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Simple Summary: The inadequate use of antibiotics has resulted in the emergence of resistant mi-
crobes which imply a major threat in human and veterinary medicine. Therefore, natural alternatives
improving the productivity of farm animals should be investigated to replace the extensive antibiotic
application. The primary goal of the study was to prove the anti-inflammatory and antioxidant
activity of luteolin (a common phytochemical of vegetables with a flavonoid structure) in a chicken
hepatic cell culture. To investigate the effect of luteolin, a model was established which could re-
capitulate the Salmonella enterica serovar Typhimurium-induced hepatic inflammation of chickens.
The inflammatory response was triggered with the elementary unit of the organ of bacterial motility,
flagellin, and freshly isolated, primary hepatic cell cultures were applied containing both hepatocytes,
the functional cells of the liver, and non-parenchymal, inflammatory cells. Luteolin at a concentra-
tion of 4 µg/mL did not alter the viability and the membrane integrity of the cells and therefore
proved applicable to counteract flagellin. In combination with flagellin exposure, luteolin reduced
the elevated IL-8 release of the cultured cells. Moreover, it reduced the concentration of IFN-α, H2O2

and malondialdehyde and restored the level of IL-10 and the ratio of IFN-γ/IL-10. In conclusion,
luteolin had an anti-inflammatory and antioxidant effect in a chicken hepatic cell culture mimicking
Salmonella enterica-associated inflammation.

Abstract: The use of natural feed supplements is an alternative tool to diminish the damage caused
by certain bacteria, improving animal health and productivity. The present research aimed to
investigate the proinflammatory effect of flagellin released from the bacterial flagellum of Salmonella
enterica serovar Typhimurium and to attenuate the induced inflammation with luteolin as a plant-
derived flavonoid on a chicken primary hepatocyte–non-parenchymal cell co-culture. Cells were
cultured in a medium supplemented with 250 ng/mL flagellin and 4 or 16 µg/mL luteolin for
24 h. Cellular metabolic activity, lactate dehydrogenase (LDH) activity, interleukin-6, 8, 10 (IL-
6, IL-8, IL-10), interferon-α, γ (IFN-α, IFN-γ), hydrogen peroxide (H2O2) and malondialdehyde
(MDA) concentrations were determined. Flagellin significantly increased the concentration of the
proinflammatory cytokine IL-8 and the ratio of IFN-γ/IL-10, while it decreased the level of IL-10,
indicating that the model served adequate to study inflammation in vitro. Luteolin treatment at
4 µg/mL did not prove to be cytotoxic, as reflected by metabolic activity and extracellular LDH
activity, and significantly reduced the flagellin-triggered IL-8 release of the cultured cells. Further, it
had a diminishing effect on the concentration of IFN-α, H2O2 and MDA and restored the level of IL-10
and the ratio of IFN-γ/IL-10 when applied in combination with flagellin. These results suggest that
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luteolin at lower concentrations may protect hepatic cells from an excessive inflammatory response
and act as an antioxidant to attenuate oxidative damage.

Keywords: antioxidants; flavonoid; phytochemical; immunity; interleukin; lipid peroxidation;
Salmonella; paratyphoid; poultry

1. Introduction

The liver receives much of its blood supply via the portal vein from the alimentary
tract, containing bacterial products and dietary antigens, while the rest of its vascular-
ization comes from the systemic circulation involving the hepatic artery [1]. Blood from
each of these sources passes through liver sinusoids to get rid of invading pathogens and
their byproducts with the help of endothelial cells and the greatest population of fixed
macrophages of the body, Kupffer cells. These non-parenchymal cells also produce inflam-
matory cytokines to induce acute-phase protein secretion of hepatocytes or to regulate
the local inflammatory response [2]. Materials that pass through this barrier may be fur-
ther entrapped after being opsonized by hepatocyte-produced complement factors and
soluble pathogen recognition receptors (PRR). The liver, therefore, orchestrates the innate
immune response of the body via filtering out pathogens and producing soluble factors
with systemic effect [1,2].

Salmonella enterica serovar Typhimurium (S. Typhimurium) and Enteritidis (S. En-
teritidis) are the primary causes of foodborne human salmonellosis worldwide [3]. Con-
taminated poultry meat and eggs are common sources of the pathogen. The infection in
chickens over 3 days of age persists for 8–9 weeks without clinical symptoms; therefore,
surveillance and eradication of Salmonella enterica (S. enterica) serovars accountable for
salmonellosis is a major objective of the poultry industry [4,5]. In other cases, following
the invasion from the gastrointestinal tract, S. Typhimurium multiplies in the liver and
spleen and might cause systemic infection and high mortality in chickens infected soon
after hatching [6,7]. Emerging S. enterica serovars and unconventional organic farms still
manifest a human threat [3,8–10].

Intriguingly, much of the gene expression profile observed in enteropathogenic
S. enterica-induced inflammation on T84 human colonic adenocarcinoma cell line modeling
human salmonellosis was attributed to flagellin, the protein monomer of the bacterial
locomotory organelles, flagella [11]. Flagellin (in 50–100 ng/mL concentrations) exerted
an increase in cytokine gene expression and caused degranulation and oxidative burst in
a chicken heterophil granulocyte cell culture [12–14]. The presence of free bacterial flag-
ellin in the host organism is hypothesized to be associated with the damage or the faulty
assembly of the flagellum. Characteristically, the highly conserved hidden core region of
this motor protein induced the activation of the non-specific immune system considerably
via a Toll-like receptor 5 (TLR 5), a type of PRR [15]. Wild S. Enteritidis strains triggered
more severe histopathological changes in the liver of chicken hatchlings and colonized
the caecum and the spleen more avidly in the first few days post-infection than aberrant
non-motile or non-flagellated mutants [16].

TLR5 activation by flagellin results in the induction of proinflammatory cascades.
Upon ligand binding, the TLR dimerizes and undergoes conformational changes required
to attach its adjacent intracellular domain (Toll/IL-1 receptor) to adaptor molecules. One
such adaptor molecule is myeloid differentiation factor 88 (MyD88), which activates nuclear
factor kappa B (NF-κB) [17,18]. NF-κB is a transcription factor that can selectively bind to
the DNA to enhance the expression of cytokine genes [19]. One possible mechanism of the
cell to alleviate the proinflammatory signal is to mask the nuclear localization sequence
(NLS) of NF-κB with the inhibitor of κB (IκB) diverting the transport to the nucleus [20].
Further, certain plant-, fungi- or bacteria-derived bioactive compounds interact with TLR
signaling via different mechanisms of actions; therefore, the change in inflammatory and
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stress response triggered by flagellin could arise from the modification of either step of the
complex TLR-5 cascade [21].

Flavonoids as plant metabolites can influence mucosal and cellular immunity, modu-
late the endocrine response of the body and reduce oxidative damage caused by reactive
compounds [22]. In addition, the literature suggests that in chickens, some members of this
molecular group have been shown to improve hematological parameters and attenuate
increased inflammatory responses [22,23]. In vivo and in vitro studies classify several
mechanisms via which flavonoids could elicit an anti-inflammatory effect. Inhibition of
prostanoid biosynthesis and cellular second messengers of the inflammatory signaling
pathways (protein kinases, phosphodiesterases) and the suppression of NF-kB-mediated
transcriptional activation of proinflammatory cytokine genes are of high importance [22,24].
Therefore, the use of flavonoids in both human and animal nutrition, including the foraging
of broiler chicken, may be of great importance in the future to reduce unnecessary antibiotic
use to prevent antimicrobial resistance [23,25]. Luteolin is a flavonoid found in most edible
greens and vegetables, for instance, celery, rosemary, thyme, peppers, carrots, buckwheat
and cabbage, but it was identified in the vast majority of Magnoliophyta families and lower
phyla of plants as well [25]. As a widespread flavonoid, luteolin might be a candidate
to alleviate the flagellin-evoked inflammatory response in S. enterica-infected chickens
because, in mammalian cells, its efficacy to mitigate cellular inflammatory cascades such as
the NF-κB, mitogen-activated protein kinase (MAPK) and signal transducer and activator
of transcription 3 (STAT3) responsible for signal transduction during TLR and cytokine
receptor signals has been reported in the literature [24]. The major goal of the present study
was to provide a sufficient in vitro model of S. Typhimurium-triggered hepatic inflamma-
tion by applying a hepatocyte–non-parenchymal cell co-culture of chicken origin and to
investigate the putative immunomodulatory and protective action of luteolin in restoring
physiological hepatocellular inflammatory and redox homeostasis.

2. Materials and Methods
2.1. Cell isolation and Establishment of Cell Cultures

Cell isolation was performed from three-week-old male Ross-308 hybrid broiler chick-
ens using a three-step in situ perfusion technique as previously described by Mackei
et al. [26]. The animals were raised and fed following the guidelines of the breeder. The
experiment was executed in conformity with institutional policies, approved by the Local
Animal Welfare Committee of the University of Veterinary Medicine Budapest and by the
Government Office of Zala County, Food Chain Safety, Plant Protection, and Soil Conserva-
tion Directorate, Zalaegerszeg, Hungary (number of permission: GK-419/2020; approval
date: 11 May 2020). After CO2 narcosis, the chicken was slaughtered via decapitation and
fixed in dorsal recumbency. After disinfection of the skin with ethanol, the body cavity was
opened and the liver was perfused through a cannula inserted into the gastropancreati-
coduodenal vein. The right atrium was incised and a glass cannula was inserted into the
atrial cavity through the incision site, forming the drainage during perfusion.

All chemicals applied for cell isolation, establishment and treatment of cell cultures
and for the measurements were obtained from Merck KGaA (Darmstadt, Germany), except
where the source of the chemical was specifically indicated. The buffers used for cell
isolation were incubated at 40 ◦C and pre-oxygenated with carbogen (95% O2 and 5% CO2,
5 min per 100 mL). The buffers flowed through the inflow branch at a rate of 30 mL/min.
First, 150 mL of Hanks’ Balanced Salt Solution (HBSS) buffer containing ethylene glycol
tetraacetic acid (EGTA) (0.5 M) was used to exsanguinate the liver and to bind Ca2+ and
Mg2+ ions associated with the extracellular matrix. Subsequently, 150 mL of HBSS was
used to ensure that EGTA was completely washed out of the tissues and did not interfere
with the digestion process during the last step. Finally, the liver was washed with 100 mL
of HBSS supplemented with 7 mM CaCl2, 7 mM MgCl2 (final concentrations) and 100 mg
type IV collagenase (Nordmark, Uetersen, Germany).
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After perfusion, the liver was removed, the Glisson’s capsule was disrupted and the
freshly gained primary cell suspension was gently filtered through three layers of sterile
gauze sheets, subsequently getting incubated in ice-cold HBSS supplemented with 50 mL of
bovine serum albumin (BSA) for 50 min to prevent cell adhesion. The fractions containing
hepatocytes and non-parenchymal cells were then separated by multistep centrifugation.
The cell suspension was centrifuged three times for 3 min (100× g) in Williams’ Medium
E (WM), which was supplemented with 0.22% NaHCO3, 50 mg/mL gentamicin, 2 mM
glutamine, 4 µg/L dexamethasone, 20 IU/L insulin, 0.5 µg/mL amphotericin B and 5% fetal
bovine serum (FBS). After each step, the supernatant containing non-parenchymal cells was
collected separately and the sediment comprising hepatocytes was resuspended in WM
with the same supplements in addition, as indicated above. After the third centrifugation,
20 mL of hepatocyte-rich purified cell suspension was obtained after resuspension of
the pellet.

To separate the non-parenchymal cell fraction, the previously obtained supernatants
were centrifuged at 350× g for 10 min. This step removed residual hepatocytes and
red blood cells. The supernatant was then subjected to centrifugation at 800× g for
10 min. The fraction enriched in non-parenchymal cells was gained by resuspension
of the sediment obtained. The proportion of viable cells in each fraction was then deter-
mined by a trypan blue exclusion test in Bürker’s chamber, revealing that the percentage
of viable cells exceeded 90% of the total cell count. Both cell suspensions were diluted
to a final cell concentration of 106 cells/mL. In a prior study, freshly isolated hepatocyte-
and non-parenchymal-cell-dominated fractions were characterized using flow cytometry
and immunofluorescent detection of particular macrophage and hepatocyte markers to
standardize the method [26].

Cell fractions were mixed at a ratio of 6:1 (hepatocyte:non-parenchymal cells) and the
final suspension was seeded in 24-well (400 µL/well) and 96-well (100 µL/well) culture
dishes (Greiner Bio-One Hungary Kft, Mosonmagyaróvár, Hungary), coated with type I
collagen (10 µg/cm2) according to the manufacturer’s instructions beforehand. Finally,
cells were cultured in an incubator at 37 ◦C in a humid environment with 5% CO2. After
four hours, the medium was replaced, and the confluency (approx. 90%) of the cultures
was apparent after 24 h of incubation with Giemsa staining (Figure 1).Animals 2023, 13, x  5 of 15 
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2.2. Treatment of Cell Cultures

After 24 h of incubation, cells were cultured in WM supplemented as detailed in
Section 2.1 but without FBS and further supplemented with flagellin derived from
S. Typhimurium at the concentrations of 0 (control) and 250 ng/mL, with 0, 4 or 16 µg/mL
luteolin, or with the combination of flagellin (250 ng/mL) and luteolin (4 or 16 µg/mL, Cat.
L9283, Merck KGaA) for 24 h. Flagellin and luteolin stock solutions were freshly prepared
with pure WM.

The 400 µL/well culture medium of cells in 24-well plates was then collected, and they
were lysed in 100 µL/well Mammalian Protein Extraction Reagent (M-PER) lysis buffer.
Samples of cell lysate and culture medium were stored at −80 ◦C until the measurements.

2.3. Measurements
2.3.1. Metabolic Activity

The metabolic activity of cells cultured in a 96-well plate was measured using the
CCK-8 assay (Cell counting Kit-8, Dojindo Molecular Technologies, Rockville, MD, USA)
according to the manufacturer’s instructions. The CCK-8 reagent contains Water Soluble
Tetrazolium Salt (WST-8), which can be reduced by the NAD(P)H+H+ resulting from
catabolic reactions. At the end of the 24 h treatment, cells were incubated for 2 h with 10 µL
of CCK-8 reagent and 100 µL of FBS-free WM. The absorbance of the medium from each
well was read at 450 nm using a Multiskan GO 3.2 instrument (Thermo Fisher Scientific,
Waltham, MA, USA).

2.3.2. LDH Activity

The extracellular lactate dehydrogenase (LDH) activity of the medium serves as an
indicator of cell membrane integrity, where increased extracellular LDH activity refers to
enzyme leakage due to membrane damage. The enzyme activity was determined using a
kinetic photometric assay (Diagnosticum Ltd., Budapest, Hungary), performed by mixing
10 µL of culture medium with 200 µL of the reagent (56 mM phosphate buffer, pH 7.5;
1.6 mM pyruvate and 240 µM NADH+H+). The LDH activity was calculated by measuring
absorbance at 340 nm in a Multiskan GO 3.2 instrument (Thermo Fisher Scientific, Waltham,
MA, USA) at six time points with 1 min between each measurement and considering the
mean of the differences between consecutive time points.

2.3.3. IFN-α, IFN-γ, IL-10 Concentration

The Milliplex Chicken Cytokine/Chemokine Panel (Cat.Nr.: GCYT1-16 K, Merck
KGaA, Darmstadt, Germany) was used to measure the concentration of IFN-α, IFN-γ and
IL-10 protein in the medium according to the manufacturer’s instructions. All samples
were thawed and analyzed in blind duplicates. A 96-well plate was filled with 25 µL of each
sample, standard, control and reaction buffer. A further 25 µL of differently colored bead
sets coated with primary antibodies were added to each well. Following the washing and
overnight incubation steps, a biotinylated detection antibody mixture and phycoerythrin-
conjugated streptavidin were applied to the plate. The beads were resuspended on the plate
shaker for an additional five minutes following the addition of 150 µL of drive fluid into
the wells. The fluorescence was measured by the Luminex MAGPIX® instrument (Luminex
Corporation, Austin, TX, USA). Data acquisition was performed using Luminex xPonent
4.2 software. Milliplex Analyst 5.1 software (Merck Millipore, Darmstadt, Germany) was
used to generate five-parameter logistic regression curves as standard curves for each
analyte using median values of fluorescence intensity of the beads.

2.3.4. IL-6 and IL-8 Concentration

The concentrations of interleukin-6 (IL-6) and interleukin-8 (IL-8, syn. CXCLi2) were
determined by a chicken-specific sandwich ELISA kit (MyBioSource, San Diego, CA, USA)
according to the instructions of the manufacturer, and the absorbance was finally measured
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at 450 nm with a Multiskan GO 3.2 reader. The curve was fitted and concentrations were
calculated with the free arigo GainData® platform.

2.3.5. H2O2 Level

The measurement of extracellular H2O2 level from the culture medium samples was
performed using the Amplex Red assay (Thermo Fisher Scientific, Waltham, MA, USA).
After incubation of 50 µL of Amplex Red (100 µM), HRP (0.2 U/mL) and 50 µL of culture
medium at 21 ◦C for 30 min, the fluorescence of the samples was measured at 531 nm with
an excitation set at 590 nm using a Victor X2 2030 fluorimeter (Perkin Elmer, Waltham,
MA, USA).

2.3.6. Malondialdehyde Concentration

The concentration of intracellular malondialdehyde (MDA) was determined from cell
lysates. This product is formed during lipid peroxidation and can be measured using a
lipid peroxidation (MDA) assay kit detecting thiobarbituric acid reactive substances. To
100 µL of the lysate samples, 300 µL of thiobarbituric acid was added, and the mixture
was then incubated at 95 ◦C for 1 h according to the manufacturer’s instructions. This was
followed by a 10-min cooling on ice, after which the absorbance of the sample was measured
at 532 nm using a Multiskan GO 3.2 reader. The curve was fitted and concentrations were
calculated with the free arigo GainData® platform.

2.4. Statistical Analysis

Each measurement was performed with n = 6 replicates (well) per treatment group.
Statistical analysis was carried out using R core Team software version 4.0.4. Results were
plotted as the mean and standard deviation (SD) on bar graphs using GraphPad Prism
(GraphPad Software Inc., San Diego, CA, USA). The measured concentrations of MDA,
IL-6, IL-8, IFN-α, IFN-γ and IL-10 were standardized to the total protein concentration
of the appropriate cell lysate as assessed with the BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). The Wilcoxon signed-rank test was applied to evaluate the
significance of the differences between the absolute control (without flagellin and luteolin)
and the single treatment (flagellin or luteolin) groups or between the flagellin-exposed
and the combined-treatment (flagellin + luteolin) groups. The difference was considered
significant if the p-value was 0.05 or less.

3. Results
3.1. Metabolic Activity and LDH Activity

The higher applied dose of luteolin (L2, 16 µg/mL) significantly (p = 0.002) reduced
the metabolic activity of the cells (Figure 2a). This effect of the high luteolin concentration
was also observed in combination with flagellin (FL2, p = 0.004). However, flagellin (F) or
luteolin (L1) at a concentration of 4 µg/mL—both alone and in combination (FL1)—did not
significantly alter the metabolic activity of the cells. The activity of lactate dehydrogenase
released into the medium in response to cell membrane damage was significantly reduced
by luteolin at 16 µg/mL, both in combination with flagellin (FL2, p = 0.030) and alone
(L2, p = 0.009) (Figure 2b). Since luteolin was found to be cytotoxic at a concentration of
16 µg/mL, indicated by the decrease of the metabolic activity and the lactate dehydrogenase
activity, the L2 and FL2 groups were excluded from the subsequent measurements.



Animals 2023, 13, 1410 7 of 15

Animals 2023, 13, x  7 of 15 
 

the appropriate cell lysate as assessed with the BCA Protein Assay Kit (Thermo Fisher 
Scientific, Waltham, MA, USA). The Wilcoxon signed-rank test was applied to evaluate 
the significance of the differences between the absolute control (without flagellin and lu-
teolin) and the single treatment (flagellin or luteolin) groups or between the flagellin-ex-
posed and the combined-treatment (flagellin + luteolin) groups. The difference was con-
sidered significant if the p-value was 0.05 or less. 

3. Results 
3.1. Metabolic Activity and LDH Activity 

The higher applied dose of luteolin (L2, 16 µg/mL) significantly (p = 0.002) reduced 
the metabolic activity of the cells (Figure 2a). This effect of the high luteolin concentration 
was also observed in combination with flagellin (FL2, p = 0.004). However, flagellin (F) or 
luteolin (L1) at a concentration of 4 µg/mL—both alone and in combination (FL1)—did 
not significantly alter the metabolic activity of the cells. The activity of lactate dehydro-
genase released into the medium in response to cell membrane damage was significantly 
reduced by luteolin at 16 µg/mL, both in combination with flagellin (FL2, p = 0.030) and 
alone (L2, p = 0.009) (Figure 2b). Since luteolin was found to be cytotoxic at a concentration 
of 16 µg/mL, indicated by the decrease of the metabolic activity and the lactate dehydro-
genase activity, the L2 and FL2 groups were excluded from the subsequent measure-
ments. 

 
Figure 2. Metabolic activity measured by CCK-8 assay (a) and extracellular lactate dehydrogenase 
activity measured by an enzyme kinetic photometric assay (b). C = control, L1 = luteolin (4 µg/mL), 
L2 = luteolin (16 µg/mL), F = flagellin (250 ng/mL), FL1 = flagellin (250 ng/mL) and luteolin (4 
µg/mL), FL2 = flagellin (250 ng/mL) and luteolin (16 µg/mL). Mean (n = 6/group) ± SD, * p < 0.05, ** 
p < 0.01. Group L1, L2 and F were compared to C, while group FL1 and FL2 were compared to group 
F. 

3.2. IFN-α, IFN-γ, IL-10 Concentration and IFN-γ/IL-10 Ratio 
The concentration of IFN-α was significantly decreased in the luteolin-treated groups 

(L1, FL1) compared to the control (C, p = 0.002) and the flagellin-exposed group (F, p = 
0.041), respectively (Figure 3a). No significant change has been observed in the level of 
IFN-γ (Figure 3b). The concentration of IL-10 decreased in the case of sole flagellin expo-
sure (F, p = 0.015); meanwhile, the level of the luteolin-cotreated (FL1) cells showed no 
significant difference in comparison with the control group (C) (Figure 3c). Further, the 
ratio of IFN-γ/IL-10 was elevated in the case of the flagellin group (F, p = 0.025) compared 
to the control (C) (Figure 3d). 
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nase activity measured by an enzyme kinetic photometric assay (b). C = control, L1 = luteolin
(4 µg/mL), L2 = luteolin (16 µg/mL), F = flagellin (250 ng/mL), FL1 = flagellin (250 ng/mL) and
luteolin (4 µg/mL), FL2 = flagellin (250 ng/mL) and luteolin (16 µg/mL). Mean (n = 6/group) ± SD,
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3.2. IFN-α, IFN-γ, IL-10 Concentration and IFN-γ/IL-10 Ratio

The concentration of IFN-α was significantly decreased in the luteolin-treated groups
(L1, FL1) compared to the control (C, p = 0.002) and the flagellin-exposed group (F,
p = 0.041), respectively (Figure 3a). No significant change has been observed in the level
of IFN-γ (Figure 3b). The concentration of IL-10 decreased in the case of sole flagellin
exposure (F, p = 0.015); meanwhile, the level of the luteolin-cotreated (FL1) cells showed
no significant difference in comparison with the control group (C) (Figure 3c). Further, the
ratio of IFN-γ/IL-10 was elevated in the case of the flagellin group (F, p = 0.025) compared
to the control (C) (Figure 3d).
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3.3. IL-6 and IL-8 Concentration

No significant difference in IL-6 concentration was observed between any of the
investigated treatment groups (Figure 4a). IL-8 concentration was significantly increased by
flagellin treatment (F, p = 0.016) compared to the absolute control group (C). This increase
was attenuated (p = 0.016) by the concomitantly applied luteolin (FL1) (Figure 4b).
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3.4. H2O2 Level and Malondialdehyde Concentration

The decrease in extracellular H2O2 levels in response to luteolin (p = 0.002) was re-
vealed by Amplex Red measurements both in the sole luteolin (L1) exposure group and
in the combined flagellin–luteolin treatment group (FL1, p = 0.002) (Figure 5a). Similarly,
as observed for H2O2 levels, MDA, a parameter indicative of membrane lipid peroxi-
dation, showed a significant decrease (p = 0.016) in the luteolin and flagellin combined
treatment group (FL1) compared to the level observed in the case of flagellin-exposed cells
(F) (Figure 5b).
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4. Discussion

With the emergence of microbes resistant to certain antibiotics, the WHO forecast
warns us that antimicrobial resistance will imply a major threat: the number of deaths
caused by resistant bacterial infections worldwide is predicted to increase 15-fold by
2050 [27,28]. Notwithstanding that the application of antimicrobials as growth promoters
was banned in the EU in 2006, the still abundant and often prophylactic or metaphy-
lactic overuse of these agents in the livestock sector can strongly increase the risk of
resistance development [28,29]. In the poultry industry, there is growing evidence that
the enhanced performance previously obtained with the subtherapeutic application of
antibiotics is attainable with natural feed additives of plant origin [30–32]. The beneficial
effect of these substances on animal health and productivity could be mediated by their
anti-inflammatory, cytoprotective and antioxidant properties [22,33,34], which should be
extensively investigated.

In the present study, a molecular pattern recognized by TLR5, flagellin of S. Ty-
phimurium, was used to induce the hepatic inflammatory response. Following flagellin
stimulation of chicken heterophilic granulocytes, Kogut et al. reported NFκ-B activation;
an increase in IL-1β, IL-6 and IL-8 transcription; and described degranulation and free
radical generation-inducing effects of the molecule [13,14]. Furthermore, recombinant S.
Typhimurium flagellin stimulated IL-4, IL-6 and IL-12 [35], while S. Enteritidis infection
in vitro elevated the IL-1β, IL-6 and IL-8 gene expression in chicken peripheral blood
mononuclear cells [36]. These data accentuate the proinflammatory response of chicken
inflammatory cell monocultures after flagellin exposure, albeit the liver and its resident cells
are postulated primary targets of flagellated bacteria, and the TLR receptor toolkit of the
organ might be crucial in the elimination of the bacterial burden from the portal circulation.
A study on bioluminescent imaging of NF-κB-dependent luciferase expression in TLR5
agonist-treated mice unveiled that the liver is the major organ to respond to flagellin-like
products in contrast to bacterial lipopolysaccharide (LPS); a surge of luminescence was
detected uniquely in hepatocytes early after the TLR5 agonist administration [37].

The liver is one designated place of paratyphoid S. enterica multiplication in chickens;
therefore, it could damage the organ in case of early infection of hatchlings [6,16]. Hence,
the major aim of our work was the in vitro modeling of inflammation and oxidative stress
induced by ciliated bacteria in primary hepatocyte–non-parenchymal cell co-cultures of
chicken origin to recapitulate the response of the avian liver. Based on the previous
studies, the applied primary co-culture can be considered a proper model of avian hepatic
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inflammation, mimicking moderate intrahepatic macrophage migration with a cell ratio of
6:1 (hepatocytes to non-parenchymal cells). In recent years, the authors examined the effect
of specific pathogen-associated molecular patterns with the established and characterized
primary co-culture [26]. Previous studies confirmed that flagellin at concentrations of 100
and 250 ng/mL did not induce cellular damage in terms of increased LDH activity or
decreased metabolic activity of the cells. However, flagellin significantly increased the
production of proinflammatory IL-6 in the 2D model at 250 ng/mL and in the 3D model at
100 ng/mL [38]. The present study reports a significant elevation of the expression of IL-8
protein in the 2D chicken primary culture of hepatocyte–non-parenchymal cells, which is
in agreement with the data published on chicken heterophilic granulocytes and peripheral
blood mononuclear cells.

The effect of luteolin on cell culture of chicken origin was investigated for the first time
to the best of our knowledge; however, luteolin has already been applied on a large scale of
mammalian cell lines. The protective effect of the molecule on cell viability and membrane
integrity was confirmed on NRK-52E rat kidney cells when applied at as high as 50–200 µM
concentration [39]. Wang et al. (2021) examined the cellular metabolic activity of mouse
primary hepatocyte culture following LPS exposure. The authors have reported that in
relatively low, 10 and 20 µM, concentrations, it has restored the viability of the cells [40].
Luteolin also served as a cytoprotective agent under LPS and ATP induced inflammatory
cell death in 50 µM in human THP-1 monocyte cell line indicated by decreased LDH
leakage and restored cell metabolic activity. This concentration proved to be the highest
tolerable to the monocyte culture as 100 µM luteolin induced a significant decrease in
cellular viability [41]. In a hepatic cell culture model of the present study, 16 µg/mL
concentration, a dose similar to 50 µM (equal to 14.132 µg/mL) of luteolin, proved to
be cytotoxic. In contrast, exposure to low concentrations of luteolin (5 µM, referring to
1.413 µg/mL) in RAW264.7 macrophages effectively modified the inflammatory response
of cells without any effect on LDH-indicated cytotoxicity, in consonance with the 4 µg/mL
dosage applied in the present study [42].

IFN-γ in chicken, similarly to mammalian species, is a key cytokine of the immune sys-
tem as the primary activator of phagocytosis and a regulator of T helper cell
function [43–45]. It is hypothesized to be a vital cytokine to terminate the spread of S.
enterica as it contributes to the elimination and processing of intracellular pathogens in
phagocytes [46]. Both human and murine model studies confirmed that high IFN-γ and
low IL-10 levels were connected to the successful activation of the immune system and the
elimination of enteric salmonellosis in the early phase of the infection [46–48]. The level
of the cytokine is not proven to be associated with the pace of the clearance in chicken,
although the escalation of the IFN-γ level in the spleen and cecal tonsils is observed to be
vital to eliminate S. enterica from the gastrointestinal tract [49]. The present study, there-
fore, aimed to examine the changes in the level of IFN-γ and IL-10, two crucial cytokines
in paratyphoid S. enterica-induced response, and their ratio consequently. The decrease
observed in IL-10 concentration and the increase in IFN-γ/IL-10 ratio in case of flagellin ex-
posure corroborate with a proinflammatory response similar to that observed in mammals
and therefore validate the applied in vitro model [46–48]. Type I interferons, such as IFN-α
are essential for efficient immunity, while their sustained synthesis inhibits macrophage
and NK cell activity and leads to the production of ROS. Similarly, excessive IFN-γ produc-
tion locally could lead to a harmful cytotoxic reaction; the elevation of this cytokine is a
characteristic of the etiology of virus-induced tissue damage (e.g., infectious bursal disease,
chicken infectious anemia) [50–52]. In the present study, luteolin effectively diminished
the hepatic IFN-α release both in sole and combined application with flagellin, indicating
the suggested anti-inflammatory role of the flavonoid in maintaining the physiological
inflammatory homeostasis.

Luteolin exposure at 4 µg/mL decreased the IL-8 but not the IL-6 production of
chicken hepatic co-cultures. Chicken IL-8 (syn. CXCLi2) attracts monocytes, macrophages
and lymphocytes to the site of inflammation, but in higher concentrations, it also stimulates
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angiogenesis [53]. IL-8 production of human HT29 colon adenocarcinoma cells following
the TNF-α challenge was diminished by luteolin [54]. In another study, luteolin reduced the
accumulation of the proinflammatory cytokines IL-6 and TNF-α induced by LPS exposure
in mouse primary hepatic cell cultures [40]. These results could be further supported
by the observation of Wang et al. In their study, RAW264.7 macrophages were treated
with LPS and IFN-γ to generate cultures of proinflammatory elongated M1 phenotype
macrophages. Subsequently, luteolin treatment resulted in a concentration-dependent
alteration in cell morphology towards the appearance of mainly anti-inflammatory rounded
M2 macrophages and a significant decrease in gene expression of the cytokines IL-1β and
IL-6 [55]. The present study demonstrates that luteolin could decrease the protein level
of IL-8 in a chicken primary co-culture recapitulating the cell ratio of the avian liver. The
mechanism of action in mammalian cells is presumed to be connected to inhibitors of
NF-κB (IκBs), which prevent NF-κB from binding to the DNA and set forth the production
of proinflammatory cytokines [24,42,54,56]. The blockage of the NF-κB signal might be a
putative mechanism in chickens as well, as no remarkable difference between the TLR5
signal pathway in avian and mammalian cells has been described; the flagellin-induced
alarm of the immune system is highly conserved [57].

Macrophages, monocytes, neutrophils, avian heterophils and eosinophilic granulo-
cytes perform phagocytosis to remove pathogens from the body. The various reactive
substances produced can also be released into the interstitial space during degranulation of
the inflammatory cells, thus being able to not only damage pathogens but also oxidize the
proteins, nucleic acids and lipid components of the cells themselves in the microenviron-
ment of inflammation [58–60]. In birds, heterophilic granulocytes function as non-oxidative
phagocytes; therefore, macrophages and monocytes are of key importance [61]. Excessive
stress and disturbance of the redox signaling could lead to the overproduction of reactive
species [62]. This oxidative stress could be compensated by nutritional antioxidants or by
stimulating the production of antioxidant enzymes (e.g., superoxide dismutase, glutathione
peroxidase, heme oxygenase) regulated by nuclear factor-erythroid 2 coupled factor 2
(Nrf2) [62,63]. The activation of the Nrf2 signaling pathway may be one of the poten-
tial mechanisms by which luteolin diminishes cellular oxidative stress [56]. Flavonoids
are able to structure-specifically scavenge reactive oxygen species and reduce the rate
of lipid peroxidation [64]. The results of the present study confirm that luteolin could
alleviate lipid peroxidation and decrease the extracellular H2O2 level. In line with the
observation of the authors, a decrease in the intracellular reactive oxygen species level was
reported in cardiomyocytes and IPEC-J2 intestinal porcine enterocyte cultures after luteolin
supplementation [56,65].

The present in vitro model study has provided some initial evidence concerning the
anti-inflammatory and antioxidant role of luteolin in the chicken liver, suggesting that it
might be a potential and safe candidate in poultry nutrition to ameliorate the deteriorative
effects of enteric bacterial infections. However, it has to be stressed that further studies are
required to assess the effects of this plant-derived metabolite even under in vivo conditions
when applied as a feed additive.

5. Conclusions

In summary, the results of the present study confirmed that the applied primary
hepatocyte–non-parenchymal cell co-culture could be a proper tool for modeling the avian
hepatic inflammatory and stress response triggered by S. Typhimurium flagellin. The
applied dose of flagellin (250 ng/mL) was not cytotoxic, but it could provoke inflammation
as indicated by the increased cellular IL-8 and decreased IL-10 production and by the
elevated IFN-γ/IL-10 ratio, which were effectively restored by luteolin at the dose of
4 µg/mL. Besides its anti-inflammatory action, luteolin was also capable of remarkably
decreasing the extracellular H2O2 and MDA concentrations indicative of oxidative stress
and lipid peroxidation. Based on these data, it can be suggested that luteolin might
be a potential natural candidate to maintain the physiological inflammatory and redox
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homeostasis of the liver in chicken, possibly mitigating the destructive action of flagellin-
associated inflammation caused by enteric bacterial infection. Hence, the administration
of luteolin or some other flavonoids might be a promising tool to improve animal health
and to reduce antibiotic application in poultry farming, which should be also addressed by
further in vivo studies.
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