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Simple Summary: This study focuses on developing a noninvasive model to predict iron content
in Hereford cattle muscle tissue, a critical factor in both animal health and meat quality, relevant
to sustainable livestock management. Conducted in the Novosibirsk region (Russia) in 2023, the
research employed atomic absorption analysis on muscle tissue and hair samples from cattle. The
construction of a regression model using the least squares method was pivotal in identifying the
most effective predictors, including magnesium, potassium, iron, aluminum, and chromium levels in
hair. The outcomes of this study have broad implications for both ecology and veterinary medicine,
particularly in the assessment of ecological well-being and managing the iron load in animals.

Abstract: The assessment of iron levels in cattle muscle tissue is crucial for livestock management
because it influences both animal health and meat quality, key factors in sustainable development.
This study aimed to develop an optimal model for noninvasively predicting the iron content in Here-
ford cattle muscle tissue, contributing to a comprehensive understanding of the animals’ elemental
status. The research involved the atomic absorption analysis of muscle tissue and hair samples from
cattle. A regression model was constructed using the least squares method to identify the most
effective approach. These findings have ecological applications, aiding in evaluating environmental
health and establishing acceptable iron thresholds for animals. The proposed mathematical model
utilizing biomarkers (levels of Mg, K, Fe, Al, Cr in hair) will allow for the assessment of iron levels
in cattle muscle tissue throughout the period of productive use, with the possibility of adjustment
and tracking the changes in elemental status over time. The utilization of the developed method will
enable the diagnosis of animal elementosis and assessment of the iron level burden. Subsequently,
this will allow for the improvement of the qualitative characteristics of the final product. Thus, the
obtained data contribute to fundamental knowledge regarding the content and variability of iron
levels in the muscle tissue of cattle.

Keywords: large ruminants; Hereford breed; iron; modeling; regression; hair; atomic absorption analysis

1. Introduction

The iron content in cattle muscle tissue is a significant factor in understanding and
managing both the health of cattle and the quality of beef produced for consumption.
Detecting iron content in the muscle tissue of live cattle typically involves methods that
are either noninvasive or minimally invasive, providing a snapshot of the animal’s overall
iron status. Blood sample collection and analysis are the most prevalent approaches. This
method assesses iron status by measuring parameters such as serum iron, ferritin, and total
iron-binding capacity [1]. While effective, it has its own set of advantages and limitations.
Recently, advanced research has shifted toward employing predictive models. These
models estimate iron content by considering various factors, including breed, age, diet,
and known absorption rates, offering a comprehensive and nuanced understanding of iron
content in cattle.
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In cattle, alterations in iron homeostasis parameters may occur due to various diseases.
For instance, mastitis or parasitic invasions (such as ankylostomiasis) can lead to inflam-
mation, blood loss, and changes in iron metabolism in the animal’s body [2,3]. Chronic
conditions, such as chronic stress or prolonged periods of poor nutrition, can also affect the
iron homeostasis markers in cattle [4].

Disturbances in iron homeostasis can be reflected in various morphological parameters
of blood. Iron deficiency can lead to anemia, which may manifest as a reduction in the
hemoglobin (Hb) levels in the blood. Iron deficiency can affect the quantity and shape
of red blood cells (RBCs), for instance, resulting in microcytosis (reduced erythrocyte
size) and hypochromia (the reduced hemoglobin content in erythrocytes). Additionally,
this is accompanied by decreases in Mean Corpuscular Hemoglobin (MCH) and Mean
Corpuscular Hemoglobin Concentration (MCHC) [5–8]. The determination of transferrin
(TF) levels is used in the differential diagnosis of iron-deficiency anemias, characterized by
decreased serum iron content, an increase in the level of this glycoprotein, and consequently,
a decrease in the percentage of transferrin saturation with iron [9]. However, in cases of iron
overload in the body, the unsaturated iron-binding capacity (UIBC) decreases. Therefore,
to assess the blood’s ability to bind iron to transferrin, a laboratory test called total iron-
binding capacity (TIBC) is utilized [10]. The analysis of a soluble transferrin receptor (sTfR)
concentration in blood is utilized for investigating iron deficiency anemia and assessing
iron the functional status. Due to its insensitivity to inflammatory processes, sTfR can
detect anemia in animals already suffering from inflammatory conditions, and it holds
particular significance in distinguishing between anemia in chronic conditions and anemia
caused by inadequate iron intake [11,12]. However, such markers indicate iron deficiency
in the overall animal organism and do not provide information about the quantitative level
of iron in animal muscle tissue. The method proposed by us will allow for the assessment
of iron levels in muscle tissue and, if necessary, its monitoring throughout the animals’
productive use.

The iron content in the muscle tissue of cattle can vary depending on various stochastic
and fixed factors, such as the animal’s age, sex, diet, living conditions, breed, and other
related aspects [6,13,14]. In this regard, the average iron content in the skeletal muscle
tissue of large ruminants varies widely, ranging from 10 to 50 mg/kg [15–28]; in earlier
studies, iron concentrations of up to 54 mg/kg were found [29]. A tendency can be noted
that, in European studies, the level of zinc in the muscle tissue of animals was typically
below 40 mg/kg [15,17–24,30], except in Slovakia, where samples of muscle tissue from
animals raised in the vicinity of the metallurgical plant were studied [25]. Higher metal
concentration levels in skeletal musculature were observed in animals from countries with
developing economies [26–28].

Approximately 5–15% of the iron ingested through feed is typically absorbed, yet
in cases of deficiency, the absorption process can double [31]. A study conducted by
Knowles et al. [32] demonstrated that the rate of iron reabsorption is inversely proportional
to the ferritin level in serum. Iron absorption from the gastrointestinal tract depends on
endogenous factors such as age, body iron levels, the gastrointestinal tract environment,
and overall health status. Exogenous factors such as chemical form, iron quantity, and
other feed components also influence the iron absorption in the intestine, contributing to
its increase or decrease. In the in vitro study, it was found that the addition of ascorbic acid
increases the absorption of iron from sodium caseinate–ferric iron and ferrous sulfate to a
similar level, which significantly surpasses the absorption from iron pyrophosphate [33].
Phosphorus-containing compounds may be present in the diet of cattle, especially if it
includes grain feeds. Phytates and tannins are capable of forming insoluble complexes with
iron, thereby hindering its absorption in the cattle’s intestines [13]. Following erythrocyte
breakdown, a significant portion of iron is reabsorbed and utilized for synthesizing new
hemoglobin. Erythrophagocytosis occurs in the spleen, liver, and bone marrow. These
organs contain siderophages, which phagocytose and degrade old or damaged erythrocytes.
The products of erythrocyte degradation, such as hemoglobin, iron, and bilirubin, are then
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processed and recirculated for further utilization or excretion from the body. Residual iron
that has not been absorbed is excreted from the body in feces [6,33–37].

This study is a continuation of exploratory research aimed at developing models for
assessing iron levels in muscle tissue.

The models presented in the scientific literature are constantly being improved, pro-
viding more accurate and efficient estimates. To understand the focus of this study, we
present the key approaches to assessing iron in animal muscle tissue.

Near-infrared spectroscopy (NIRS): NIRS is a nondestructive technique that uses
the absorption of near-infrared light by molecules in muscle tissue to estimate the iron
content. It is widely used in the livestock industry due to its speed and ease of use.
MRI is a noninvasive imaging technique that can provide detailed information about the
composition of muscle tissue, including iron content. It offers high-resolution images and
is useful for research purposes. Muscle biopsies are commonly used to directly measure
iron levels in muscle tissue. These samples can then be subjected to chemical analysis
techniques such as atomic absorption spectrometry or inductively coupled plasma–mass
spectrometry (ICP–MS) to accurately determine iron concentrations. Ultrasound is used
to assess muscle characteristics, including muscle density and fat content. Iron levels
cannot be directly measured; however, they can provide valuable information related
to the overall quality of muscle tissue. Machine learning models, including artificial
neural networks and regression models, can be trained on datasets containing various
muscle tissue characteristics, including iron levels. These models can then predict the iron
content in muscle tissue based on other measurable parameters, such as age, weight, and
breed. Researchers have also explored the use of biochemical markers in blood samples to
indirectly assess iron levels in muscle tissue. These markers include serum iron, ferritin,
and transferrin saturation levels. Genetic markers associated with iron metabolism and
muscle iron content have been identified in cattle. These markers can be used for genetic
selection in breeding programs to produce cattle with desired iron levels in their muscle
tissue. DXA is primarily used in human medicine but has also been applied to assess the
composition of meat samples, including iron content. Moreover, these findings can provide
valuable insights into muscle tissue composition.

The choice of model or technique for assessing iron in the muscle tissue of cattle often
depends on various factors, such as cost, accessibility, accuracy, and the specific goals of
the assessment. Researchers continue to refine these models and explore new technologies
to increase the accuracy and efficiency of iron assessments in cattle. These advancements
ultimately contributed to improved livestock management and meat quality.

Each method has its own set of advantages and disadvantages. Therefore, providing
specialists with more opportunities to assess gland levels in animals can lead to a more
effective meat quality. Consequently, our study focused on determining the concentrations
of trace elements in biosubstrates. This method assesses the levels of these genes within
an organism. Serum blood, hair, and other substances are commonly used as diagnostic
indicators [38,39]. The mineral contents of biosubstrates differ, which can impact their
ability to determine an organism’s elemental status. A drawback of studying mineral
substances in serum and blood plasma is that a deficit in these elements appears after the
patient becomes symptomatic due to the body’s depletion linked to increased excretion.
Therefore, specific changes in the concentrations of individual elements often cannot be
detected in a timely manner, and these fluctuations fall within the margins of the error of
the analysis method [40–42].

Due to the high informativeness of hair in studying the elemental profile, the find-
ings of this research have found broad applications in hygiene, toxicology, and medical
investigations, particularly in identifying cases of poisoning by toxic elements [41–45].

The primary objective of the present research was to identify an optimal and efficient
predictive model for iron levels in the muscle tissue of large ruminants in the Hereford
breed. This model aims to assess the animals’ elemental status noninvasively during
their lifetime.
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2. Materials and Methods
2.1. Ethics Statement

The animals were kept under standard conditions of an industrial complex, complying
with veterinary and zootechnical requirements in accordance with legislation [46,47] and
under standard conditions specific to each species and breed. Feeding was carried out using
standard complete compound feed, taking into account the animals’ age, body weight, and
productivity. Drinking water for the animals was sourced from local utility and drinking
sources, meeting hygiene requirements [48,49].

Animal slaughter was conducted in a commercial abattoir in accordance with applica-
ble requirements, technological instructions, and regulatory documents [50,51].

2.2. Experimental Design

This study was conducted in 2023 on animals (n = 31) of the Hereford breed raised in
the southern region of Western Siberia (Russia).

The sample size was determined for ethical and economic reasons. Conducting re-
search involving the slaughter of farm animals is challenging due to difficulties in accessing
and limited resources for data collection. The age of the animals at the time of slaughter was
16–18 months. The animals were raised on a farm located in the south of the Novosibirsk
region in the Maslyaninsky district, Russia (coordinates 54◦32′45.1′′ N 84◦13′04.1′′ E or
54.545862, 84.217812). The animals were kept on free-range pasture in an ecologically safe
area more than 100 km away from industrial enterprises and large cities. The ages of the
young bulls is determined by the fact that at 16–18 months, they reached optimal weight,
and their physiological growth ends, making it the most economically advantageous time
for slaughter.

To search for a model predicting iron levels in the muscle tissue of Hereford cattle,
a set of predictors was utilized and subsequently renamed for convenience according to
Table 1. The distribution of the studied characteristics deviated from Gaussian distribution;
therefore, to assess the content of each element in the samples under investigation, the
median as well as the values of the first and third quartiles (Q1–Q3) were calculated.

Table 1. Designation and decoding of the set of independent variables used for selecting
regression models.

Indicator Median (Q1–Q3) Units of Measurement Variable in the Model

Fe muscles 22.4 (19–29.5) mg/kg y
P hair 250 (201.7–300) mg/kg x1

Ca hair 2200 (1800–2600) mg/kg x2
Mg hair 410 (240–655) mg/kg x3
Na hair 190 (99–958.3) mg/kg x4
K hair 83 (38.3–863.3) mg/kg x5
Fe hair 29 (23.2–49) mg/kg x6
Mn hair 22 (13.2–41.2) mg/kg x7
Cu hair 9.6 (7.85–12) mg/kg x8
Zn hair 130 (110–170) mg/kg x9
Al hair 20 (12–29,3) mg/kg x10
Ba hair 2.7 (1.5–4.8) mg/kg x11
Cr hair 8.2 (5.4–11) mg/kg x12

Preslaughter health assessments indicate that all the animals were clinically healthy.
Rectal thermometry was used to measure the body temperature, which ranged from 37.5 to
39 ◦C. All animals were fasted for at least 12 h before slaughter and had unrestricted access
to water. Samples of skeletal muscle weighing 100 g were taken from the m. obliquus externus
abdominis. Muscle tissue and hair samples were collected immediately after slaughter. The
selected muscle tissue samples were cooled to 4 ◦C and dispatched to the laboratory, where
they were stored at a temperature of −24 ◦C until analysis was conducted. Hair samples
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weighing 10 g for atomic absorption analysis were collected from the withers area. The
hair length ranged from 1 to 4 cm. The hair samples were packed in envelopes made of
heavy-duty paper and stored frozen, similarly to the muscle tissue.

2.3. Atomic Absorption Analysis

For atomic absorption analysis, a 10 g hair sample was weighed. To clean the hair
from impurities, the sample was placed in a flask with distilled water and then mixed for
1 min using a mixer at a rotating speed of 225 RCF. The water was then changed 10 times,
repeating this procedure. Subsequently, the hair sample was dyed with acetone (CAS: 67-64-
1, XILONG, Shantou, China) and left for 2 min, after which the remaining solution residues
were rinsed 3 times with deionized water and dried at room temperature. Then, the hair
samples were dissolved in 2 mL of nitric acid (CAS 7697-37-2, XILONG, Shantou, China)
and placed in a standard autoclave in the microwave oven MARS-5 (CEM). The autoclave
was gradually sealed over 40 min, after which the temperature was increased to 180 ◦C
to perform the dissolution. The resulting solution was transferred to a volumetric flask.
The solutions were analyzed after 10- and 100-fold dilutions using calibration solutions
prepared based on multielement standards.

The preparation of internal muscle tissue samples for atomic absorption analysis
proceeded in the following sequence: the vessel was washed in a soapy solution, rinsed
with tap water and then rinsed with bidistilled water before drying. A sample from the
test (100 g) was ground using the analytical mill IKA A11 basic and homogenized with an
IKA Ultra Turrax Tube Drive control Disperser (IKA-Werke GmbH & Co. KG, Staufen im
Breisgau, Germany) until a homogeneous mass was obtained. Subsequently, it was dried
in an oven at a temperature of 60–70 ◦C for approximately 12 h until a constant mass was
achieved. From the obtained dry residue, 3 g was weighed and ashed in a muffle electric
furnace EKPS 10 (Code 4009) (Smolensk SCTB SPU, Smolensk, Russia) at a temperature of
500–550 ◦C. After 10–15 h, the mineralization process was completed, and the ash acquired
a gray or white color. After cooling to room temperature, the ash residue was dissolved in
3 mL of 50% hydrochloric acid (CAS 7647-01-0, XILONG, Shantou, China) and then dried
on a hotplate. This residue was transferred to a volumetric flask and diluted with 25 mL of
distilled water [52]. The concentration of iron in the resulting solution was determined at
an analytical wavelength of 510 nm using an analyzer.

The atomic absorption analysis of muscle tissue was conducted using an MGA-1000
spectrometer (Lumex LLC, Saint Petersburg, Russia). The measurements of the chemical
element levels in the hair were conducted using the iCAP-6500 spectrometer (Thermo Sci-
entific, Waltham, MA, USA). In the muscle tissue, the concentration of iron was determined,
while in the hair, the levels of several heavy metals were determined: P, Ca, Mg, Na, K, Fe,
Mn, Cu, Zn, Al, Ba, and Cr.

2.4. Statistical Analysis

Checking the assumptions typical for regression analysis was conducted following
the protocol for data exploration to avoid common statistical problems [53]. Outlier testing
for the original data was performed using the Grubbs test [54]. The assessment of residual
distribution normality was executed using the Shapiro–Wilk method [55]. The detection
of related variability between features was carried out using the Spearman correlation
coefficient [56]. The assessment of multicollinearity was performed by calculating the
variance inflation factor for each parameter [57]. The model coefficients were calculated
using the method of least squares. Studentized residuals with high Cook’s distance values
were analyzed for outliers using Bonferroni correction [58].

Statistical analysis and visualization of the original datasets were conducted using the
R statistical programming language and RStudio development environment.

The use of exploratory analysis in the study was necessary for fitting regression models
and selecting a pool of predictors. Initially, an assessment of multicollinearity was con-
ducted. Its presence may render model coefficient estimates unstable, making it challenging
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to discern the individual contributions of factors to the variance of the response variable.
This situation may paradoxically lead to regression model coefficients being statistically
insignificant, while the model as a whole remains statistically significant based on the Fisher
criterion. Therefore, to assess the associations between variables, Spearman’s correlation
coefficients were calculated, and correlation matrices and scatterplots were constructed.
Model fitting in the study began with the creation of a full model across all the subsets.
Then, as a result of model selection based on internal quality criteria, starting with the full
model across all the subsets, two candidate models were selected to check assumptions
regarding residuals. To ensure the validity of the models for assessment, the final stage of
the study involved checking the assumptions regarding the residuals of the selected model.
As multiple regression models are specific examples of general linear models, assumptions
regarding residuals align with the Gauss–Markov theorem conditions.

3. Results and Discussion
3.1. Exploratory Analysis

The computed Spearman correlation coefficients are shown in the lower triangle (with
a red background), while the significance levels are shown for these coefficients in the upper
triangle (with a blue background) (Figure 1). The analysis revealed a considerable number
of relationships between the variables. However, the dependent variable is associated
with the level of magnesium in hair, which, in turn, is correlated with the concentration of
manganese, zinc, barium, and chromium. Within this pool of potential predictors, linked
variability has been identified, for example, between the content of zinc and that of barium
and chromium. Including all of these variables in the model will result in multicollinearity
effects. Hence, when selecting the optimal model for forecasting iron levels in muscle tissue,
it is essential to choose a combination of coefficients that ensures a minimal value of the
variance inflation factor.

3.2. Model Fitting

The model with the highest adjusted coefficient of determination included six predic-
tors (Table 2).

Table 2. Parameters for estimating the coefficients of the candidate model (by stepwise algorithm) for
forecasting iron levels in muscle tissue (mg/kg) from blood indices.

Coefficients’
Notation

Coefficients
Estimates

Standard Errors of
Coefficients t-Statistic Pt

Intercept 25.556 2.766 9.239 <0.001
Mg −0.039 0.009 −4.615 0.000
Na −0.003 0.002 −1.067 0.297
K 0.010 0.003 3.601 0.001
Fe −0.218 0.050 −4.395 <0.001
Al 0.271 0.068 3.952 0.001
Cr 1.767 0.511 3.461 0.002

RSE—4.567; F-statistic—7.197; p < 0.001.
Note: RSE: residual standard error.

The assessment of the statistical significance of the coefficients and candidate models
as a whole is presented in Tables 2 and 3. In general, all the models were significant;
however, the compact model with five coefficients exhibited the highest F-criterion value.
Additionally, in this model, each coefficient was significantly different from that of the
other two candidate models (Tables 2 and 3).
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correlation matrix indicates sufficiently high multicollinearity among the levels of chemical elements
in the hair. In the lower triangle on a red background are the computed Spearman correlation
coefficients, while in the upper triangle (on a blue background) are the levels of significance for
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Table 3. Parameters for evaluating the coefficients of the candidate model (Bayesian information
criterion, Akaike criterion, and Mallows criterion) for predicting the level of iron in muscle tissue.

Coefficients’
Notation

Coefficients
Estimates

Standard Errors of
Coefficients t-Statistic Pt

Intercept 25.862 2.759 9.374 <0.001
Mg −0.043 0.008 −5.323 <0.001
K 0.008 0.002 4.201 <0.001
Fe −0.214 0.050 −4.320 <0.001
Al 0.235 0.060 3.916 <0.001
Cr 1.904 0.496 3.841 <0.001

RSE—4.58; F-statistic—10.44; p < 0.001.
Note: RSE: residual standard error.

The second candidate model was more concise, consisting of five variables, and
demonstrated superior values according to the Bayesian information criterion, Akaike
criterion, and Mallows criterion (Tables 3 and 4, Figure 2).
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Table 4. Candidate models for predicting the level of iron in muscle tissue based on internal
quality criteria.

The Formula of the Model df p SSE MSE R2 R2
adj AIC BIC

The best model based on the R2
adj value

y~1 + x3 + x4 + x5 + x6 + x10 +
x12 24 6 500.62 20.86 0.69 0.61 190.21 220.16

The best model based on BIC, AIC, and Mallows’ criterion values

y~1 + x3 + x5 + x6 + x10 + x12 25 5 524.38 20.98 0.68 0.61 189.65 218.17
Note: SSE: sum of squares error; MSE: mean squared error; AIC: Akaike information criterion; BIC: Bayesian
information criterion; y: Fe in muscle tissue; x3: Mg in hair; x4: Na in hair; x5: K in hair, x6: Fe in hair; x10: Al in
hair; x12: Cr in hair.
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Figure 2. Ranking of models for predicting the level of iron in muscle tissue based on the Bayesian
information criterion, Mallows criterion, and adjusted coefficient of determination (from left to right).
The best models are ranked from bottom to top based on three predictors. The optimal combination
of coefficients is located at the top of the figure. According to the Bayesian information criterion and
the Mallows criterion, the best model contains the same predictors. The coefficients of the models for
internal quality criteria are indicated in black. If the color is white, it means the coefficient is absent
in the model.

The assessment of the variance inflation factor (VIF) for candidate models reveals that
only the model with five predictors exhibits the lowest multicollinearity (Table 5). In this
model, only two coefficients (x3 and x12) had increased VIF values, indicating a minor
correlation between these variables and the others. In contrast, half of the coefficients in
the other models displayed high VIF values, indicating instability in the predictive results
of such models.

To assess the forecasting effectiveness of each candidate model, external quality cri-
teria need to be employed. Therefore, to determine the best model, we conducted cross-
validation by partitioning the observations into three blocks. Based on the analysis results,
the best fit was observed for the model with five predictors (Figure 3, first from the left),
where it is clearly visible that the regression line slope was maintained.
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Table 5. Variance inflation factor (VIF) values for the coefficients of regression models predicting the
level of iron in the muscle tissue.

Predictor Complete Model Fe~Mg + Na + K + Fe + Al + Cr Fe~Mg + K + Fe + Al + Cr

P 3.7
Ca 5.5
Mg 11 5.1 4.5
Na 8.2 5
K 7.3 5 2.2
Fe 2.3 1.3 1.3
Mn 2.4
Cu 2
Zn 3.8
Al 2.1 1.5 1.2
Ba 3.2
Cr 12 6.2 5.8
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Figure 3. Visualization of the candidate models for forecasting iron levels in muscles using cross-
validation with partitioning into 3 blocks. The model selected by BIC and Cp Mallows provides the
most accurate estimates of iron levels in muscle tissue during cross-validation.

This observation is confirmed by calculating the mean square using the cross-validation
method. Moreover, this method allows the unbiased estimates of the coefficient of determi-
nation to be obtained (Table 6). As a result, all the external assessments of model quality
indicate that the model with five predictors (x3, x5, x6, x10, and x12) is optimal and best
suited for predicting iron levels in the muscle tissue of Hereford cattle.

Table 6. Evaluation of error in cross-validation of regression models for predicting iron levels in
muscle tissue.

The Formula of the Model SS df MS R2 R2
cv

y~1 + x3 + x5 + x6 + x10 + x12 776.06 31 25.03 0.68 0.55
y~1 + x3 + x4 + x5 + x6 + x10 + x12 1695.66 31 54.7 0.69 0.47

y~1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 +
x+x9 + x10 + x11 + x12 3382.13 31 109.1 0.73 0.3

Note: R2
cv is the coefficient of determination calculated using the cross-validation method.
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3.3. Assessing Residual Assumptions

Initial assessments involved testing the residual distribution for compliance with a
normal distribution using formal Anderson–Darling (A = 0.16; p = 0.93) and Shapiro–Wilk
(W = 0.98; p = 0.90) tests. The visual inspection of the residual distribution also confirmed
the adherence to the Gaussian distribution assumption (Figures 4 and 5, top right).
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The spread of residuals and the square root of standardized residuals against predicted
values indicate the homoscedasticity of residual variance (Figure 6, bottom left and top
graphs). The bottom right graph of Figure 6 is intended to identify influential observations.
The ordinal numbers represent observations with high Cook’s distances. These obser-
vations could be outliers. Through a formal test of residuals with Bonferroni correction,
the Studentized residual with the maximum value is checked against the t distribution.
Consequently, the maximum value of the Studentized residual was 2.92, corresponding
to a corrected significance level (p) of 0.06. Therefore, there is no ground for considering
potentially influential observations as outliers.

Thus, to establish the best and most accurate model for predicting the iron concen-
tration in muscle tissue, it is necessary to determine the levels of magnesium, potassium,
iron, aluminum, and chromium in hair (mg/kg) and substitute these values into the
regression equation:

y = 25.862 − 0.043 × Mg + 0.008 × K − 0.214 × Fe + 0.235 × Al + 1.904 × Cr, (1)
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where y represents the concentration of iron in the muscle tissue (mg/kg).
A scatter plot of the predicted and observed values with a trend line is presented in

Figure 6. The obtained model demonstrated a reasonably high level of accuracy based
on external quality evaluation criteria (Table 6, Figure 3). Therefore, the NRS-2002 can be
recommended for predicting the level of iron in muscle tissue from Hereford cattle.
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standardized residuals versus fitted values, and Cook’s distances. The diagnostic plots indicate that
the selected model complies with the assumptions imposed on linear regression. The numbers on the
figure represent options that could potentially be outliers or points of high intensity.

When comparing our current model with the previously proposed model for pre-
dicting the level of iron in muscle tissue, which utilizes biochemical blood parameters
as predictors [59], both models exhibit strengths and weaknesses. The model proposed
earlier is more compact, devoid of multicollinearity in all coefficients, and has a slightly
greater coefficient of determination. However, a drawback of this model is the invasive
procedure required for sample collection in blood analysis. On the other hand, biochemical
analysis is less expensive than atomic absorption hair analysis. Nonetheless, each of the
proposed models may be relevant depending on the context of their application. Overall,
the two methods demonstrate comparable accuracy; thus, their choice will depend on the
conditions of animal maintenance and the feasibility of analyzing the original samples.
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In turn, the elemental analysis of hair offers several advantages: the collection of hair
samples for analysis is extremely simple and nontraumatic; samples do not require special-
ized equipment for storage and transportation; hair can be stored for almost an indefinite
period without losing its informational value; the concentration of most chemical elements
in hair is greater than that in physiological fluids traditionally used for clinical and bio-
chemical analyses, allowing for a significant expansion of the available chemical elements
for analytical determination; additionally, hair analysis represents integrative information,
reflecting the averaged state of biochemical processes during the period of hair formation
(growth), thus significantly mitigating the influence of short-term factors [41,44,60,61].

4. Conclusions

As a result of the conducted research, to establish an optimal and accurate model for
predicting the concentration of iron in muscle tissue, it is necessary to determine the levels
of magnesium, potassium, iron, aluminum, and chromium in hair (mg/kg), and perform
calculations based on the compiled regression equation. The choice of model is relevant
depending on the context of its use. Overall, the models presented for comparison in the
study have comparable accuracy, so the choice of one over the other will depend on the
conditions of animal husbandry and the capabilities for analyzing the initial samples.
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In future research, there are plans to test and compare the effectiveness of the proposed
models using new data to objectively assess any differences in predictive quality between
the models with different predictors. To enhance the prediction accuracy, the obtained
model could undergo further training. Incorporating new data into the model may neces-
sitate the use of mixed-effects linear models, allowing for the addition of random effects
and addressing multicollinearity issues and other constraints of linear models. The results
obtained can be utilized in the field of ecology for assessing ecological well-being and
determining the permissible iron load on animals. For veterinary medicine, the obtained
model provides the opportunity for a lifelong evaluation of iron levels in Hereford cattle
muscle tissue.
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4. Onmaz, A.C.; Güneş, V.; Çınar, M.; Çitil, M.; Keleş, İ. Hematobiochemical profiles, mineral concentrations and oxidative stress
indicators in beef cattle with pica. Ital. J. Anim. Sci. 2019, 18, 162–167. [CrossRef]

5. Abramowicz, B.; Kurek, L.; Chalabis-Mazurek, A.; Lutnicki, K. Copper and iron deficiency in dairy cattle. J. Elem. 2021, 26,
241–248. [CrossRef]

6. Wysocka, D.; Snarska, A.; Sobiech, P. Iron in cattle health. J. Elem. 2020, 25, 1175–1185. [CrossRef]
7. Khan, Z.; Nawaz, M.; Khan, A.; Bacha, U. Hemoglobin, red blood cell count, hematocrit and derived parameters for diagnosing

anemia in elderly males. Proc. Pak. Acad. Sci. 2013, 50, 217–226.
8. Mondal, B.; Parvez, M.; Rana, M.M.; Rahman, L.; Zahan, R.; Pal, K.C.; Khan, W.A. Status of Red Blood Cell Indices in Iron

Deficiency Anemia and β Thalassaemia Trait: A Comparative Study. Dhaka Shishu (Child.) Hosp. J. 2021, 37, 9–14. [CrossRef]
9. Talukder, J. Role of transferrin: An iron-binding protein in health and diseases. In Nutraceuticals; Academic Press: Cambridge,

MA, USA, 2021; pp. 1011–1025.
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