prediction model. The raw phenotypic records were used as
the response variables and the full model was used as the prediction model, which was based on the
consideration that using DRP as the response variable, followed by a simple prediction model (for
instance, y = u + g + e), may lead to loss of information. The results of this study showed that the
predictive ability of ssGBLUP was acceptable and reliable in both the random cross-validation and
forward prediction scenarios and was comparable to the predictive ability obtained in a previous study
on piglets born alive [8]. Compared with GBLUP, the predictive ability of ssGBLUP was better.

A simple method was used to blend the pedigree-derived relationship matrix and the
marker-derived relationship matrix to construct the H matrix (i.e., Gw = 0.9G + 0.1A22). However,
an alternative parameter setting, such as a grid search [27], could be used to obtain better predictive
ability. In addition, weighted ssGBLUP [28] should also be considered in future studies to account for
the locus-specific or genomic-window-specific variances [29] and thus gain better predictive accuracy
using trait-specific prediction models. Previous studies have reported the superiority of weighted
ssGBLUP using both simulations [28] and dairy goat data [12,30] with respect to the predictive accuracy.
Moreover, under the framework of weighted ssGBLUP, marker weights can be assigned according to
preidentified QTL regions [7] or tightly associated markers [31]. In addition, the simple weighting
approach used in this study provided preferable or at least comparable predictive ability with regard
to the traits that were studied.

5. Conclusions

In conclusion, the sperm morphology abnormality traits included in this study have low
to moderate heritability. Both GBLUP and ssGBLUP showed comparative predictive abilities,
and ssGBLUP outperformed GBLUP under many circumstances. To our knowledge, this is the
first time that the genetic parameters and genomic predictive ability of these semen traits were reported
in such a large Duroc boar population.
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