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Simple Summary: The heritability of a trait is the proportion of phenotypic variance explained via
genetic variance. Prior to the advent of genomics, heritability was estimated using extensive pedigree
analyses. With the availability of genome-wide genotyping arrays, an alternative method became
available to estimate heritability using genomic relationship matrices derived from genotype data.
We used approaches that consider patterns of linkage disequilibrium and relatedness to estimate
heritability of osteochondrosis dissecans in Hanoverian Warmblood horses based on genotype data
from SNP arrays and imputed genotype data. Taking into account linkage disequilibrium patterns
and relatedness in the data, heritability estimates on the linear scale for fetlock-, hock- and stifle-OCD
were 0.41–0.43, 0.62–0.63, and 0.23–0.25, respectively, with standard errors of 0.11–0.14. In summary,
SNP-based approaches are able to capture a greater proportion of additive genetic variance than
previous estimates based on pedigree data.

Abstract: Before the genomics era, heritability estimates were performed using pedigree data. Data
collection for pedigree analysis is time consuming and holds the risk of incorrect or incomplete data.
With the availability of SNP-based arrays, heritability can now be estimated based on genotyping
data. We used SNP array and 1.6 million imputed genotype data with different minor allele frequency
restrictions to estimate heritabilities for osteochondrosis dissecans in the fetlock, hock and stifle joints
of 446 Hanoverian warmblood horses. SNP-based heritabilities were estimated using a genomic
restricted maximum likelihood (GREML) method and accounting for patterns of regional linkage
disequilibrium in the equine genome. In addition, we employed GREML for family data to account
for different degrees of relatedness in the study population. Our results indicate that we were able
to capture a larger proportion of additive genetic variance compared to pedigree-based estimates
in the same population of Hanoverian horses. Heritability estimates on the linear scale for fetlock-,
hock- and stifle-osteochondrosis dissecans were 0.41–0.43, 0.62–0.63, and 0.23–0.25, respectively, with
standard errors of 0.11–0.14. Accounting for linkage disequilibrium patterns had an upward effect on
the imputed data and a downward impact on the SNP array genotype data. GREML for family data
resulted in higher heritability estimates for fetlock-osteochondrosis dissecans and slightly higher
estimates for hock-osteochondrosis dissecans, but had no effect on stifle-osteochondrosis dissecans.
The largest and most consistent heritability estimates were obtained when we employed GREML
for family data with genomic relationship matrices weighted through patterns of regional linkage
disequilibrium. Estimation of SNP-based heritability should be recommended for traits that can only
be phenotyped in smaller samples or are cost-effective.

Keywords: equid; osteochondrosis; genetic parameters; genomic relationship matrices; SNP-based
heritability; linkage disequilibrium

1. Introduction

Osteochondrosis (OC) is one of the most important orthopaedic diseases of the juvenile
horse [1]. Due to disturbances in enchondral ossification, damage to the subchondral bone
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is the reason for the formation of intraarticular osteochondral fragments and subchondral
bone cysts. If osteochondral fragments occur, the disease is referred to as osteochondrosis
dissecans (OCD). Osteochondrosis occurs at certain predilection sites. Joints frequently
affected are the metacarpophalangeal/metatarsophalangeal (fetlock), tarsocrural (hock)
and femoropatellar joints (stifle) [2]. Therefore, it is of utmost interest to evaluate genetic
parameters for OCD as precisely as possible in order to take breeding measures.

The aetiology of OCD appears to be multifactorial with a relevant genetic contribu-
tion [3,4]. There have been estimations regarding the heritability of OCD based on pedi-
gree [5–21] and genotyping data [22,23]. Those estimates are shown in a previous review [1]
and supplemented with results of more recent studies shown in Supplementary Table S1.

Before the genomics era, estimates of heritability were based on pedigree data. The
introduction of SNP arrays enabled the estimation of heritability based on genotyping
data. Genome-based heritability estimates offer many advantages through eliminating the
need to collect extensive pedigree data. Apart from the time-consuming data collection,
analysis of pedigree data poses the risk of biased results due to incorrect, incomplete, or
varying depth of pedigrees. Heritability estimates between populations may vary because
of population history, gene frequency, or environmental exposures [23].

There are various approaches to estimating heritability based on genotyping data.
The fraction of phenotypic variance that can be explained using variants that have been
identified as causal variants through genome-wide association studies (GWAS) is named
h2

GWAS. h2
GWAS is limited because, for most complex diseases, only a small proportion of

variants has already been identified [24]. h2
SNP is the proportion of phenotypic variance

explained using all SNPs on a genotyping platform. h2
SNP is the upper limit for h2

GWAS and
can be a measurement of the proportion of already identified causal variants in the actual
genetic variance of a trait [24]. The difference between h2

GWAS and h2
SNP is often referred

to as missing heritability [25,26]. We want to estimate h2
SNP and assess different methods

using genomic REML algorithms (GREML). Heritability estimation methods based on
genotyping data require certain assumptions regarding the population structure of the
underlying population, indirect genetic effects, the presence of artificial or natural selection
within the population, and linkage disequilibrium. These assumptions are specific for each
population and trait and can severely bias the heritability estimates [27]. Different methods
require certain assumptions [28]. The aim of heritability estimation using SNP array or
Beadchip data is to approach h2, which is the actual narrow sense heritability of a trait [29].

We estimated h2
SNP using GCTA GREML [30], which is a single-component model

to estimate heritability based on a genomic relationship matrix (GRM) and unrelated
individuals [31]. As this approach is very sensitive to patterns of linkage disequilibrium
(LD) [32], we used a similar single-component approach that is implemented in the software
LDAK and weights SNP effect sizes according to regional LD patterns to construct the
GRM [32]. LD describes the non-random association of alleles at two or more loci. LD
varies because of factors such as population history, natural or artificial selection, mutation,
and other forces that cause changes in allele frequency [33]. It can cause upwards biased
estimates of heritability due to repeated tagging of SNPs [34].

As Beadchip arrays are usually based on common SNPs, we want to use imputed
SNPs for heritability estimation to capture the effects of more causal variants [27,35–37].
However, it is recommendable to prune for minor allele frequency (MAF) because rare
variants are imputed less accurately [36,38].

In a previous study on osteochondrosis in horses, SNP-based heritability for osteo-
chondrosis in the hock was estimated in a population of 479 North American Standardbred.
Horses using REML analysis in GCTA and LDAK with the weighted GRM in an imputed
data set with ~1.25 million SNPs. The OCD frequency in this study population was 0.27.
The analyses were repeated using a smaller study population, with individuals pruned
for relatedness at 0.25. SNP-based estimates seemed to be biased upwards via LD, which
implies the need to account for LD in heritability estimations in horse populations [20].
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Zaitlen et al. [24] proposed a method to estimate heritability based on a population
with different degrees of kinship that avoids the need to remove closely related individuals
from the study population. This method is implemented in GCTA and is known as
GREML analysis for family data. It provides estimations of SNP-based heritability in
family data as well as narrow sense heritability h2

f , which enables the quantification of
genetic effects resulting from kinship and, thus, enables the detection of higher amounts of
heritability [24]. This method has not yet been used in horse populations with very specific
relatedness structures.

The aim of this work is to estimate the heritability of the trait OCD in the fetlock, hock,
and stifle joints based on SNP data. We conducted a GREML analysis, an LDAK analysis
using an LD-weighted GRM based on unrelated individuals, and a GREML analysis for
family data using two simultaneously constructed GRMs for individuals with different
relatedness structures. Beside the effects of the different GRMs, we will observe the effects
of imputation and the different MAF restrictions, comparing the heritability estimates with
previous pedigree-based analyses using a similar study sample [5].

2. Materials and Methods
2.1. Animals

The horses included in this study were a subset of the study population previously
analyzed by Hilla et al. [5]. For the present study, 446 four-year-old Hanoverian warmblood
horses were included. The inclusion criteria were as follows: only one horse per sire
and maternal sire was allowed, either as a control or a case. The controls and cases were
randomly distributed among the sires and maternal sires. The control horses had to be
free of all diseases found during the veterinary health examination for pre-selection at
auctions, at licensing, or during the purchase examination. The cases were horses with
OCD only and free of any other disease recorded in the veterinary health check. The
veterinary health check included clinical and radiographic examination of all four limbs.
Only osteochondral fragments at the specific predilection sites of the fetlock, hock, and
stifle joints were classified as OCD [5,39]. Osteochondral fragments plantar in the fetlock
joints and at the insertion sites of the short sesamoid ligaments at the proximal phalanx
of the hindlimbs were classified as plantar and dorsodistal fragments of the fetlock joints;
thus, there were not considered OCD. Distal and proximal interphalangeal joints, fetlock
joints, hock joints, and stifle joints were evaluated for contour changes stemmed from
periarticular osteophytes or exostoses and for a narrow or absent joint space. These changes
were classified as osteoarthroses. Radiographic changes in the shape, symmetry, contour,
and structure of the navicular bone and the shape, size, number, and location of the canales
sesamoidales were scored on a scale of 1–4 [40]. Only horses with a score of 1 were
considered free of radiographic changes to the navicular bone. Horses with the presence
of a sidebone were also scored as not being free of radiographic changes. After removing
all horses affected by diseases other than OCD, the data set was filtered for cases and
controls. The strict inclusion criteria resulted in the final data set comprising 446 horses.
Traits were encoded as 0/1 variates for each joint. We did not consider an overall score for
OCD because genetic correlations of OCD between the different joints were moderately
negative (fetlock-OCD with hock- and stifle-OCD: −0.12 and −0.18) or moderately positive
(hock-OCD with stifle-OCD: 0.17) [5].

The phenotypic and genotype data were provided by the Association of Hanoverian
Warmblood breeders (Hannoveraner Verband e.V., Verden, Germany). The frequencies
of OCD were 0.2489 (n = 111), 0.3139 (n = 140), and 0.0291 (n = 13) in the fetlock, hock,
and stifle joints, respectively. Relationships expressed through the contingency coefficient
between the frequencies of fetlock, hock, and stifle OCD were close to zero because 96, 125,
and 11 horses represented the sole cases of fetlock, hock, and stifle joint OCD, respectively.
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2.2. Methods

Genome-wide genotyping data was obtained using the GGP Equine (71 589 SNPs)
genotyping array. Descriptive statistics of the population were calculated with SAS, version
9.4 (Statistical Analysis System, Cary, NC, USA, 2023). The SNP data have been imputed to
1,617,270 SNPs with an information score of 0.95 using BEAGLE 5.4 [41] and publicly avail-
able whole genome sequencing data for horses (Supplementary Table S2). Subsequently,
the imputed and non-imputed data sets were pruned at MAFs of 0.01, 0.025, or 0.05 using
PLINK 1.9 [42,43], resulting in six different data sets. Using all six data sets, heritabilities
for OCD of the fetlock, hock, and stifle joints were estimated using the GREML analysis
implemented in GCTA (genome-wide complex trait analysis) 1.94.1 [30] with one GRM [44],
resulting in SNP-based heritability (h2

SNP). Subsequent estimations were performed using
the LD-weighted genomic relatedness matrix as implemented in LDAK 5.2 [45] and the
integrated REML analysis [32], resulting in estimations of h2

SNPw. Using the GREML analy-
sis for family data with two GRMs simultaneously, based on all pairs of individuals and
related individuals [24] implemented in GCTA 1.94.1 [30], we estimated h2

f . The GRM based
on all pairs of individuals captured information on the sharing of causal variants tagged
using SNPs. The second GRM considered only individuals who were identical-by-state
above a certain threshold (0.05) and, consequently, only related individuals. Hence, it
captured information on shared causal variants that could not be tagged using SNPs [24,29].
Both GRMs fitted into a mixed linear model and were supposed to provide estimates of
h2

SNP−all−pairs from the first GRM and the missing heritability h2
SNP−related from the second

GRM. Those values were summed up to h2
f [24].

We obtained heritability estimates (h2
fw and h2

SNP−all−pairs−w) by implementing the
LD-weighted genomic relationship matrix estimated with LDAK [32] in the GREML anal-
ysis for family data [24]. Sex was included in all analyses as a covariate. As we used
0/1-data, all heritability estimates were transformed onto the liability scale using the
prevalence option of GCTA. The study design for heritability estimations is illustrated in
Supplementary Figure S1.

3. Results

The results of our heritability estimates for osteochondrosis in the fetlock joint are
given in Table 1. Additionally, estimates for h2

SNP−all−pairs and h2
SNP−all−pairs−w are given

in Supplementary Table S3. The SNP-based heritabilities estimated with GREML revealed
that the heritability estimates decreased in the imputed data set compared with the original
data set. The SNP-based heritabilities estimated with GREML and LDAK for fetlock-OCD
differed in several aspects. Accounting for regional LD patterns increased heritability
estimates for the imputed genotype data but slightly decreased heritability estimates for
the original data sets. Heritability estimates using GREML analysis for family data resulted
in higher estimates for both data sets, the original and imputed genotype data, as well
as when regional LD patterns were considered. The effects of using different MAFs had
only small effects when we used LD-weighted genomic relatedness matrices with LDAK.
Standard errors for heritability estimates using GREML analysis for family data slightly
increased from 0.11–0.12 to 0.13–0.14 on the linear scale.

After transformation onto the liability scale, we obtained fairly high estimates for
heritability and their standard errors.

When comparing the GREML analysis for the original and imputed data sets, the same
trends were observed for the heritability estimates for hock- and fetlock-OCD (Table 2,
Supplementary Table S4). However, the increase in heritability estimates was much smaller
when GREML analysis was applied to family data than to fetlock-OCD. The consistency
and magnitude of the heritability estimates were highest when we used GREML analysis
for family data with LDAK.

The most consistent heritability estimates were obtained for stifle-OCD for the analysis
accounting for family data and LD patterns for both data sets (the original and imputed
genotype data) (Table 3, Supplementary Table S5). The effect of family structure on her-
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itability estimates was small, while LD patterns had slightly larger effects. In general,
differences between the different approaches were relatively small. Transformation onto
the liability scale gave meaningless estimates >1 due to the low frequency of cases.

Table 1. Heritability estimates with their standard errors (h2 ± SE) for OCD in fetlock joint estimated
with GCTA GREML, LDAK, and GCTA GREML for family data and GCTA GREML for family data
and a LD-weighted genomic relationship matrix; the original and imputed SNP data and, at minor
allele frequencies (MAF) of 0.01, 0.025 and 0.05, is included with transformation to the liability scale
(Obs = observed scale, Liab = liability scale).

Approach Data Set MAF 0.01 MAF 0.025 MAF 0.05

Obs Liab Obs Liab Obs Liab

GREML
(h2

SNP ± SE)
Original 0.34 ± 0.12 0.64 ± 0.22 0.33 ± 0.12 0.61 ± 0.22 0.32 ± 0.12 0.60 ± 0.22
Imputed 0.31 ± 0.11 0.58 ± 0.21 0.30 ± 0.11 0.56 ± 0.20 0.28 ± 0.11 0.53 ± 0.20

LDAK
(h2

SNPw ± SE)
Original 0.33 ± 0.12 0.61 ± 0.22 0.33 ± 0.12 0.61 ± 0.22 0.32 ± 0.12 0.60 ± 0.22
Imputed 0.34 ± 0.12 0.64 ± 0.23 0.34 ± 0.12 0.63 ± 0.22 0.33 ± 0.12 0.62 ± 0.22

GREML fam
(h2

f ± SE)
Original 0.43 ± 0.14 0.80 ± 0.26 0.42 ± 0.14 0.78 ± 0.26 0.44 ± 0.14 0.81 ± 0.26
Imputed 0.41 ± 0.13 0.76 ± 0.24 0.40 ± 0.13 0.74 ± 0.24 0.38 ± 0.13 0.71 ± 0.23

GREML fam LD-weighted
(h2

fw ± SE)
Original 0.41 ± 0.14 0.76 ± 0.26 0.41 ± 0.14 0.77 ± 0.26 0.41 ± 0.14 0.76 ± 0.26
Imputed 0.43 ± 0.14 0.79 ± 0.26 0.42 ± 0.14 0.79 ± 0.26 0.43 ± 0.14 0.81 ± 0.26

Table 2. Heritability estimates with their standard errors (h2 ± SE) for osteochondrosis dissecans
in hock joint estimated with GCTA GREML, LDAK, and GCTA GREML for family data and GCTA
GREML for family data; a LD-weighted genomic relationship matrix, with the original and imputed
SNP data and at minor allele frequencies (MAF) of 0.01, 0.025 and 0.05, is also included with
transformation to the liability scale (Obs = observed scale, Liab = liability scale).

Approach Data Set MAF 0.01 MAF 0.025 MAF 0.05

Obs Liab Obs Liab Obs Liab

GREML
( h2

SNP ± SE)
Original 0.60 ± 0.11 1.02 ± 0.19 0.60 ± 0.11 1.01 ± 0.18 0.57 ± 0.11 0.98 ± 0.18
Imputed 0.54 ± 0.10 0.93 ± 0.18 0.52 ± 0.10 0.90 ± 0.18 0.50 ± 0.10 0.85 ± 0.17

LDAK
(h2

SNPw ± SE)
Original 0.59 ± 0.11 1.01 ± 0.19 0.59 ± 0.11 1.00 ± 0.19 0.58 ± 0.11 1.00 ± 0.19
Imputed 0.62 ± 0.11 1.06 ± 0.19 0.61 ± 0.11 1.05 ± 0.19 0.60 ± 0.11 1.03 ± 0.19

GREML fam
(h2

f ± SE)
Original 0.62 ± 0.12 1.07 ± 0.21 0.63 ± 0.12 1.09 ± 0.21 0.63 ± 0.12 1.09 ± 0.21
Imputed 0.57 ± 0.12 0.97 ± 0.21 0.56 ± 0.12 0.95 ± 0.21 0.53 ± 0.12 0.91 ± 0.20

GREML fam LD-weighted
( h2

fw ± SE)
Original 0.63 ± 0.12 1.08 ± 0.21 0.63 ± 0.12 1.08 ± 0.21 0.62 ± 0.12 1.07 ± 0.21
Imputed 0.63 ± 0.12 1.09 ± 0.21 0.62 ± 0.12 1.07 ± 0.21 0.63 ± 0.12 1.07 ± 0.21

Table 3. Heritability estimates with their standard errors (h2 ± SE) for osteochondrosis dissecans
in stifle joint estimated with GCTA GREML, LDAK, AND GCTA GREML for family data and
GCTA GREML for family data; a LD-weighted genomic relationship matrix, with the original and
imputed SNP data and at minor allele frequencies (MAF) of 0.01, 0.025 and 0.05, is also included with
transformation to the liability scale (Obs = observed scale, Liab = liability scale).

Approach Data Set MAF 0.01 MAF 0.025 MAF 0.05

Obs Liab Obs Liab Obs Liab

GREML
( h2

SNP ± SE)
Original 0.25 ± 0.11 1.60 ± 0.69 0.24 ± 0.11 1.55 ± 0.68 0.23 ± 0.11 1.47 ± 0.68
Imputed 0.19 ± 0.10 1.25 ± 0.64 0.17 ± 0.10 1.11 ± 0.62 0.16 ± 0.10 1.04 ± 0.61

LDAK
(h2

SNPw ± SE)
Original 0.23 ± 0.11 1.50 ± 0.69 0.23 ± 0.11 1.49 ± 0.68 0.23 ± 0.11 1.47 ± 0.68
Imputed 0.21 ± 0.11 1.37 ± 0.68 0.20 ± 0.11 1.29 ± 0.67 0.20 ± 0.10 1.27 ± 0.67

GREML fam
(h2

f ± SE)
Original 0.26 ± 0.12 1.66 ± 0.75 0.24 ± 0.12 1.55 ± 0.75 0.23 ± 0.12 1.49 ± 0.74
Imputed 0.24 ± 0.11 1.53 ± 0.70 0.22 ± 0.11 1.40 ± 0.70 0.23 ± 0.11 1.45 ± 0.70

GREML fam LD-weighted
( h2

fw ± SE)
Original 0.25 ± 0.12 1.63 ± 0.75 0.25 ± 0.12 1.63 ± 0.75 0.25 ± 0.12 1.60 ± 0.75
Imputed 0.23 ± 0.12 1.48 ± 0.74 0.23 ± 0.11 1.48 ± 0.73 0.23 ± 0.11 1.45 ± 0.73
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4. Discussion

According to the findings of previous studies, it seems to be recommendable to account
for linkage disequilibrium when estimating heritability based on SNP data [20,29,31,32,34,46].
Horses have long-range linkage disequilibria, which is why SNPs can show effects of a
risk variant as far away as 1 Mb [47]. Additionally, LD is higher within breeds than across
breeds [48], which is important since population data are usually used for heritability
estimations. In general, REML-based estimates, such as those obtained from GREML
analysis in GCTA, are sensitive to patterns of LD [32]. The linkage disequilibrium between
SNPs is used to create the GRM and the LD between SNPs; causal variants can cause
bias in heritability estimation [32,36]. As the intensity of linkage disequilibrium varies
regionally along the genome, LDAK weights the SNPs according to local patterns of LD [32].
While we cannot observe a large impact of LD using our original data set, we see slight
differences between GREML analysis and LDAK analysis in the imputed data set. The
difference between heritability estimates increases with increasing MAF restrictions, which
is attributable to the fact that less genetic variation is captured with SNPs when lower
frequencies are recorded. Additionally, allele frequency and linkage disequilibrium are
dependent on each other [49], which explains why the estimations conducted with LDAK
are able to compensate changes in MAF. We assume that linkage disequilibrium does not
play a major role in our study population. One possible explanation could be that we
included many individuals with diverse LD structures, meaning that they outweighed each
other in our analysis.

One cause of undetected heritability could be that rare variants, and eventually even
variants with large effects, may not be mapped on the available genotyping arrays that
mainly include common SNPs [36]. Therefore, it is recommended to perform heritability
estimations on imputed data sets [29]. To capture as much variation as possible, we imputed
our Beadchip data to 1,617,270 SNPs, which corresponds to the recommendations given by
Evans et al. [29] for heritability estimations. When comparing the results of the original and
imputed data sets, we observe for all traits analyzed the most consistent estimates when
family data and LD patterns are accounted for. Even the differences between the original
and imputed data shrink or are no longer present. In the present data set, imputation had
no or very little effect on SNP-based heritabilities; thus, we were unable to detect variation
due to rare alleles.

The single-component analyses in GCTA and LDAK calculated GRM based on the
available SNP data to subsequently estimate heritability. For those analyses, it was recom-
mended to prune for relatedness to eradicate bias caused by common environmental or
other non-additive genetic effects [29]. The resulting unrelated individuals are by definition
distantly related individuals because they share distant ancestors [50]; however, they are
assumed to provide random genetic variance [28]. The need for pruning for relatedness
arises from the model assumption in the GREML analysis that all measured genetic ef-
fects are direct effects. If related individuals were included, the indirect genetic effects
between those individuals would be counted as direct effects and, thus, inflate heritability
estimates [28]. Indirect genetic effects may result from genetic maternal effects [28]. The
idea of the GREML analysis for family data was to find a way to circumvent pruning for
relatedness in a study population and, thus, ensure a larger study population, which in
turn should lead to lower standard errors. Additionally, the GREML analysis for family
data estimates h2

f and, thus, is able to capture higher heritability [24]. While h2
f provides an

unbiased estimate of the heritability of the trait, the proportions of the single components
do not always seem to be assessed correctly [24,29]. We only observed this phenomenon in
the imputed data set for stifle-OCD when we employed GREML for family data without an
LD-weighted genomic relationship matrix. In all other analyses, we could not observe im-
balanced contributions to the heritability estimates resulting from the two different GRMs.
The most likely reason for this issue is the very low frequency of cases for stifle-OCD.

In our analyses for fetlock-OCD, we can confirm that we detected higher estimates of
heritability with GREML for family data than with the single-component REML algorithms,
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whereas for hock- and stifle-OCD the increase in heritability estimates was rather small.
We assume that in our population a significant amount of heritability for fetlock-OCD may
be due to indirect genetic effects that are captured examining the genetic effects between
individuals with varying degrees of relatedness. This is the first analysis with GREML for
family data that has been performed in a horse population. The most consistent heritability
estimates were obtained using GREML for family data and an LD-weighted genomic
relationship matrix for the original and imputed genotype data. With frequencies of cases
closer to 0.5 in the population under study, differences between the original and imputed
data sets diminished. However, we have to note that GREML for family data is designed
for human populations with their specific relatedness structure and significantly larger
available data sets [24,31]. While in a human population, full siblings are common, in horse
population, full-siblings are uncommon.

Since OCD is defined as a binary trait, all results of the REML analyses have been
transformed onto the liability scale as recommended [30,51–53]. In agreement with previous
studies, upward bias may occur, particularly when estimates on the linear scale are high
and more frequencies deviate from 0.5 [11,12].

The present study used data from Hilla et al. [5]. We selected horses as representatively
as possible and avoided including closely related animals, such as paternal half-siblings and
maternal sire half-siblings. The results obtained from the present study allow us to assume
that analyses using GREML for family data and an LD-weighted genomic relationship
matrix result in higher heritability estimates compared to estimates based on pedigree data
(h2

ped) in a Hanoverian Warmblood horse population. However, larger genotype data sets
should be available to reach lower standard errors. Nevertheless, heritability estimations
based on SNP-based methods may give reliable results even in much smaller data sets
compared to pedigree-based estimates.

Similar results were reported for hock-OCD in a population of North American
Standardbred horses [20]. Compared to our results, this previous study showed larger
increases in heritability estimates when taking into account LD patterns compared to the
standard GRM. Thus, we assume stratification based on families and breed history may
have contributed to this result. In addition, the LDAK version used by McCoy et al. [20,32]
was a less improved version of the software, which could have had an effect on the results.
Heritability estimates are specific for populations because of different familial structures
and selective signatures in the genome [1,33], which may also contribute to the difference
in our results. In the present study, standard errors on the linear scale were at 0.11–0.14,
resulting in 95% confidence intervals from ±0.22 to ±0.27, while standard errors on the
linear scale were at 0.12 and 0.16 in the previous study on US Standardbreds.

In summary, we recommend the use of GREML for family data with an LD-weighted
genomic relatedness matrix to estimate heritabilities, particularly for traits which are
difficult or very costly to record. Due to restrictions in sampling and varyingly strong LD
patterns in populations, the approach as provided by LDAK should be implemented in
the estimation procedure. The pursuit of more precise heritability estimates is worthwhile
means of achieving estimated breeding values with higher reliabilities and a higher selection
response in health traits.

5. Conclusions

Estimation of heritabilities based on SNP arrays is recommended because reasonably
high accuracy of estimates can be achieved in smaller samples compared to pedigree-based
studies with similar sample sizes. The use of genomic REML analysis for family data with
LD-weighted genomic relationship matrices allows the capture of most of the additive
genetic variance and provides the most consistent estimates at different MAFs. The present
study yielded higher heritability estimates with reasonable standard errors than a previous
study for the same population. Further studies with larger data sets should be performed
to validate these results.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13091462/s1, Figure S1. Survey on the study design to estimate
heritabilities using different approaches and genotype data. Table S1. Estimates for heritability for
equine osteochondrosis in previous studies. Table S2. Publicly available whole genome sequencing
data of horses. Table S3. Estimates for h2

SNP−all−pairs and h2
SNP−all−pairs−w with their standard errors

for osteochondrosis dissecans in fetlock joint estimated with GCTA GREML for family data and
GCTA GREML for family data with a LD-weighted genomic relationship matrix with original and
imputed SNP data and at minor allele frequencies of 0.01, 0.025, and 0.05, including transformation
to liability scale (obs = observed scale, liab = liability scale). Table S4. Estimates for h2

SNP−all−pairs

and h2
SNP−all−pairs−w with their standard errors for osteochondrosis dissecans in hock joint estimated

with GCTA GREML for family data and GCTA GREML for family data with a LD-weighted genomic
relationship matrix with the original and imputed SNP data and at minor allele frequencies of
0.01, 0.025 and 0.05, including transformation to liability scale (obs = observed scale, liab = liability
scale). Table S5. Estimates for h2

SNP−all−pairs and h2
SNP−all−pairs−w with their standard errors for

osteochondrosis dissecans in stifle joint estimated with GCTA GREML for family data and GCTA
GREML for family data with a LD-weighted genomic relationship matrix with original and imputed
SNP data and at minor allele frequencies of 0.01, 0.025, and 0.05, including transformation to liability
scale (obs = observed scale, liab = liability scale).
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