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Simple Summary: Clostridium butyricum (C. butyricum) is a Gram-positive obligate anaerobic bacillus
with strong heat resistance, acid resistance, and bile-salt tolerance, which lays a foundation for its
application in the feed industry. Previous studies have demonstrated that C. butyricum plays a
significant role in regulating the intestinal health of weaned piglets. In general, C. butyricum promotes
intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune
barrier, and microbial barrier of piglets.

Abstract: China, as the global leader in pork production and consumption, is faced with challenges
in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat
food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies
in guaranteeing piglet health and enhancing overall production performance through nutrition
regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics
such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed
additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets
and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic
role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function.
Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective
of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of
the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby
improving the growth of piglets. This review can provide a reference for the rational utilization and
application of C. butyricum in swine production.

Keywords: Clostridium butyricum; intestinal barrier function; intestinal microorganisms; intestinal
immunity; weaned piglets

1. Introduction

The animal intestinal tract acts as a protective barrier, allowing for the absorption of
nutrients while safeguarding the body against harmful chemicals from both internal and
external sources [1–3]. The integrity of the intestinal barrier is essential for the digestion
and absorption of nutrients, playing a vital role in maintaining animal health. However,
in swine production, various factors such as weaning stress [4], heat stress [5], pathogen
infection [6], mycotoxin [7], lipopolysaccharide [8], and diquat [9] can cause damage to
the intestinal mucosa and disrupt intestinal mucosal homeostasis, negatively impacting
animal growth and development. Traditionally, antibiotics have been used in animal feed
as growth and health promoters, but they have had serious detrimental effects on human
health and environmental safety [10,11]. As a result, many countries, including China, have
prohibited the use of antibiotics in animal feed. Therefore, finding antibiotic alternatives
that are safe and pose no potential threats has become a major concern in the field of animal
nutrition [12–15].
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Probiotics are living bacteria with physiological activity. Numerous in vivo and
in vitro studies have confirmed that probiotics can improve the balance of microbes in
the intestinal environment, enhance immune function, and benefit intestinal morphol-
ogy [16–22]. In all of these studies, Clostridium butyricum (C. butyricum) has been identified
as an effective probiotic that promotes animal growth and maintains intestinal barrier
function [20,23–29]. C. butyricum, also known as Clostridium tyrosine, is a Gram-positive
obligate anaerobic bacillus first isolated from pig intestines in 1880 by Prazmowski. It is a
common gut commensal bacterium in humans and animals and can be found in soils and
healthy intestines [30,31]. C. butyricum can produce butyric acid, which plays a crucial role
in energy metabolism and the development of normal intestinal epithelial cells [32]. Due to
its resistance to low pH, high temperature, and high bile-salt concentrations, C. butyricum
has potential as a feed additive [33,34]. The use of C. butyricum as probiotics in swine has
been gaining attention for its ability to produce short-chain fatty acids (SCFAs), amino
acids, enzymes, and vitamins [35,36], which can improve the growth performance, feed
efficiency, antioxidant capability, immune function, and intestinal microflora balance of
pigs [20,26–28,37]. While studies on the effects of C. butyricum on the growth and gut health
of piglets are scattered, few have aggregated these findings into a single review. This study
aims to review the probiotic role of C. butyricum in piglet production, specifically focusing
on intestinal barrier function, to provide guidance on the proper utilization and application
of C. butyricum in swine production.

2. Clostridium butyricum and Intestinal Physical Barrier
2.1. Clostridium butyricum Promotes Intestinal Development

The exchange of gases and nutrients between the body and the external environ-
ment is crucially facilitated by the intestinal tract, which additionally assumes the task
of digesting and absorbing nutrients while functioning as a selective barrier to prevent
harmful substances from entering the body [2,38]. In practical production, piglets often
face numerous stressors, including the challenges of weaning and the detrimental effects
of oxidative reactions, which can result in structural damage to the intestinal mucosa and
impair intestinal barrier function [4,39]. As a result, piglets may exhibit decreased feed
consumption, reduced daily weight gain, and an increased risk of diarrhea, even leading to
mortality in serious cases [40,41]. Therefore, it is imperative to uphold the well-being of the
intestinal tract to ensure optimal health and productivity for these animals.

Weaning is a crucial stage for piglets but can also cause weaning stress because of
dietary changes, environmental adjustments, and other factors. Weaning stress can lead
to intestinal mucosa atrophy, cell apoptosis, and significant impacts on the intestinal
morphology of piglets [42–44]. Measurements of crypt depth (CD), villus height (VH),
and the VH-to-CD ratio (VCR) are important indicators of intestinal growth and func-
tion [45,46]. Previous studies have shown that the dietary inclusion of C. butyricum can
enhance intestinal morphology and structure, improve intestinal development, and subse-
quently improve the intestinal absorption and digestion functions of piglets [47–49]. For
example, Wang et al. [50] observed that piglets fed with 6 × 109 CFU/kg C. butyricum
had a significantly increased jejunal VCR compared to control piglets when challenged
with lipopolysaccharide (LPS). Wang et al. [51] found that piglets fed with C. butyricum
(6 × 109 CFU/kg) had a significantly increased jejunal VH and VCR and a decreased je-
junal CD compared with control piglets. Li et al. [33] showed that diets supplemented
with 5 × 105 CFU/g C. butyricum significantly reduced intestinal CD and increased the
VCR of piglets challenged by enterotoxigenic Escherichia coli (ETEC) K88, indicating that
C. butyricum was beneficial to intestinal health. Furthermore, Wu et al. [37] confirmed
that feeding piglets a diet with 1.44 × 109 CFU/kg C. butyricum SLZX19-05 resulted in a
significant increase in the VH and VCR, as well as a decrease in CD in the jejunum and
ileum of piglets.

In conclusion, research has demonstrated that C. butyricum has a positive impact on
the intestinal development of piglets by enhancing intestinal morphology and structure.
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This suggests that the inclusion of C. butyricum in the diet of piglets may be beneficial for
their overall health and productivity.

2.2. Clostridium butyricum Reduces Intestinal Permeability

The intestinal tract is an essential organ that responds to external stimulation. Stressful
conditions, such as weaning stress and infections, can cause intestinal mucosal atrophy,
deeper crypts, heightened apoptosis of intestinal mucosal epithelial cells, and increased
intestinal permeability [43,52,53]. Intestinal permeability is an important indicator that
reflects the intestinal integrity of animals. Increased intestinal permeability allows antigenic
compounds to pass the intestinal mucosal barrier, enabling pathogenic bacteria and poisons
to translocate and weaken the intestinal barrier function [43,54]. Endotoxins, diamine
oxidase (DAO), and D-lactic acid levels in the blood are commonly used to assess intestinal
permeability, which could directly indicate the degree of intestinal epithelial mucosa dam-
age [48]. Therefore, higher levels of endotoxin, D-lactic acid, and DAO in the blood indicate
increased intestinal permeability. C. butyricum has a good regulatory effect on intestinal
permeability. For example, Pang et al. [55] indicated that serum endotoxin and D-lactic
acid content significantly reduced when piglets were fed with C. butyricum (500 mg/kg),
and the effect was comparable to a pharmacological dose of zinc oxide (3000 mg/kg).
Li et al. [28] showed that dietary supplementation with C. butyricum (5 × 105 CFU/g)
reduced serum DAO and D-lactic acid levels in ETEC K88-infected pigs. Lu et al. [56]
showed that the serum D-lactic acid level decreased when piglets were fed a diet containing
500 mg/kg C. butyricum. Fu et al. [48] demonstrated that dietary supplementation with
C. butyricum (1 × 108 CFU/kg) significantly reduced serum DAO and D-lactate levels in
piglets compared to piglets fed a basic diet, indicating that intestinal integrity was im-
proved. These studies revealed that C. butyricum supplementation can dramatically reduce
intestinal permeability.

2.3. Clostridium butyricum Promotes Intestinal Tight Junctions

Tight junctions (TJs) are multiprotein complexes located on the apically lateral mem-
branes of intestinal epithelial cells, primarily composed of Occludin, Claudins, Zonula
Occludens (ZO-1, ZO-2, and ZO-3), Myosin light chain kinase (MLCK), actin (F-actin),
and Myosin. These proteins play crucial roles in protecting the intestinal physical bar-
rier [2,43,57]. The functionality of the intestinal physical barrier can be indicated by the
expression levels of intestinal TJ proteins such as ZO-1, Claudin-1, and Occludin. Previous
studies have shown that C. butyricum has the ability to enhance the expression of intestinal
TJ proteins in piglets, thereby preserving the integrity of the physical barrier and ensuring
its normal functions [28,48,56]. For example, Li et al. [28] discovered that the addition of
C. butyricum to the diet resulted in an increase in the expression of intestinal TJ proteins
(ZO-1, Claudin-3 and Occludin) in ETEC K88-infected pigs. Similarly, Lu et al. [56] found
that C. butyricum had a significant effect on upregulating the expression of genes associated
with intestinal TJ proteins (ZO-1 and Occludin) in piglets. Furthermore, Fu et al. [48] ob-
served that piglets supplemented with C. butyricum ZJU-F1 exhibited a notable increase in
intestinal TJ proteins (ZO-1, Claudin-1, and Occludin) in the jejunum and ileum of piglets.
Additionally, Wu et al. [37] confirmed that supplementing with C. butyricum significantly
increased the expression of Claudin-1, Claudin-2, Claudin-3, and ZO-1 genes and Claudin-3
protein in the colonic mucosa of piglets.

To summarize, C. butyricum has demonstrated its ability to positively regulate intestinal
physical barrier function in piglets (Table 1). C. butyricum regulates the intestinal physical
barrier in the following ways: (i) it enhances VH and the VCR and decreases CD in
piglets, thereby maintaining intestinal morphology; (ii) it significantly reduces intestinal
permeability and effectively inhibits the intrusion of harmful bacteria; and (iii) it promotes
the expression of TJ proteins to uphold the integrity of the physical barrier.
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Table 1. Effects of C. butyricum on intestinal physical barrier function of piglets.

Weaned Age Optimal Added
Amount Experimental Period Significant Effects References

Intestinal morphology
21 days 0.4% 35 days VH↑, and VCR↑ Chen et al. [26]
28 days 5 × 105 CFU/g 14 days CD↓, and VCR↑ Li et al. [33]
28 days 1.44 × 109 CFU/kg 28 days VH↑, CD↓, and VCR↑ Wu et al. [37]
28 days 2.5 × 109 CFU/kg 28 days VH↑ Han et al. [47]

not mentioned 1.0 × 108 CFU/kg 14 days VH↑, height of microvilli↑ Fu et al. [48]
28 days 6 × 109 CFU/kg 28 days VCR↑ Wang et al. [50]
28 days 6 × 109 CFU/kg 28 days VH↑, CD↓, and VCR↑ Wang et al. [51]
21 days 5 × 1011 CFU/kg 14 days VCR↑ Li et al. [58]
23 days 1 × 108 CFU/kg not mentioned VH↑, and VCR↑ Zong et al. [59]

Intestinal permeability
21 days 5 × 105 CFU/g 14 days DAO↓, D-lactic acid↓ Li et al. [28]
28 days 1.44× 109 CFU/kg 28 days DAO activity↓ Wu et al. [37]

not mentioned 1.0 × 108 CFU/kg 14 days DAO↓, D-lactic acid↓ Fu et al. [48]
21 days 500 mg/kg 14 days endotoxin↓, D-lactic acid↓ Pang et al. [55]
25 days 500 mg/kg 30 days D-lactic acid↓ Lu et al. [56]
21 days 5 × 1011 CFU/kg 14 days D-lactic acid↓ Li et al. [58]

Tight junctions

21 days 5 × 105 CFU/g 14 days ZO-1↑, Claudin-3↑, and
Occludin↑ Li et al. [28]

28 days 1.44 × 109 CFU/kg 28 days
Claudin-1↑, Claudin-2↑,
Claudin-3↑ and ZO-1↑;

Claudin3 protein↑
Wu et al. [37]

not mentioned 1.0 × 108 CFU/kg 14 days ZO-1↑, Claudin-1↑, and
Occludin↑ Fu et al. [48]

21 days 500 mg/kg 14 days ZO-1↑, and Occludin↑ Pang et al. [55]
25 days 1000 mg/kg 30 days ZO-1↑ Lu et al. [56]
21 days 5 × 1011 CFU/kg 14 days ZO-1↑, and Occludin↑ Li et al. [58]

23 days 1 × 108 CFU/kg not mentioned Claudin-1↑, Occludin↑,
ZO-1↑ and ZO-2↑ Zong et al. [59]

28 days 5 × 105 CFU/g 14 days Claudin-1↑, and ZO-2↑ Li et al. [60]

CD: crypt depth; DAO: VCR: villus-height-to-crypt-depth ratio; VH: villus height; ZO-1: zonula occluden-1; ZO-2:
zonula occluden-2; “↑” means increase, and “↓” means decrease.

3. Clostridium butyricum and Intestinal Chemical Barrier

The intestinal mucus layer consists mainly of mucins (MUCs), antimicrobial proteins,
digestive enzymes, and microbial metabolites (such as SCFAs), which separate the mi-
croorganisms in the intestinal cavity from the epithelial cells, effectively preventing toxins
from penetrating the intestine and preventing the invasion of pathogenic bacteria [43,61,62].
Previous studies have shown that C. butyricum has a positive effect on intestinal chemical
barrier function in many animals, such as pigs [37,48], rabbits [63], broilers [64,65], and
mice [66].

The secretion of intestinal MUCs and the activity of intestinal digestive enzymes in
piglets decreases during weaning, resulting in a weakened chemical barrier function and
an enhancement of intestinal susceptibility [67,68]. C. butyricum can effectively regulate
intestinal chemical barrier function through the following mechanisms:

(i) C. butyricum can stimulate the expression of MUC genes in the intestinal tract of
piglets and enhance the secretion of intestinal MUCs. For instance, Fu et al. [48] showed
that piglets fed a diet containing C. butyricum showed a significant increase in the gene
expression of intestinal MUCs (MUC1, MUC4, and MUC20).

(ii) C. butyricum can enhance the intestinal chemical barrier by increasing the endoge-
nous digestive enzyme activity of piglets. For example, Hu et al. [27] isolated a strain
of C. butyricum LY33 from the intestinal contents of healthy pigs and fed it to weaned
piglets. They showed that C. butyricum LY33 effectively enhanced the activities of duodenal
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amylase and protease, as well as jejunal amylase, lipase, and protease activities in pigs.
Similar results were observed by Lu et al. [56] and Fu et al. [48], who found that piglets
fed with a diet containing C. butyricum showed significantly increased intestinal amylase,
lipase, and protease activities compared to those fed with a basal diet.

(iii) C. butyricum has the capacity to inhibit pathogenic bacteria proliferation and
preserve intestinal mucosal homeostasis in pigs by boosting antimicrobial peptide (AMP)
gene expression. AMPs are a kind of innate immune effector with diverse structures,
broad-spectrum and efficient antibacterial activity, and multiple biological functions, such
as antibiofilm, immune-regulatory, and anti-inflammatory activity [69,70]. Fu et al. [48]
demonstrated that the dietary supplementation of C. butyricum ZJU-F1 significantly in-
creased the mRNA expression of AMPs such as pBD1, pBD2, pBD3, and PR-39 in the
jejunum of piglets, and Wu et al. [37] confirmed that the dietary supplementation of C. bu-
tyricum significantly increased PR39 gene expression in the colon of piglets.

(iv) C. butyricum can enhance the amount of SCFAs in the intestinal tract of piglets,
hence maintaining intestinal mucosal homeostasis. SCFAs are metabolites of intestinal
microorganisms that provide energy to intestinal epithelial cells and play an important
role in epithelial cell integrity, immunity regulation, and pathogenic microorganism inhibi-
tion [71,72]. For instance, Zhang et al. [73] demonstrated that 0.1% C. butyricum supplemen-
tation raised butyrate concentrations and tended to increase propionate and total volatile
fatty acids (VFAs) in the feces of weaned piglets. Han et al. [47] discovered that dietary
supplementation with 2.5 × 108 CFU/kg C. butyricum significantly raised the acetic, propi-
onic, and butyric acid levels and total SCFA concentration in the colon of weaned piglets.
López et al. [74] showed that the dietary supplementation of 2.5 × 108 CFU/kg C. butyricum
significantly increased butyric acid concentration in the feces of weaned piglets.

4. Clostridium butyricum and Intestinal Immune Barrier

Clostridium butyricum, a new bioviable bacterial preparation, can activate the im-
mune system of the host and enhance immune function, thereby maintaining animal
health [75–77]. In piglets, C. butyricum can directly stimulate the intestinal mucosal im-
mune response and improve immune barrier function [48,51]. Firstly, C. butyricum can acti-
vate the toll-like receptor (TLR)2/TLR4-myeloid differentiation factor 88 (MyD88)-nuclear
transcription factor-κB (NF-κB) signaling pathway to stimulate the intestinal mucosal im-
mune response of piglets, hence improving the recognition and transmission ability of
pathogens [26,48,51,58]. TLRs are phylogenetically conserved innate immune mediators
that can identify gut microbiota and respond to harmful microbes [78,79]. TLR2 and TLR4
are two important members of TLRs, which participate in the immune response mainly by
activating the MyD88 pathway to induce the secretion of inflammatory cytokines [51,58,80].
MyD88 is a key adapter protein in the TLR signaling pathway that can activate NF-κB,
boosting the production of proinflammatory cytokines and eliciting an immunological re-
sponse in the intestinal mucosa [51,81]. For instance, Fu et al. [48] showed that C. butyricum
ZJU-F1 significantly upregulated the gene and protein expression of TLR2, MyD88, and
NF-κB in porcine small intestinal epithelial cells (IPEC-J2), as well as the expression of
proinflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β,
IL-6 IL-8, and anti-inflammatory cytokine IL-10 genes in IPEC-J2 cells and the ileum of
weaned piglets. Similarly, Wang et al. [51] demonstrated that dietary C. butyricum supple-
mentation dramatically increased the protein expression of TLR4, MyD88, and NF-κB in
the jejunal of weaned piglets. On the contrary, Wu et al. [37] showed that dietary C. bu-
tyricum supplementation significantly reduced the protein expression of p65 NF-κB in
the nucleus of ileal mucosa as well as the gene expression of TNF-α and IL-1β in the ileal
mucosa of piglets. Wang et al. [50] showed that dietary C. butyricum supplementation
substantially reduced TLR4, MyD88, and NF-κB protein expression in the jejunal of weaned
piglets challenged with LPS. This is because proinflammatory factors have dual effects:
an appropriate amount can regulate the immune response and resist or clear pathogen
infection [48]; meanwhile, proinflammatory cytokines can also interact with transforming
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growth factor -β (TGF-β) secreted by various intestinal cells, jointly promoting the secretion
of immunoglobulin A (IgA), IgG, and IgM to maintain intestinal health [58]. However,
excessive levels of proinflammatory cytokines can harm intestinal tissue and disturb the
body’s immunological balance [48]. Therefore, when piglets are exposed to significant
stress, such as LPS stimulation, C. butyricum can alleviate intestinal inflammation by in-
hibiting the TLR4-MyD88-NF-κB pathway, reducing the expression of proinflammatory
factors (TNF-α, IL-1β, IL-6, and IL-8) and promoting the secretion of anti-inflammatory
factors (IL-10 and TGF-β1) and immunoglobulins (IgA, IgG, and IgM) [26,28,37,49,50].

Secondly, C. butyricum can activate cysteine aspartase (caspase1) by increasing the gene
expression of the nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs)
family pyrin domain, containing 3 (NLRP3), NLRP6, and NLRP12, in the jejunum of piglets
to regulate the maturation and secretion of IL-1 family cytokines, and thus reduce intestinal
inflammation of piglets [28,60]. NLRPs are a large class of pattern-associated molecular pat-
terns involved in innate immunity, among which NLRP3, NLRP6, and NLRP12 are highly
expressed in the small intestine as negative feedback regulators of intestinal inflammation.
These proteins play an important role in maintaining the integrity of the mucosal barrier
function and promoting symbiosis among gut microorganisms [82–84]. Upon recognition
of their cognate ligands, NLRPs can assemble into multiprotein complexes known as in-
flammasomes, which play a pivotal role in activating caspase-1, subsequently leading to the
maturation and secretion of IL-1 family cytokines (IL-1β, IL-18, and IL-33) [28,60]. There-
fore, on the one hand, C. butyricum can enhance intestinal immune response and reduce
excessive intestinal inflammation through the bidirectional regulation of the TLR2/TLR4-
MyD88-NF-κB signal transduction pathway. On the other hand, C. butyricum can stimulate
the production of anti-inflammatory cytokines and immunoglobulins and suppress the
generation of proinflammatory cytokines, which jointly maintain the intestinal immune
barrier of piglets.

5. Clostridium butyricum and Intestinal Microbial Barrier

Newborn piglets develop a diverse microbiota in their gastrointestinal tract through
the consumption of breast milk and exposure to the external environment [85]. The various
gut microbiota organisms interact and limit each other, creating a gut microbiota system that
acts as the initial line of defense for the gastrointestinal tract. The intestinal microbial barrier
plays a pivotal role in preserving the normal physiological activities of the gastrointestinal
tract and safeguarding it from potential pathogen attacks [86–88]. C. butyricum can maintain
or restore the dominant intestinal flora of the host, promote the growth and reproduction
of beneficial bacteria such as Lactobacillus and Bifidobacterium, and inhibit the growth of
harmful bacteria such as Salmonella and Escherichia coli, thereby maintaining the intestinal
microbial homeostasis of animals [47,48,73,87]. The possible mechanisms through which
C. butyricum regulates the intestinal microbial barrier of animals include: (i) C. butyricum can
compete with conditioned pathogens for adhesion sites and nutrients, thereby inhibiting the
adhesion and colonization of pathogenic microorganisms within the intestinal tract [89–91];
(ii) the polysaccharide decomposition enzyme secreted by C. butyricum can decompose
polysaccharides into oligosaccharides, thus providing an abundant fermentation substrate
for beneficial bacteria, in turn promoting the growth and proliferation of these probiotic
microorganisms [92,93]; and (iii) C. butyricum can produce a large number of SCFAs,
especially butyric acid, which can regulate the intestinal pH value, thus promoting the
proliferation of beneficial bacteria while inhibiting the growth of pathogenic bacteria [94].

During the transition period from lactation to weaning, piglets experience significant
alterations in their intestinal flora structure due to changes in diet, living environment, and
social structure [95–97]. C. butyricum can improve the richness of intestinal microorganisms
and optimize the microecological environment in weaned piglets, promoting a healthier
gut microbiota balance [26,48,51]. The effects of C. butyricum on intestinal microorganisms
of piglets are summarized in Table 2, in which we can see C. butyricum plays a crucial
role in maintaining the intestinal microecological balance of weaned piglets. It increases
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the abundance and quantity of beneficial bacteria while inhibiting the colonization of
conditioned pathogens. By regulating the structure of the intestinal flora, C. butyricum
helps to preserve the homeostasis of intestinal microorganisms, promoting a healthy gut
environment for piglets.

Table 2. Effects of C. butyricum on intestinal microorganisms of piglets.

Experimental Period Optimal Added Amount Significant Result References

35 days 0.4%
Colon Bacillus↑, Ruminococcaceae UG-003↑at

genus level; colon Lactobacillus casei↑,
Parasutterella secunda↑ at species level

Chen et al. [26]

130 days 1 × 1012 CFU/t
Escherichia coli↓, Salmonella↓, lactic acid

bacteria↑ Hu et al. [27]

28 days 1.44 × 109 CFU/kg

Ileal Antinobacillus, Sarcina,
Clostridium_sensu_stricto_1, Terrisporobacter,

Chloroplast and Campylobacter ↑; colon
Erysipelotrichaceae_UCG_006↑, Alloprevotella,

Intestinibacter and Colidextribacter↓

Wu et al. [37]

28 days 2.5 × 109 CFU/kg Colon Streptococcus and Bifidobacterium ↓ Han et al. [47]
14 days 1.0 × 108 CFU/kg Caecal Lactobacillus↑ Fu et al. [48]
28 days 6 × 109 CFU/kg Colon microbial richness and α diversity ↑ Wang et al. [51]

14 days 5 × 105 CFU/g
Ileal Escherichia coli ↓; jejunal and ileal

Lactobacillus ↑ Li et al. [60]

28 days 0.1% Faecal Escherichia coli count↓, Lactobacillus
and Bifidobacterium count↑ Zhang et al. [73]

21 days 5 × 108 CFU/kg

Faecal Megasphaera,
Ruminococcaceae_NK4A214_group and

Prevotellaceae_UCG-003↑,
Ruminococcaceae_UCG-005↓

Liang et al. [87]

28 days 10 g/kg
Fecal Selenomonadales ↑, Clostridium↓; lacetic

acid-producing bacteria and acetic
acid-utilizing bacteria↑

Zhang et al. [98]

28 days 1% C. butyricum combined
with 5% corn bran

Fecal Erysipelotrichales↓; Clostridiales↑,
Lactobacillales↑, Selenomonadales↓,

Bacteroidales↓ at order level
Zhang et al. [99]

21 days 2.0 × 108 CFU/kg
body weight

Ileal Streptococcus and Enterococcus↓ Zhang et al. [100]

“↑” means increase, and “↓” means decrease.

6. Discussion and Prospect of the Application of Clostridium butyricum in Piglets

Through the above analysis, we can see that C. butyricum has a good regulatory effect on
the intestinal tract of weaned piglets. First of all, C. butyricum can maintain the good intestinal
morphology and proper intestinal permeability of weaned piglets and promote the intesti-
nal physical barrier by promoting intestinal TJ protein expression [26,33,37,48,58–60], which
provides an important defense line for intestinal resistance to external stimuli. Secondly,
C. butyricum can promote the secretion of intestinal MUCs, AMPs, digestive enzymes, and
SCFAs, thereby improving intestinal chemical barrier function [27,37,47,48,56,73,74], and
effectively preventing toxins from penetrating the intestine and preventing the invasion of
pathogenic bacteria. Thirdly, C. butyricum can enhance intestinal immune response and
reduce excessive intestinal inflammation by promoting the production of anti-inflammatory
cytokines and immunoglobulins and suppressing the generation of proinflammatory cy-
tokines [28,37,48–51,60], thereby improving intestinal chemical barrier function, effectively
preventing toxins from penetrating the intestine, and preventing the invasion of pathogenic
bacteria. Finally, C. butyricum can increase the diversity and abundance of intestinal mi-
croorganisms, promote the colonization of beneficial bacteria inhibit the colonization of
conditioned pathogens in the intestines [26,27,51,89–100], so as to improve microbial barrier
function and promote a healthy gut environment for piglets (Figure 1).
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Piglets that experience weaning stress are usually characterized by loss of weight, post-
weaning diarrhea due to the immature development of the gastrointestinal tract, and 
therefore, reduced feeding and nutrient absorption [43]. Many studies have shown that C. 
butyricum can promote the performance of weaned piglets, which is presented in Table 3.  
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Figure 1. Roles of C. butyricum on intestinal barrier function of piglets. C. butyricum promotes
intestinal barrier function by affecting mechanical barrier, chemical barrier, immune barrier and
microbial barrier.

A healthy gut is key to the growth and development of animals, including piglets.
Piglets that experience weaning stress are usually characterized by loss of weight, post-
weaning diarrhea due to the immature development of the gastrointestinal tract, and
therefore, reduced feeding and nutrient absorption [43]. Many studies have shown that
C. butyricum can promote the performance of weaned piglets, which is presented in Table 3.

Table 3. Growth promoting effect of C. butyricum on piglets.

Weaned Age Optimal Added Amount Experimental Period Growth Performance References

20 ± 2 d 1.25 × 1011, 2.50 × 1011

or 3.50 × 1011 CFU/kg
35 days ADG, G/F quadratic

increased Casas et al. [20]

21 d 0.4% 35 days F/G↓, diarrhea score↓ Chen et al. [26]

28 d 1.44 × 109 CFU/kg 28 days FBW↑, ADG↑, F/G↓,
diarrhea rate↓ Wu et al. [37]

28 d 2.5 × 108 or 2.5 × 109

CFU/kg
28 days F/G↓, average fecal

score↓ Han et al. [47]

not mentioned 1.0 × 108 CFU/kg 14 days ADG↑, diarrhea rate↓ Fu et al. [48]

21 ± 2 d 100 mg/kg 28 days ADG↑, F/G↓, diarrhea
rate↓ Cao et al. [49]

28 d 6 × 109 CFU/kg 28 days FBW↑, ADG↑, ADFI↑,
F/G↓, diarrhea rate↓ Wang et al. [50]

28 d 6 × 109 CFU/kg 28 days FBW↑, ADG↑, ADFI↑,
F/G↓, diarrhea rate↓ Wang et al. [51]

21 d 500 mg/kg 14 days Diarrhea rate↓ Pang et al. [55]

25 d 250, 500, 1000, 2000
mg/kg 30 days Diarrhea incidence

quadratic decreased Lu et al. [56]

23 ± 2 d 1.0 × 109 CFU/kg not mentioned Diarrhea rate↓ Zong et al. [59]
28 d 5 × 105 CFU/g 14 days ADG↑, F/G↓ Li et al. [60]
28 d 0.1% 28 days ADG↑, G/F↑ Zhang et al. [73]
28 d 2.5 × 105 CFU/g 42 days FBW↑, ADG↑, G/F↑ Takahashi et al. [101]

ADFI: average daily feed intake; ADG: average daily gain; FBW: final body weight; F/G: feed intake-to-gain ratio;
G/F: gain-to-feed intake ratio; “↑” means increase, and “↓” means decrease.

The improved growth performance observed by dietary C. butyricum supplementation
might be associated with its promotion of intestinal health. For example, Chen et al. [26]
showed that dietary supplementation with 0.4% C. butyricum significantly improved the
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intestinal morphology of piglets, and the feedback on growth performance was a signifi-
cantly reduced feed-to-gain ratio (F/G) and diarrhea rate of weaned piglets. Fu et al. [48]
showed that dietary supplementation with 1.0 × 108 CFU/kg C. butyricum significantly
improved the intestinal health of weaned piglets, and the feedback on growth performance
was a significantly increased average daily gain (ADG) and a significantly reduced diar-
rhea rate of piglets. One of the possible mechanisms by which dietary C. butyricum can
promote the growth performance of weaned piglets is that it can promote the secretion
of intestinal digestive enzymes (amylase, protease, lipase, and protease), which can de-
grade macromolecular substances such as carbohydrates, proteins, and lipids in the feed,
thereby improving the digestibility of nutrients [27,48,56,74]. Secondly, C. butyricum can
also improve the intestinal digestion and absorption of nutrients by improving intestinal
morphology, and butyric acid produced by C. butyricum can be used as a direct energy
source for intestinal villi growth, further promoting intestinal villi development and en-
hancing the intestinal digestion and absorption capacity of nutrients, thus affecting the
efficiency of intestinal nutrient digestion and absorption [26,48,59,102].

Although a large number of studies have confirmed the growth-promoting effects
of C. butyricum, there are also studies showing that C. butyricum has no effect on the
production performance of weaned piglets [55,74]. This may be related to the different
strains of C. butyricum used, the different addition amounts, and the different experimental
times and environments. Therefore, future research can focus on expanding the screening
of C. butyrate strains to include better growth-promoting effects and elucidate its growth-
promoting effect from the molecular level. For different farming environments, such as
poorly ventilated farms, studies can be conducted to reduce the concentration of harmful
gases in the air by combining them with other probiotics or functional additives to maintain
animal health.

7. Conclusions

C. butyricum is a kind of green, safe, efficient, and highly resistant probiotic with a
variety of biological functions, especially for the regulation of intestinal health. The dietary
addition of C. butyricum can help maintain the intestinal morphology and microflora home-
ostasis of piglets, promote intestinal digestion and the absorption of nutrients, enhance the
immunity and stress resistance of piglets, and improve the growth performance of piglets.
In conclusion, C. butyricum exerts a beneficial influence on intestinal health in piglets by
regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and
microbial barrier.
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