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Simple Summary: This study used 16S rRNA sequencing and metabolomic methods to investigate the
key gut microbiota and metabolites associated with the growth performance of Macrobrachium rosenbergii
families. We found that some critical intestinal bacteria, including Lactobacillus and Blautia, and the
metabolites related to metabolism of amino acids and fatty acids may play critical roles in the growth
of prawns. This study contributes to figuring out the landscape of the gut microflora and intestinal
metabolites associated with prawn growth performance and provides a basis for future studies on
the probiotic feed of prawns.

Abstract: To investigate the key gut microbiota and metabolites associated with the growth perfor-
mance of Macrobrachium rosenbergii families, 16S rRNA sequencing and LC–MS metabolomic methods
were used. In this study, 90 M. rosenbergii families were bred to evaluate growth performance. After
92 days of culture, high (H), medium (M), and low (L) experimental groups representing three
levels of growth performance, respectively, were collected according to the weight gain and specific
growth rate of families. The composition of gut microbiota showed that the relative abundance of
Firmicutes, Lachnospiraceae, Lactobacillus, and Blautia were much higher in Group H than those in
M and L groups. Meanwhile, compared to the M and L groups, Group H had significantly higher
levels of spermidine, adenosine, and creatinine, and lower levels of L-citrulline. Correlation analysis
showed that the abundances of Lactobacillus and Blautia were positively correlated with the levels
of alpha-ketoglutaric acid and L-arginine. The abundance of Blautia was also positively correlated
with the levels of adenosine, taurine, and spermidine. Notably, lots of metabolites related to the
metabolism and biosynthesis of arginine, taurine, hypotaurine, and fatty acid were upregulated in
Group H. This study contributes to figuring out the landscape of the gut microbiota and metabolites
associated with prawn growth performance and provides a basis for selective breeding.

Keywords: growth performance; gut bacteria; metabolism; LC–MS

1. Introduction

Among the most important crustacean species in aquaculture throughout tropical
and subtropical regions, the giant freshwater prawn (GFP; Macrobrachium rosenbergii) is
one of the world’s most important economic freshwater crustaceans; it has rapid growth
rates, a wide diet, a short breeding cycle, rich meat nutrition, and good adaptability [1].
Furthermore, it is the largest freshwater prawn in the world [2]. The cultivation of
M. rosenbergii has been increasingly important in enhancing agricultural efficiency and
farmer incomes in China. In 2021, the production of M. rosenbergii reached 171,000 tons, and
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it is widely farmed in parts of southern China such as Jiangsu, Zhejiang, Guangdong, etc.
However, with the growing demand for M. rosenbergii, the supply of genetically improved
varieties is causing a bottleneck in M. rosenbergii aquaculture. Hence, the breeding of new
varieties with improved traits, including stress tolerance, high growth rates, and low feed
coefficient, is extremely urgent for the industry.

The animal intestine is a complex ecosystem [3] and the primary organ of digestion
and absorption [4]. Many bacteria inhabit aquatic animals’ intestinal tracts, and the gut
microbiota plays a critical role in determining the phenotypes of aquatic animals, including
nutrient absorption [5], metabolism [6], energy consumption [7], development [8], immu-
nity [9], disease resistance [3,10], etc. Previous studies showed that intestinal bacteria
composition is also affected by host factors such as dietary conditions, development level,
and growth performance [11,12]. A relatively stable level of diversity can be maintained
in gut bacteria by the host’s gut immune system and its intestinal environment [13]. For
example, Xiao et al. [14] discovered that the intestinal flora of zebrafish (Danio rerio) was
separated in different developmental stages. Zhang et al. [15] explored the gut microbial
community of Procambarus clarkii, and revealed that gut microbiota patterns of crayfish
were altered by diet and development. Wang et al. [16] explored the relationship between
the gut microbiota and body mass and suggested that the ratio of Bacteroidetes to Firmi-
cutes and alpha diversity indices of gut microbiota might be related to the body mass of
grass carp (Ctenopharyngodon idella). Xiong et al. [17] conducted 16S rRNA sequencing on
gut and seawater samples of healthy and diseased Litopenaeus vannamei, and the results
showed that changes in the intestinal bacterial community were closely related to the
severity of diseased shrimp. Duan et al. [18] investigated the composition of the intestinal
microbiome of L. vannamei fed with diets containing Clostridium butyricum, and found that
the microbial metabolism activity was enhanced, and the digestion and immunity of the
host were promoted.

Over the past decades, many studies have demonstrated that the structure of gut
microbiota could affect the growth and development of the host organisms [19,20]. For
example, Fan et al. [19] found that different gut microbiota affected nutrient absorption
and body weight of L. vannamei. As a result of regulating feed conversion efficiency,
intestinal flora could promote intestinal metabolism, which is of great importance for
cultivating new strains with excellent growth properties [20]. Sha et al. [21] characterized
the microbial community of the intestine in Apostichopus japonicus and showed that the
growth performance of sea cucumbers was closely related to the gut microbiota. How
gut microbiota affect feed conversion efficiency, and whether they contribute to growth
and development, nutrition metabolism, immunity, and disease resistance still need to be
further explored.

Intestinal metabolites in aquatic animals have been extensively investigated in recent
years. Metabolomic methods have been used to efficiently acquire and analyze large
quantities of intestinal metabolites [22]. Uengwetwanit et al. [23] integrated 16S rRNA
sequencing and high-performance liquid chromatography–mass spectrometry (LC–MS)
to investigate the gut microbiota and metabolites involved in the growth performance of
black tiger shrimp (Penaeus monodon) by comparing the top- and the bottom-weight shrimp.
Likewise, Guo et al. [24] found that the addition of potentially beneficial bacteria would
promote the accumulation of various bioactive metabolites and benefit the growth of shrimp.
Chen et al. [25] showed that the reduced growth rate and increased intestinal permeability
of Chinese seabass (Lateolabrax maculatus) were related to the changes in intestinal bacterial
microbiota and metabolites. A previous study proposed that changes in gut microbiota of
fish could alter the metabolism of tryptophan, which in turn affects intestinal physiological
functions [26]. In marine medaka (Oryzias melastigma), He et al. [27] found that some
genera (such as Shewanella and Haloferula) have the capabilities of converting energy,
bioremediating, and detoxifying, which has important effects on the metabolic health of
marine medaka.
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Gut microbiota indeed plays a crucial role in intestinal development, host growth,
and immunity of aquatic animals. In addition, the gut microbiota interacts with the host
primarily through the produced metabolites. The dynamics of gut microbiota can affect
the intestinal metabolic network as well. The roles of intestinal microbiota and metabo-
lites in high-performance GFP families are still not clear. To investigate the features of
gut microbiota and metabolites in the GFP families with different growth performance,
we used 16S rRNA sequencing and LC–MS methods to explore the intestinal bacteria
composition and abundance, as well as the characteristics of intestinal metabolites of
90 GFP families. This study contributes to understanding the superiority of gut microbiota
and metabolites of GFP families with high growth rates, and provides a better understand-
ing of the improvement of the digestion and absorption capacity of GFP in aquaculture.

2. Materials and Methods
2.1. Cultivation Management

The GFP samples were collected from Jiangsu Shufeng Aquatic Seed Industry Co.,
Ltd. (Gaoyou, China). A total of 90 bred families were raised, and 150 juveniles (initial
body weight of 2.39 ± 0.29 g) of each family were selected for this study. Since July 2021,
90 families were cultured separately in 90 cement tanks, and the area of each cement tank
was 15 m2. During the feeding period, the water temperature was kept at 28 ± 2 ◦C. The
water quality was monitored regularly every day to keep the pH at 7.5–8, dissolved oxygen
≥ 5.5 mg/L, ammonia nitrogen ≤ 0.25 mg/L, and nitrite ≤ 0.1 mg /L. Replacement of
fresh water was carried out every four days. The whole tank was oxygenated for 24 h
without interruption. The prawns were fed with a formula diet from Jiangsu Fuyuda Grain
Products Co., Ltd. (the daily feeding quantity is approximately 6–8% of the total body
weight of the juveniles per tank) twice daily (06:30 and 16:00). The main ingredients of
the formula diet were as follows: crude protein ≥ 38%, crude fat ≥ 5%, crude fiber ≤ 7%,
ash ≤ 16%, water ≤ 12%. Particularly, from 1 September to the end of culture, formula diet
was fed at 06:30 and snail meat was fed at 16:00. During the breeding period, formula diet
was fed from 1 July to 31 August. From 1 September to the end of breeding, formula diet
was fed at 06:30 and snail (Bellamya quadrata) meat was fed at 16:00. The feeding experiment
lasted 92 days. After the feeding experiment, all individuals were measured for evaluating
growth performance, including body weight and body length.

2.2. Experimental Groups

A total of 90 GFP breeding families were divided into high, medium, and low growth
performance groups (named as H, M, and L) according to the weight gain and specific
growth rate. Three families of each group were randomly selected for the 16S rRNA
sequencing and metabolomics.

2.3. Sampling

Before the sampling, prawns from the 9 selected GFP families were starved for
24 h. The intestines of 28 individuals from each family were randomly sampled in a
sterile environment. Subsequently, the intestinal samples were separated into 2 tubes and
frozen in liquid nitrogen. Of these, 0.3 g was placed in a 5 mL sterile tube and immediately
stored at −80 ◦C for 16S rRNA sequencing. In addition, 0.2 g was placed in a 10 mL
sterile tube and stored at −80 ◦C for metabolomic study. For 16S rRNA sequencing and
metabolomics, 6 biological replicates were performed in this study.

2.4. 16S rRNA Sequencing
2.4.1. DNA Extraction, 16S rRNA Amplification, and Sequencing

The genome DNA of the intestines was extracted using the CTAB method. DNA
concentration and purity were checked by Qubit and 1% agarose gel electrophoresis. PCR
amplification was carried out using the specific primers 338F and 806R for the V3-V4 region
of the bacterial 16S rRNA gene (468 bp) (338F: 5′-ACTCCTACGGGAGGCAGCAG-3′; 806R:
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5′-GGACTACHVGGGTWTCTAAT-3′). All PCR reactions were carried out with 15 µL of
Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA). PCR
products were purified and pooled using the Qiagen Gel Extraction Kit (Qiagen, Hilden,
Germany). Sequencing libraries were prepared using the TruSeq® DNA PCR-Free Sample
Preparation Kit (Illumina, San Diego, CA, USA) following the manufacturer’s instructions.
The library quality was assessed on the Qubit 2.0 Fluorometer (Thermo Scientific, Waltham,
MA, USA) and Agilent Bioanalyzer 2100 system (Thermo Scientific, USA). The library
was sequenced on an Illumina NovaSeq 6000 platform with PE 250 mode at Beijing Nova
Technology Co., Ltd. (Beijing, China).

2.4.2. Bioinformatics and Statistical Analysis of 16S rRNA Sequencing

Bioinformatics analysis of 16S rRNA sequencing was performed with QIIME v.1.9.1 [28].
Firstly, the raw data were subjected to merging using FLASH v1.2.7 [29], and then we
filtered and removed the chimera sequence to obtain the Effective Tags. All Effective Tags
were clustered into operational taxonomic units (OTUs, 97% similarity level) using the
Uparse v7.0.1001 [30]. The most abundant sequences were selected as the representative
sequences of OTUs. In addition, to explore the differences in community composition
among different groups, OTUs abundance, calculation of alpha diversity and beta diversity,
Venn diagram, LEfSe (LDA effect size), and metastat analysis were performed. Observed
species, Chao1, Shannon, Simpson, ACE, and PD whole tree indexes were calculated
using QIIME software. The differences in the alpha diversity index between groups were
analyzed using R [31] and visualized as box plots. Principal component analysis (PCA)
and principal coordinates analysis (PCoA) were displayed using the “ade4” and “ggplot2”
packages in R. Nonmetric multidimensional scaling (NMDS) analysis was performed using
the “vegan” package in R. In addition, LEfSe analysis was performed with the LEfSe
software [32] to detect differences between groups.

2.5. Metabolomic Analyses
2.5.1. Identification of Metabolites

A total of 25 mg tissues of each group were extracted by directly adding 800 µL
of precooled extraction reagent (methanol: acetonitrile: water (2:2:1, v/v/v)), and an
internal standards mix was added for quality control. After homogenizing for 5 min using
TissueLyser (JXFSTPRP, Shanghai, China), samples were then sonicated for 10 min and
incubated at −20 ◦C for one hour. Samples were centrifuged for 15 min at 25,000 rpm,
and the supernatant was then transferred for vacuum freeze drying. After centrifuging for
15 min at 25,000 rpm, the metabolites were resuspended in 600 µL of 10% methanol and
sonicated for 10 min at 4 ◦C. The supernatants were transferred to autosampler vials for
LC–MS analysis. A quality control (QC) sample was prepared by pooling the same volume
of each sample to evaluate the reproducibility of LC–MS analysis. To obtain more reliable
results, the samples were randomly ordered to reduce system errors. A QC sample was
interspersed for every 10 samples.

2.5.2. LC–MS Data Processing and Identification of Differential Metabolites

Metabolites were separated and detected using a Waters 2D UPLC (Waters, Milford,
MA, USA) tandem Q Exactive high-resolution mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). The MS raw data (raw file) collected by LC–MS were imported into
Compound Discoverer 3.1 (Thermo Fisher Scientific, USA) for data processing, including
peak extraction, retention time correction within and between groups, additive ion pooling,
missing value filling, background peak labeling, and metabolite identification. Metabolites
were identified using the BMDB (Bovine Metabolome Database), mzCloud, and ChemSpi-
der (HMDB, KEGG, LipidMaps) databases. The main parameters of metabolite identifica-
tion included precursor mass tolerance < 5 ppm, fragment mass tolerance < 10 ppm, and
RT tolerance < 0.2 min.
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The metaX software [33] was used for the subsequent analyses, including normalizing
the data using the probabilistic quotient normalization (PQN) to obtain the relative peak
area, correcting the batch effect using QC-RLSC (quality-control-based robust LOESS signal
correction), calculating the CV (coefficient of variation) of the relative peak area in all
QC samples, and deleting the compounds with a CV greater than 30%. In the univariate
analysis, fold change (FC) was obtained through fold change analysis, the p-value was
determined by the t-test, and the p-value was corrected for false discovery rate (FDR)
to obtain the q-value. Differential metabolites between groups were screened using the
variable importance in the projection (VIP) values, FC, and q-values (VIP ≥ 1, FC ≥ 1.2 or
≤ 0.83, q < 0.05). Pathway enrichment analysis of differential metabolites was performed,
and the significantly enriched pathways were determined with a p-value < 0.05.

2.6. The Correlation Analysis between Gut Microbiota and Differential Metabolites

The correlations between gut microbiota biomarkers and significantly differential
metabolites were evaluated by Pearson correlation analysis and visualized in a heatmap
using the package “gplots” in R. If p-value < 0.05, the correlation was considered to be
significant. Furthermore, we used the Mantel test to evaluate the relationship between the
key differential gut microbes and differential metabolites. The Mantel test was performed
using the “vegan” package.

2.7. Statistical Analysis

IBM SPSS Statistics 25 software (Chicago, IL, USA) was used for one-way analysis of
variance (ANOVA) and followed by Duncan’s multiple comparisons to obtain the growth
performance (including body weight, body length, weight gain rate, and specific growth
rate) of adult GFPs in three groups. The data are presented as means ± standard deviations
(S.D.). A p < 0.05 indicated a significant difference, and p < 0.001 indicated a highly
significant difference. The parameters were calculated as follows:

Weight gain (WG, %) = (mean final body weight-mean initial body weight)/mean initial body weight × 100

Specific growth rate (SGR, %/day) = [(Ln (final body weight) − Ln (initial body weight)/Culture period in days] × 100

3. Results
3.1. Growth Performance of GFP Families

After 92-day rearing, the 90 GFP families were collected for growth trait measurement
(Figure 1). The three groups with different growth performance, including the high growth
performance group with an average body weight of 41.03± 1.44 g, WG of 1616.82± 60.08%,
and SGR of 3.09± 0.04 %/d, the middle growth performance group with an average weight
of 37.46± 0.73 g, WG of 1467.45± 30.54%, and SGR of 2.99± 0.02 %/d, and the low growth
performance group with an average weight of 33.34 ± 1.97 g, WG of 1294.82 ± 82.31%, and
SGR of 2.86 ± 0.07 %/d, were selected as representatives (Table 1). The GFPs in Group H
had significantly higher (p < 0.001) FBW, FBL, WG, and SGR than those in M and L groups.
Moreover, the FBW, FBL, WG, and SGR of the GFPs in Group L were significantly lower
(p < 0.001) than in Group M (Figure 2).

3.2. Gut Microbiota of GFP Families
3.2.1. Composition of the Gut Microbiota within the Three Levels of Growth Performance

According to Chao1, ACE, observed species, and PD whole tree indexes, Group
H had significantly higher richness, OTUs numbers, and characterization evenness of
gut microbiota than Group L. However, the Shannon and Simpson indexes had slight
differences among the three groups but they were not significant (Figure S1). This indicated
that the overall diversity of microbiota in the three groups was similar. The distribution of
OTUs in different groups showed that Group H had the most OTUs (1800), followed by
Group M (1461) and Group L (796). All groups contained 378 core OTUs, and Group L had
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the highest ratio of core OTUs to unique OTUs (378/199) (Figure 3A). The NMDS diagram
revealed obvious separations among the three groups (Figure 3B). In addition, PCA and
PCoA analysis showed significant differences in the bacterial community among the three
groups (Figure 3C,D).
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Figure 1. Morphological characteristics of the three growth levels of GFP. H, high growth performance
level; M, middle growth performance level; L, low growth performance level.

Table 1. Growth performance of M. rosenbergii families under the same feeding conditions for
92 days.

Sample Name FBW (g) FBL (cm) WG (%) SGR (%/d)

Group H 41.03 ± 1.44 A 11.28 ± 0.19 A 1616.82 ± 60.08 A 3.09 ± 0.04 A

Group M 37.46 ± 0.73 B 10.99 ± 0.11 B 1467.45 ± 30.54 B 2.99 ± 0.02 B

Group L 33.34 ± 1.97 C 10.59 ± 0.24 C 1294.82 ± 82.31 C 2.86 ± 0.07 C

Note: FBW, final body weight; FBL, final body length; WG, weight gain; SGR, specific growth rate. A,B,C Different
letters indicate extremely significant differences (p < 0.001). H, high growth performance level; M, middle growth
performance level; L, low growth performance level.

3.2.2. Identification of Differential Gut Microbiota within the Three Levels of
Growth Performance

The histogram of LDA distribution and the branching diagram are shown in Figure 4.
In Group H, the Firmicutes, Desulfobacterota, and Acidobacteriota at the phylum level
were significantly enriched. At the class level, Bacilli, Clostridium, and Desulfovibrionia
were enriched. At the order level, Bacteroidales, Lachnospirales, Peptostreptococcales,
Tissierellales, and Desulfovibrionales were enriched. There were four main biomarkers
at family level in Group H, including Lactobacillaceae, Lachnospiraceae, Peptostreptococ-
caceae, and Desulfovibrionaceae. At the genus level, Lactobacillus, Romboutsia, Desulfovibrio,
Blautia, and Lachnoclostridium were detected. The biomarkers at the species level mainly
included Lactobacillus iners, Romboutsia ilealis, and Pseudomonas azotoformans. Likewise, we
found that the families Weeksellaceae, Flavobacteriaceae, and Vermiphilaceae were mostly
enriched in Group L, and the genera Gemmobacter, Cloacibacterium, and Flavobacterium were
also detected.
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To further evaluate the differential gut flora among the three groups, the relative
abundances of intestinal microbes in each group at the phylum and genus level are shown
in Figure S2, respectively. The dominant phyla in all groups were Proteobacteria, of
which the relative abundances in H, M, and L groups were 83.7%, 88.3%, and 92.8%,
respectively, and Firmicutes, of which the relative abundances in H, M, and L groups
were 14.2%, 9.7%, and 4.4%, respectively. The Firmicutes was more abundant in Group H
than in other groups, while Proteobacteria was less abundant. A genus-level comparison
of intestinal microbes revealed that the relative abundances of Enterobacter, Lactobacillus,
Escherichia-Shigella, Desulfovibrio, Romboutsia, [Ruminococcus] torques group in Group H were
significantly higher than in the other two groups, and those in Group M were higher than
those in Group L. Notably, Rikenellaceae_RC9_gut_group, Butyricicoccus, and CHKCI001 were
only detected in Group H. Faecalibacterium (0.057%) and Romboutsia ilealis (0.11%) were
more abundant in Group H than in the other two groups (Table 2). The heatmaps of the
abundances of intestinal microbes among different groups further revealed the difference
in the composition of intestinal microbes (Figure S3).

3.3. Metabolomics Analyses of GFP Families
3.3.1. Identification of Differential Intestinal Metabolites among Three Groups

PCA showed that the samples from three groups were divided into three clusters and
the samples from same group were clustered together according to the first two compo-
nents in ESI+ and ESI− scan modes (Figure 5A,B). The differential metabolites among the
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three groups are shown in Table 3. A total of 1173 metabolites with significant differences
were identified among different groups in ESI+ mode. Meanwhile, 428 metabolites with
significant differences were identified among different groups in ESI− mode. Venn dia-
grams (Figure 5C,D) in positive and negative scan modes showed overlapping and specific
differential metabolites identified from the pairwise comparisons, and 19 overlapping
metabolites were detected among the three pairwise comparisons. Based on significantly
different metabolites, the clustering analysis indicated obvious differences between H and
L groups (Figure S4).
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growth performance level.
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Figure 4. (A) A histogram of the distribution of linear discriminant analysis (LDA) values among
GFP families with three growth performance groups; (B) an evolutionary branching diagram of
species abundance among GFP families with three growth performance groups. LDA score > 2.2. In
a branching diagram, node size represents the average relative abundance of the taxon. The yellow
nodes represent taxa that are not significantly different among the three groups, whereas the green,
red, and blue nodes indicate that these taxa are significantly different. And this color represents a
higher abundance in the corresponding sample group. Identifies taxa with significant differences
using letters. H, high growth performance level; M, medium growth performance level; L, low
growth performance level.

Compared to Group L, a total of 169 and 256 metabolites were upregulated, and
169 and 146 metabolites were downregulated in Group H and Group M, respectively.
Compared to Group M, a total of 191 metabolites were upregulated, and 242 metabolites
were downregulated in Group H. To screen out the key metabolites that probably mediated
the growth performance of GFPs, we classified the functions of metabolites, and focused
on 20 key differential metabolites (Table 4). Compared to M and L groups, the levels of
spermidine, 4-oxoproline, adenosine, N-acetyl-l-phenylalanine, tryptophol, 8(s)-hydroxy-
(5z,9e,11z,14z)-eicosatetraenoic acid, 13(s)-hotre, hydroxylysine, trimethylamine n-oxide,
creatinine, and N-[(5s)-5-amino-5-carboxypentanoyl] cysteinyl-d-valine were significantly
higher in group H (p < 0.05). Conversely, the levels of L-citrulline, P-dmea, maleamic acid,
cytosine, 4-guanidinobutyric acid, 5-guanidino-2-oxopentanoic acid, 3-methoxytyramine,
(9cis)-retinal, and 4-hydroxy-3-octaprenylbenzoic acid in Group L were much higher than
in H and M groups.
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Table 2. Relative abundances of differential bacterial communities in GFP families with three growth performance groups.

Phylum Family Genus Species
Group H Group M Group L

Mean (%) S.D. (%) Mean (%) S.D. (%) Mean (%) S.D. (%)

Proteobacteria 83.66 8.242 88.29 6.424 92.80 2.199
Firmicutes 14.20 8.656 9.665 5.391 4.370 2.558

Bacteroidota 0.397 0.335 0.408 0.506 0.797 0.933
Desulfobacterota 0.204 0.221 0.012 0.009 0.006 0.005

Firmicutes Lactobacillaceae 0.470 0.705 0.021 0.010 0.006 0.005
Firmicutes Lachnospiraceae 0.502 0.333 0.027 0.025 0.007 0.007
Firmicutes Peptostreptococcaceae 0.136 0.111 0.036 0.036 0.010 0.004
Firmicutes Lactobacillaceae Lactobacillus 0.431 0.700 0.007 0.005 0.001 0.001
Firmicutes Lachnospiraceae CHKCI001 0.188 0.221 — — — — — — — —
Firmicutes Peptostreptococcaceae Romboutsia 0.111 0.114 0.003 0.003 0.001 0.001
Firmicutes Lachnospiraceae [Ruminococcus]_torques_group 0.095 0.102 0.0002 0.001 — — — —
Firmicutes Lachnospiraceae Blautia 0.043 0.022 0.003 0.005 0.0005 0.001
Firmicutes Ruminococcaceae Faecalibacterium 0.057 0.057 0.007 0.007 0.005 0.005
Firmicutes Butyricicoccaceae Butyricicoccus 0.014 0.016 — — — — — — — —
Firmicutes Streptococcaceae Streptococcus 0.017 0.010 0.010 0.008 0.004 0.004

Proteobacteria Enterobacteriaceae Enterobacter 2.045 2.123 1.426 0.327 1.356 0.554
Proteobacteria Enterobacteriaceae Escherichia-Shigella 0.156 0.291 0.009 0.009 0.003 0.002
Proteobacteria Vibrionaceae Vibrio 0.018 0.017 0.014 0.010 0.005 0.004
Bacteroidota Rikenellaceae Rikenellaceae_RC9_gut_group 0.129 0.246 — — — — — — — —
Bacteroidota Bacteroidaceae Bacteroides 0.037 0.041 0.002 0.002 0.001 0.001

Desulfobacterota Desulfovibrionaceae Desulfovibrio 0.126 0.159 0.002 0.002 0.001 0.002
Firmicutes Peptostreptococcaceae Romboutsia Romboutsia_ilealis 0.111 0.114 0.003 0.003 0.001 0.001
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3.3.2. Key Roles of the Differential Metabolites in Growth Performance

The KEGG enrichment analysis revealed that ”D-arginine and D-ornithine metabolism”,
“arginine biosynthesis”, “arginine and proline metabolism”, “tryptophan metabolism”,
“amino acid biosynthesis”, ”ABC transport synthesis”, “TCA cycle”, “taurine and hypotau-
rine metabolism”, “alanine, aspartate, and glutamic acid metabolism”, “phenylalanine,
tyrosine, and tryptophan biosynthesis”, “linoleic acid and purine metabolic pathways”,
“pantothenic acid and CoA biosynthesis”, and “thiamine metabolism pathway” were sig-
nificantly enriched (Figure S5). Likewise, we performed the enrichment analysis with
20 key metabolites, and they were enriched in the pathways, including “arginine and pro-
line metabolism”, “PPAR signaling pathway”, “arachidonic acid metabolism”, and “retinol
metabolism” (Figure 6). Compared to individuals from M and L groups, the upregulated
metabolites in Group H were involved in “arginine and proline metabolism”, “arachidonic
acid metabolism”, “alpha-Linolenic acid metabolism”, and “purine metabolism” etc. Like-
wise, the upregulated metabolites in Group L were enriched in “arginine biosynthesis”
and “nicotinate and nicotinamide metabolism”. Interestingly, we found that the pathways
associated with metabolism of amino acids and fatty acids were extensively detected based
on the enrichment analyses. Hence, we inferred that the upregulated metabolites related to
metabolism of amino acids and fatty acids may play critical roles in the growth of GFP.
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Table 3. Summary of the numbers for differential metabolites in ESI+ and ESI− scan modes among three comparison groups.

Mode Pairwise Comparison Total Differential
Metabolites Number

Up/Downregulated
Differential Metabolites

Number

Identification Level 1 Differential
Metabolites Number

Identification Level 2 Differential
Metabolites Number

Upregulated Downregulated Upregulated Downregulated

ESI+ Group L vs. Group H 338 169/169 3 8 9 10
Group L vs. group M 402 256/146 6 8 23 13
Group M vs. Group H 433 191/242 5 8 9 22

ESI− Group L vs. Group H 107 60/47 1 0 4 5
Group L vs. group M 168 87/81 2 0 5 0
Group M vs. Group H 153 94/59 9 1 13 6

Note: H, high growth performance level; M, medium growth performance level; L, low growth performance level.

Table 4. The abundance of key intestinal metabolites among three growth performance groups (VIP ≥ 1; FC ≥ 1.2 or FC ≤ 0.83; p < 0.05).

Name Pathway Group H Group M Group L

Mean Mean Mean

Spermidine Arginine and proline metabolism 7,568,085.52 503,668.63 297,921.56
L-citrulline Arginine biosynthesis 12,351,334.96 28,501,478.19 50,349,665.38

4-oxoproline Arginine and proline metabolism 34,504,224.16 21,513,189.36 14,195,014.97
Adenosine Purine metabolism 20,948,251.26 16,955,727.72 5,034,361.71

N-acetyl-l-phenylalanine Phenylalanine metabolism 16,939,441.79 9,720,963.52 8,590,198.80
Tryptophol Tryptophan metabolism 3,882,503.94 2,171,436.62 1,993,910.23

8(s)-hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid Arachidonic acid metabolism 12,940,493.38 12,410,918.29 8,284,469.84
13(s)-hotre alpha-Linolenic acid metabolism 9,965,759.94 5,687,309.98 5,470,815.92

Hydroxylysine Lysine degradation 1,790,922.13 1,040,770.98 576,601.17
P-dmea Glycerophospholipid metabolism 2,420,117.054 5,503,074.12 6,928,635.32

Maleamic acid Nicotinate and nicotinamide metabolism 3,819,384.43 7,534,743.65 9,223,492.68
Trimethylamine n-oxide Metabolic pathways 11,407,950.24 9,534,357.45 2,708,587.02

Cytosine Pyrimidine metabolism 26,885,730.18 32,999,513.02 67,604,815.23
Creatinine Arginine and proline metabolism 24,423,233.36 18,256,455.97 15,024,899.59

4-guanidinobutyric acid Arginine and proline metabolism 4,072,488.34 4,784,183.04 7,288,469.76
5-guanidino-2-oxopentanoic acid Arginine and proline metabolism 5,655,838.31 8,563,793.46 10,158,770.44

N-[(5s)-5-amino-5-carboxypentanoyl] cysteinyl-d-valine Metabolic pathways 2,077,361.39 2,046,182.39 1,352,700.594
3-methoxytyramine Tyrosine metabolism 622,589.31 1,369,607.54 1,611,085.97

(9cis)-retinal Retinol metabolism 13,138,741.23 20,809,948.49 30,180,669.50
4-hydroxy-3-octaprenylbenzoic acid Ubiquinone and another terpenoid-quinone biosynthesis 7,617,111.30 20,111,478.28 20,269,682.87

Note: H, high growth performance level; M, medium growth performance level; L, low growth performance level.
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Figure 6. KEGG pathway enrichment analysis of the differential metabolites identified among three
growth performance groups of GFPs.

3.4. Correlation Analysis between Gut Microbiota and Metabolites

To find the key microbiota and metabolites associated with growth, the correlation
analysis of these two datasets was performed. The results indicated that there was a close
correlation between the gut microbiota and metabolites in H and L groups (Figure 7A). The
results of the Mantel test analysis were consistent with the correlation results (Figure 7B). The
abundances of Clostridiaceae and Lactobacillus were significantly positively correlated with the
levels of pyroglutamate, alpha-ketoglutaric acid, L-arginine, and D-ornithine. The abundance
of Bacteroides was positively correlated with the levels of adenosine and taurine. Notably,
the abundance of Blautia was highly positive correlated with the levels of adenosine, tau-
rine, leucine, pyroglutamate, alpha-ketoglutaric acid, L-arginine, nicotinic acid, D-ornithine,
and spermidine. In addition, it was negatively correlated with the levels of L-glutamic acid.
However, among the main metabolites, alpha-ketoglutaric acid was significantly correlated
with several gut microbiota, including Clostridiaceae, Lactobacillus, Bacteroides, Blautia, Vibrio,
CHKCI001 sp., Bacillus, and Escherichia-Shigella. Meanwhile, metabolite-to-metabolite correla-
tion analysis revealed that the abundances of key differential metabolites, except L-glutamic
acid, that were positively and significantly correlated.
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3.5. The Roles of the Metabolites Related to Metabolism of Key Amino Acids and Fatty Acids in
Growth Performance of GFP

The metabolite pathway enrichment and integrative analysis showed that the gut
metabolites and their association with gut microbiota affected the growth performance of
GFP by mediating the pathways of metabolism of amino acids and fatty acids (Figure 8). In
“Purine metabolism”, adenosine, a key regulatory in energy metabolism, was significantly
upregulated in Group H. Likewise, lots of metabolites, such as L-arginine, spermidine, crea-
tinine, D-oxoproline, and D-ornithine, which mediate the downstream pathways, including
arginine biosynthesis and metabolism, as well as taurine and hypotaurine metabolism,
were upregulated in Group H. Importantly, all of arginine, taurine, and hypotaurine are
associated with the biosynthesis of growth hormone in animals. Moreover, the unsaturated
fatty acids (i.e., α-Linolenic acid and 13(s)-hotre) related to fatty acid metabolism were
also upregulated in the fast-growing individuals. The up-regulated key metabolites that
participate in arginine, taurine, and hypotaurine biosynthesis and metabolism, as well as
metabolism of unsaturated fatty acids, play a vital role in the growth of GFP. They could be
used as potential biomarkers for selecting the fast-growing prawns.
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Figure 7. (A) Heatmap of correlation coefficients between the key gut microbiota and metabolites
identified between H and L groups. * Indicates significantly positively correlated; ** indicates
highly significantly positively correlated; *** indicates the highest significantly positively correlated;
(B) correlation between differential metabolites and correlation between the key differential gut
microbiota and metabolites in H and L groups using Mantel test. The color patch in each square of
the heatmap represents the positive or negative correlation coefficient between metabolites, and the
patch size represents the absolute value of the correlation coefficient. The key intestinal microbiota
is associated with differential intestinal metabolites one by one. The Line thickness indicates the
strength of the correlation, and the line color indicates the degree of significance. H, high growth
performance level; L, low growth performance level.
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genetic effects on the gut microbiota are almost ubiquitous [34,35]. GFP growth rate was 
substantially increased through artificial selection and breeding, and its gut microbiota 

Figure 8. Mapping of key differential metabolites between H and L groups in the relevant KEGG
pathways. The “Arachidonic acid metabolism pathway” is shown in khaki, the “α-Linolenic acid
metabolism pathway” is in purple, the “Arginine and proline metabolism pathway” is in green,
the “Arginine biosynthesis pathway” is in pink, the “Purine metabolism pathway” is in yellow,
the “Taurine and hypotaurine metabolism pathway” is in gray, and the “TCA cycle pathway” is in
blue. The up- and down-regulated metabolites are presented by red and blue arrows, respectively.
And their font colors are also presented by red and blue, respectively. Dashed arrows indicate the
connectivity to another pathway. The color of each square next to the bacteria represents the intensity
of the bacteria abundance, the red indicates the highest abundance, and the yellow indicates the
lowest abundance.

4. Discussion
4.1. Gut Microbiota Promotes the Growth and Metabolism of GFPs

The intestinal microbiota structure is influenced by the host genetics, and the host
genetic effects on the gut microbiota are almost ubiquitous [34,35]. GFP growth rate was
substantially increased through artificial selection and breeding, and its gut microbiota
may also have been altered [36]. This study was the first to investigate the diversity and
richness of intestinal bacterial communities with 16S rRNA sequencing. In this study, the
differences in gut microbiota were compared with the GFP families in different growth
performances. With the results of 16S rRNA sequencing, we found that the Firmicutes-to-
Bacteroidetes ratio was higher in Group H than in Group M or L. Previously, Liu et al. [37]
reported that Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in
GFPs, which was consistent with our results. Furthermore, Turnbaugh et al. [38] found
that Firmicutes promoted energy absorption by improving lipid metabolism. Bacteroidetes
could increase carbohydrate metabolism to promote energy metabolism [39]. Previous
studies [40,41] reported that Firmicutes could improve energy utilization in diets, and
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the Firmicutes-to-Bacteroidetes ratio was positively correlated with body weight gain in
chickens. In crustaceans, a study also demonstrated that the abundance of Firmicutes
in normal-growing shrimp was significantly higher than that in slow-growing shrimp
(p < 0.01) [42]. Hence, we inferred that the high abundance of Firmicutes in Group H could
help GFPs to absorb and store more energy, improving growth performance.

Additionally, we found that Lachnospiraceae was highly enriched in Group H, and
the relative abundances of Blautia genus and [Ruminococcus] Torques group belonging
to Lachnospiraceae were also the highest in Group H among the three groups. Lach-
nospiraceae produces butyric acid, which promotes the intestinal and general health of
animals [43]. It has been reported that butyric acid could improve the growth performance
of L. vannamei [44]. Notably, the relative abundance of Faecalibacterium was the highest
in Group H. Butyricicoccus was only detected in Group H. Previous studies showed that
Butyricicoccus and Faecalibacterium could produce butyrate from acetic acid, which pro-
moted proliferation and differentiation of epithelium of the gut by releasing butyrate close
to the epithelium [45]. These probiotics detected from Group H could account for the good
growth performance of GFP. Meanwhile, Group H had the highest abundance of lactic acid
bacteria species, such as Lactobacillus, which could regulate the intestinal environment, mu-
cosal immunity, and maintain intestinal function [46,47]. The intestinal tracts of GFPs from
the high growth performance group had the highest relative abundances of Butyricicoccus,
Faecalibacterium, Vibrio, Bacteroides, and Lactobacillus, which could improve the intestinal
digestion and also maintain gut health of the host.

4.2. Key Metabolites Play Important Roles in the Growth of GFPs

Intestinal microbiota-derived metabolites have been proposed to play key roles in
nutrient digestion and absorption of aquatic animals [18]. Genetic variations could affect the
intestinal metabolism, which in turn regulates the expression of genes related to metabolic
processes [48]. Meanwhile, numerous physiological functions of the host are affected by
the microbiota through its metabolic products. In this study, the abundance of spermidine,
creatinine, adenosine, 8(s)-hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid, and 13(s)-hotre
in Group H were significantly higher compared to other groups. Meanwhile, the levels of
these five metabolites in Group L were lower than those in Group M. The abundance of
L-citrulline in Group L was upregulated compared to Group H and M. These metabolites
were involved in the metabolism of several key amino acids (i.e., arginine, taurine, and
hypotaurine), fatty acid metabolism, and purine metabolism.

Spermidine and creatinine are involved in “arginine and proline metabolism”. Argi-
nine is the precursor of the biosynthesis of spermidine [49], and could boost the level of
glutathione (GSH) [50]. Moreover, spermidine was positively correlated with glutathione
metabolism [51], which benefited intestinal integrity and improved its immune func-
tion [52]. Reduced spermidine levels lead to decreased glutathione levels [51]. Spermine
and spermidine promoted intestinal proliferation and maturation, and they played a key
role in development [53]. Except for the endogenous production, spermidine could be
biosynthesized by gut bacteria [54]. Liu et al. [55] reported that higher creatinine levels
were associated with growth. Creatinine was produced by the metabolism of creatine and
related to “arginine and proline metabolism”. Proline and arginine could be produced
by glutamine metabolism. However, glutamine could indirectly contribute to creatinine
synthesis and nutrient absorption [56].

L-citrulline is associated with “arginine biosynthesis”. Citrulline is the sole precursor
for arginine synthesis [57]. Biosynthesis of arginine could decrease L-citrulline levels by
converting citrulline into arginine. Adenosine was enriched in “purine metabolism” in this
study. It was widely accepted that adenosine was an energy metabolite [58]. Adenosine
modulated a wide range of processes in many gastrointestinal cells [59], and was essen-
tial for ATP biosynthesis and CoA biosynthesis required for fatty acid metabolism [60].
Meanwhile, we found that 8(s)-hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid and 13(s)-
hotre, which participated in the “arachidonic acid metabolism” and “alpha-linolenic acid



Animals 2023, 13, 1539 17 of 21

metabolism”, were upregulated in Group H. “Arachidonic acid metabolism” and “alpha-
linolenic acid metabolism” are related to fatty acid metabolism [61]. Furthermore, Ueng-
wetwanit et al. [23] reported that shrimp growth and development were largely dependent
on lipid metabolism. Meanwhile, the “PPAR signaling pathway” was also important in
lipid metabolism and could regulate energy balance [62]. Therefore, we speculated that the
metabolites related to “arginine and proline metabolism” and lipid metabolism may play
important roles in the growth performances of GFPs.

Previously, Lin et al. [63] identified a number of important metabolites that were
produced by gut microbiota such as amino acids. In this study, among the metabolites in
the intestine of prawns between the H and L groups, the amino acids were the primary
metabolic products of intestinal flora, including spermidine, D-ornithine, nicotinic acid,
L-arginine, alpha-ketoglutaric acid, pyroglutamate, leucine, taurine, and adenosine, which
played a key role in growth and development of GFPs. Notably, spermine and spermidine
are formed from ornithine [64], and could also promote intestinal flora growth [65]. Alpha-
ketoglutaric acid (AKG) was a TCA cycle intermediate. The TCA cycle is a metabolic nexus
that links the metabolism of carbohydrates, fats, and proteins [66]. Meanwhile, it is an
important metabolic pathway for bacteria, and bacteria are reliant on the TCA cycle for
energy production [67]. It has been demonstrated that taurine could improve the utilization
rate of protein in feed [68], increase protein deposition in aquatic animals [69], and promote
growth in animals [70]. Taurine affects the activities of various digestive enzymes of fish,
promotes metabolism, increases survival rate, increases growth rate, and helps fish develop
morphologically [71]. Overall, Group H possessed more superior metabolites and had
better digestion, absorption, and metabolism than Group L.

Animal hosts could absorb nutrients via the fatty acid metabolisms with Firmi-
cutes [72]. Several members of Lactobacillus mediated polyamine biosynthesis through the
biosynthesis and transport pathway of spermine [73]. Spermine is involved in arginine
and proline metabolism. In this study, compared to Group L, spermine was upregulated in
Group H, and positively promoted the growth of GFPs. Additionally, Seenivasan et al. [74]
found that probiotics could promote the growth and energy budget performance of M.
rosenbergii post larvae. Liu et al. [75] indicated that a majority of the properties of Blautia
were related to its potential probiotic functions. Meanwhile, previous findings suggested
that intestinal bacteria, including Blautia, were important in maintaining health by pro-
viding ornithine [76]. Furthermore, in this study, the functions of other metabolites were
significantly correlated with those of Blautia, such as pyroglutamate and leucine, which
need to be investigated further. Intestinal microbiota and metabolites interacted to affect
the growth performance of GFPs.

5. Conclusions

This was the first study to use 16S rRNA sequencing and metabolomic methods to
study intestinal bacteria composition, metabolite characteristics, and their interactions in
GFP families with different growth performances. The results showed that some critical
intestinal bacteria, including Lactobacillus, Blautia, etc., were positively correlated with
D-ornithine, L-arginine, alpha-ketoglutaric acid, and pyroglutamate. In particular, the
metabolites related to arginine, taurine, and hypotaurine biosynthesis and metabolism,
as well as metabolism of unsaturated fatty acids, play vital roles in the growth of GFP.
These were significantly higher in the fast-growing prawns. Importantly, these intestinal
microbiota and metabolites could positively affect intestinal digestion and absorption,
and then promote GFP growth. Overall, this study provides a novel insight into the
growth regulation of GFP families, and presents the feasibility of the development of
probiotic feeds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13091539/s1, Figure S1: Box plots of alpha-diversity show
differences among the three groups. (A) Chao1 index. (B) ACE index. (C) Observed species index.
(D) Shannon index. (E) Simpson index. (F) PD whole tree index. The significance of any difference
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among the three groups is determined by Tukey’s test, * indicates significant (p < 0.05), ** indicates
highly significant (p < 0.01). H, high growth performance level; M, medium growth performance
level; L, low growth performance level; Figure S2: The relative abundance of gut microbiota of
GFP families with three growth performance groups at TOP10 of phylum (A) and TOP30 of genus
(B) levels. H, high growth performance level; M, medium growth performance level; L, low growth
performance level; Figure S3: Heatmap of bacterial communities for the 10 top differential abundance
phyla (A), 30 top differential abundance genera (B), and the 20 top differential abundance species
(C) among the three groups. H, high growth performance level; M, medium growth performance level;
L, low growth performance level; Figure S4: Heatmaps of the differential abundance of metabolites
in ESI+ (A) and ESI− (B) scan modes between H and L groups. H, high growth performance level;
L, low growth performance level; Figure S5: KEGG enrichment analysis of differential metabolites
in different ion scan modes. (A) L vs. H in ESI+ mode. (B) L vs. H in ESI− mode. (C) L vs. M in
ESI+ mode. (D) L vs. M in ESI− mode. (E) M vs. H in ESI+ mode. (F) M vs. H in ESI− mode. H,
high growth performance level; M, medium growth performance level; L, low growth performance
level; Table S1: The information of OTUs identified in this study; Table S2: The relative abundance of
gut microbiota by phylum, family, genus, and species; Table S3: The list of metabolites identified in
this study.
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