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Simple Summary: Enteric methane (CH4) emissions are a global concern and have been associated
with climate change. Thus, sustainable, easily applicable CH4 mitigation strategies should be
in place without having an adverse effect on animal productivity. We (i) developed a series of
dairy cattle enteric CH4 production (g/d) and yield (g/kg of dry matter intake, DMI) models
using combined (lactating and non-lactating cows) and lactating data, (ii) investigated the effects of
monensin on enteric CH4 emissions in dairy cattle, and (iii) evaluated the proposed and published
models. Monensin reduced daily CH4 production and CH4 yield by 5.4% and 4.0%, respectively.
Further, long-term in vivo studies on monensin feeding of ≤24 mg/kg DM with CH4 measurements
taken to account for bacterial adaptation in the rumen are needed. Overall, DMI is the significant
driver of CH4 emissions in dairy cattle and a model that included DMI, dietary forage proportion,
and the quadratic term of dietary forage proportion was the best model for both combined (lactating
and non-lactating) and lactating cows. The methane yield was best predicted with dietary forage only
for combined data, while a combination of dietary forage proportion, milk fat, and milk protein yields
was the best model for lactating cows. This indicates that the inclusion of dietary composition along
with DMI can provide a better CH4 production prediction in dairy cattle. The selected developed
models outperformed the published models.

Abstract: Greenhouse gas emissions, such as enteric methane (CH4) from ruminant livestock, have
been linked to global warming. Thus, easily applicable CH4 management strategies, including
the inclusion of dietary additives, should be in place. The objectives of the current study were to:
(i) compile a database of animal records that supplemented monensin and investigate the effect of
monensin on CH4 emissions; (ii) identify the principal dietary, animal, and lactation performance
input variables that predict enteric CH4 production (g/d) and yield (g/kg of dry matter intake DMI);
(iii) develop empirical models that predict CH4 production and yield in dairy cattle; and (iv) evaluate
the newly developed models and published models in the literature. A significant reduction in CH4

production and yield of 5.4% and 4.0%, respectively, was found with a monensin supplementation of
≤24 mg/kg DM. However, no robust models were developed from the monensin database because
of inadequate observations under the current paper’s inclusion/exclusion criteria. Thus, further
long-term in vivo studies of monensin supplementation at ≤24 mg/kg DMI in dairy cattle on CH4

emissions specifically beyond 21 days of feeding are reported to ensure the monensin effects on the
enteric CH4 are needed. In order to explore CH4 predictions independent of monensin, additional
studies were added to the database. Subsequently, dairy cattle CH4 production prediction models
were developed using a database generated from 18 in vivo studies, which included 61 treatment
means from the combined data of lactating and non-lactating cows (COM) with a subset of 48 treat-
ment means for lactating cows (LAC database). A leave-one-out cross-validation of the derived
models showed that a DMI-only predictor model had a similar root mean square prediction error
as a percentage of the mean observed value (RMSPE, %) on the COM and LAC database of 14.7
and 14.1%, respectively, and it was the key predictor of CH4 production. All databases observed an
improvement in prediction abilities in CH4 production with DMI in the models along with dietary
forage proportion inclusion and the quadratic term of dietary forage proportion. For the COM
database, the CH4 yield was best predicted by the dietary forage proportion only, while the LAC
database was for dietary forage proportion, milk fat, and protein yields. The best newly developed
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models showed improved predictions of CH4 emission compared to other published equations. Our
results indicate that the inclusion of dietary composition along with DMI can provide an improved
CH4 production prediction in dairy cattle.

Keywords: monensin; dairy cattle; enteric methane emissions; methane production; methane
prediction equation; dry matter intake; empirical modeling

1. Introduction

The abatement of greenhouse gases (GHG), mainly methane (CH4), and its environ-
mental effects on climate change is a global concern. Despite CH4 having a short lifetime
in the atmosphere with an average of 12.4 years [1], it is 28–34 times more potent than
carbon dioxide at causing global warming over a century [2] with a significant impact on
climate change. Ruminant enteric CH4 gas is an end-product of the rumen fermentation
process which is influenced by dietary components and is responsible for 2–12% of overall
feed energy loss [3,4] and is diverted away from animal productivity. Within the livestock
sector, small ruminants and buffalo are responsible for 15.4% of the sector’s CH4 emissions,
while dairy and beef cattle account for the majority of these emissions (30% and 35%,
respectively) [5]. To counter these CH4 emissions, over 100 countries launched a Global
CH4 Pledge in November 2021, agreeing to reduce CH4 by 30% from 2020 levels by the
year 2050 [6].

Enteric CH4 mitigation strategies in ruminants include but are not limited to, di-
etary feed formulation changes [7], the use of feed additives/rumen modifiers such as
ionophores [8], essential oils [9], plants extracts [10], plant secondary metabolites (e.g., tan-
nins) [11], and chemical inhibitors [12] along with genetics and management [13]. All these
strategies have been shown to reduce enteric CH4 production either directly or indirectly;
however, consistent and cost-effective strategies are not yet established [2].

The quantification of enteric CH4 emissions using in vivo CH4 measurement tech-
niques can be costly; therefore, an effort in the development of empirical models has
been made and continues to increase [14–20]. Other empirical models have demonstrated
that including diet composition variables make a significant contribution to enteric CH4
production accurately [16,18,21]. An effort was taken by IPCC [19] in the development of
empirical models for a wide range of animals; however, several studies have observed an
inaccuracy in enteric CH4 production values with the use of this model when evaluated on
an intercontinental database comprised of Europe, North America, Australia, Asia, and
South America data [16,22]. Thus, nutritionists must understand the impact of dietary
changes and their influence on CH4 emissions. The incorporation of CH4 prediction models
in diet formulation models is vital as that will assist in the decision-making process to
enhance animal productivity while reducing its environmental impact.

The use of non-nutritive supplements (feed additives) such as monensin has proven to
improve CH4 predictions in the VFA stoichiometry [23,24] despite the fact that a variety of
empirical models have demonstrated that dietary nutritional composition plays a significant
role in ruminant enteric CH4 production [16,18,21]. A meta-analysis was published which
attempted to describe monensin’s effect on CH4 emissions in dairy and beef cattle [25];
however, to our knowledge, no study has developed empirical predictive CH4 emission
models exclusively on the use of monensin as a Food-and-Drug-Administration-approved
feed additive with CH4 mitigating properties. The use of cost-effective CH4 quantification
strategies, such as the use of empirical predictive models developed from particular feed
additives, would be useful as they will provide an estimation of the reduction in CH4
production without the need to acquire expensive equipment.

The ionophore monensin is frequently used in cattle diets to increase feed energy
utilization efficiency [26]. It can reduce enteric CH4 formation by reducing methanogens,
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which favors propionate production, which then utilizes a methyl group for the additional
carbon to dispose of hydrogen [27].

However, there are inconsistencies in the effectiveness of ionophore feeding in cattle
methanogenesis. For instance, Van Vugt et al. [28], O’kelly and Spiers [29], Odongo et al. [30]
observed a significant reduction of over 6.0 % in the daily enteric CH4 production of over
a 50 d feeding period, whereas others did not [9,31–34]. The recent National Academy of
Sciences, Engineering, and Medicine, Nutrient Requirement of Dairy Cattle (NASEM) [35]
stated a 5% reduction in CH4 emissions with the use of monensin in diet formulation.
In addition, previous studies reported a temporary decrease in CH4 production [36–38],
stating that the ruminal microbial population adapted to supplementation, but no evidence
of supplementation impact on methanogens was directly investigated.

Earlier research has shown that monensin efficacy in reducing methanogenesis is
dependent on its dosage [27], dietary forage content, as well as feeding duration [24,36,39].
For example, Odongo et al. [30], Mbanzamihigo et al. [40], Davies et al. [41] observed a
significant decrease in CH4 production after long-term feeding without evidence of ruminal
microbial adaptation (40–240 days). Furthermore, De and Singh [42] found a minimum
adaptation period of 21 days for monensin on microbial fermentation/cell wall digestibility
and CH4 production reduction, and this is consistent with the effect of monensin on milk
fat composition where changes were reversed after an 18 d washout period [43].

The objectives of this paper were to: (i) develop a dairy cattle database to accurately
predict the enteric CH4 production of animal records and investigate the inhibitory effects
of monensin supplementation on CH4 emissions; (ii) identify the key predictor variables
for predicting dairy cattle enteric CH4 production (g/d) and yield (g/kg DMI); (iii) develop
dairy cattle enteric CH4 emissions prediction models; and (iv) evaluate the proposed
models and compare these results to the previously published models.

2. Materials and Methods
2.1. Model Database Construction
Monensin Database

Literature search. A literature search was conducted using Scopus and Web of Science
databases, whereby an initial search resulted in a total of 333 published research papers
from 1981 to 2020. For the search of the literature, a combination of terms was used:
“monensin”, “methane”, and “cattle”, or “cow”, or “ruminant”.

Eligibility criteria. For the studies to be included in the database, the following
eligibility criteria were established: (i) the studies should be in vivo and involve monensin
feeding using dairy cattle; (ii) the studies should have a control group that did not receive
monensin; (iii) the studies reported CH4 production as the response/outcome for both the
control and a monensin treatment group; and (iv) the studies reported the treatment means
of other variables such the observed dry matter intake (DMI), dietary composition, and
lactation performance for studies that included lactating cows.

Selection process. Following the removal of duplicates and null entries (80 papers),
253 papers were identified. Then, a thorough screening process of records to identify
the potential eligible papers based on the eligibility criteria resulted in the elimination of
135 papers from the database (in vitro papers (100), paper in another language (1), meta-
analyses (5), review papers (22), simulation papers (3), editorial and erratum papers (2),
papers in goats and sheep (2)). This resulted in a total of 118 papers, and we removed an
additional 77 papers that did not fulfill the criteria. The search resulted in 41 papers that
were related to monensin feeding effects on CH4 emissions; therefore, a further reading
of full-text articles of the title, abstracts, experimental designs, and results was conducted.
Out of 41 papers, 17 articles were excluded for the following reasons: summary papers (4),
no CH4 emission measurements (2), no monensin/treatment effect results reported (2),
without control measurements (3), conference papers as there were duplicate publications
of the similar study (2), conference paper only reported an abstract, simulation papers (2),
and paper that investigated the effects of monensin when mixed with other feed additives.
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The final database had a total of 24 papers that met the criteria and remained in the
database; however, 13 were related to beef cattle [29,36,38,39,44–52] and 11 were related to
dairy cattle [8,9,28,30–34,53–55]. Then, beef cattle papers were excluded from the database.
Finally, only the dairy cattle database was considered for the present study, except those
conducted under grazing conditions, i.e., four studies (n = 8 treatment means) Van Vugt
et al. [28]; two studies (n = 4 treatment means; Grainger et al. [34]); and two studies
(n = 4 treatment means; Grainger et al. [33]). Figure S1 illustrates a flowchart of the data
searching, screening, and selection process used in the current study. For the investigation
of the effects of monensin supplementation on CH4 emissions using a monensin database,
only studies that had taken CH4 measurements ≥21 d following monensin feeding were
considered. Regardless of the delivery method (i.e., controlled-release capsule (CRC) or
premix) and CH4 measurement technique (i.e., respiration chamber, SF6, hood) utilized to
measure enteric CH4 monensin’s CH4, the inhibitory effects were the same.

The database was assessed for outliers using the interquartile range (IQR) as described
by Kokoska and Zwillinger [56], whereby a factor of 1.5 was regarded as extreme. The
outliers were assessed using the CH4 production, CH4 yield (g/kg of DMI), and DMI. The
study of Hamilton et al. [54] reported an unrealistic low CH4 production with both the con-
trol and monensin treatment containing 35% forage and DMI > 28 kg/day (103 ± 37 days
in milk); therefore, the values were considered outliers and removed from the database for
the final analysis.

To achieve the third objective, additional papers were added to the database for
equation development, and the literature search was conducted through the same databases.
Moreover, grazing studies were not considered in the database because most papers did not
report the actual DMI. The paper was included in the database if it had met the following
inclusion criteria: (i) had reported DMI, dietary components including neutral detergent
fiber (NDF), acid detergent fiber (ADF), lignin/acid detergent lignin (ADL) except in two
studies, and/or hemicellulose/cellulose; (ii) was written in English; (iii) was carried out
as an in vivo study; and (iv) did not investigate any other feed additives and measured
CH4 production as an outcome. In the case where hemicellulose and cellulose were not
reported, they were calculated as described below. In two studies, the lignin content was
not reported; therefore, values from the Cornell Net Carbohydrate and Protein System
(CNCPS) feed library [57] were procured and matched based on the feeds which most
closely aligned with those fed in the study.

The final dataset comprised 61 observations from 18 studies (combined, COM database)
including lactating (n = 48 treatment means; LAC) and non-lactating dairy cattle (n = 13
treatment means; NLAC). The non-lactating cows included heifers (n = 4) and dry cows
(n = 9). The COM database included both monensin and additional papers. The summary
of the studies used in the current database is shown in Table 1.

Table 1. Summary of the database used for the model development.

Author CH4 Collection Technique N CH4, (g/d)
Mean (SD)

CH4/DMI, (g/kg)
Mean (SD)

DMI (kg)
Mean (SD)

[58] Chamber 2 275.5 (74.77) 19.8 (3.40) 13.8 (1.41)
[59] Chamber 2 194.4 (6.92) 14.4 (1.17) 13.6 (0.62)
[60] Chamber 4 248.1 (27.37) 17.9 (1.99) 13.9 (0.63)
[61] Chamber 7 223.2 (82.35) 20.7 (2.05) 11.2 (5.15)
[62] Chamber 6 249.7 (100.31) 19.2 (2.88) 13.5 (6.37)
[63] Chamber 4 165.6 (11.67) 24.2 (2.72) 6.9 (0.42)
[64] Chamber 4 386.8 (51.85) 23.0 (2.31) 17.1 (3.72)
[30] Hood 2 443.7 (21.21) 22.9 (0.57) 19.4 (0.42)
[65] Chamber 4 471.8 (21.82) 23.7 (1.19) 19.7 (0.67)
[66] SF6 3 301.0 (19.52) 19.8 (1.08) 15.5 (0.35)
[67] Chamber 3 452.3 (26.73) 19.8 (1.63) 22.5 (0.70)
[53] Hood 4 583.8 (37.71) 20.6 (0.77) 28.3 (1.01)
[32] SF6 2 354.9 (39.95) 17.5 (2.33) 20.3 (0.57)
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Table 1. Cont.

Author CH4 Collection Technique N CH4, (g/d)
Mean (SD)

CH4/DMI, (g/kg)
Mean (SD)

DMI (kg)
Mean (SD)

[68] Chamber 4 415.3 (19.19) 21.9 (0.44) 19.0 (0.49)
[69] Chamber 4 402.8 (12.34) 24.0 (1.37) 16.8 (0.54)
[31] SF6 2 486.0 (14.14) 21.9 (0.85) 22.1 (0.42)
[9] SF6 2 475.0 (18.38) 20.6 (0.42) 23.6 (0.35)
[8] SF6 2 328.4 (64.35) 18.8 (2.74) 17.5 (0.80)

Chamber = respiratory chamber; SF6 = sulfur hexafluoride tracer technique; N = number of treatments means per
study; SD = standard deviation; CH4 = enteric methane; DMI = dry matter intake.

2.2. Data Extraction and Calculations

Animal, dietary, and lactation performance factors were all considered in the de-
veloped databases. A preliminary analysis demonstrated that DMI along with dietary
variables such as lignin as a percentage of NDF, (Lig.%NDF), cellulose, and hemicellu-
lose/cellulose (H:C) ratio were the significant predictors of enteric CH4 production. Thus,
the parameters used included DMI (kg/d), intake energy (IE, MJ/d), metabolizable energy
intake (MEI, MJ/d), and dietary nutrient composition (crude protein, CP; NDF; ADF;
Lig.%NDF, acid detergent lignin, ADL; ether extract, EE; ash; hemicellulose, cellulose,
H:C ratio, non-fiber carbohydrates, NFC; and forage proportion (all expressed as % of
DM)). Lactation performance factors included milk yield (MY, kg/d); milk fat yield (MFY,
g/d); milk protein yield (MPY, g/d); and energy-corrected milk (ECM, kg/d, Tyrrell and
Reid [70]). Furthermore, for the development of the monensin database, other input vari-
ables such as the monensin dose (mg/kg DM of feed), monensin delivery method (CRC or
premix), duration of monensin feeding (days), and the number of days of CH4 production
measurements after monensin feeding were considered in the database and the number of
animals per study were associated with each treatment mean.

For studies with missing nutrient composition variables, the nutrient composition for
individual feed ingredients were populated using the feeds selected from the CNCPS feed
library [57] provided the studies had reported adequate dietary ingredient descriptions. Ad-
ditionally, in most cases, there was no hemicellulose and cellulose reported, so hemicellulose
was calculated as NDF—ADF, while cellulose was calculated as ADF—ADL [71]. Moreover,
other missing variables, IE, NFC, MEI, and ECM, were obtained using the following equa-
tions: ECM was calculated as ECM (kg/d) = 12.95 × milk fat yield (kg/d) + 7.65 × milk
protein yield (kg/d) + 0.327 × milk yield (kg/d) Tyrrell and Reid [70]; NFC was calculated
as NFC (%) = 100 − (NDF + CP + EE + Ash), where all nutrient composition variables
were expressed as % of dietary DM. When IE was not reported, it was estimated from the
DMI and dietary nutrient composition as cited by Ramin and Huhtanen [72] IE (MJ/d
DM) = DMI (kg/d) × [(23.6 × CP + 39.8 × EE + 17.3 × NFC + 18.9 × NDF)/100] and the
CH4 conversion factor (Ym, %) was calculated as CH4 production (g/d) × 0.05565 ÷ IE
(MJ/d) × 100). The estimation of MEI was calculated first from TDN using the equation
TDN (%) = 92.2 − 1.12 × ADF [73], whereby 1 kg TDN = 4.409 Mcal/kg DE [74]. Then,
to calculate ME: ME (Mcal/kg) = −0.45 + 1.01 × DE (Mcal/kg) [74]. Finally, MEI was
calculated as the ME content multiplied by the DMI associated with each treatment mean.

In the studies where the CH4 yield and intensity were not reported, the CH4 yield
values were calculated by dividing CH4 production by the measured DMI (kg/d) and CH4
intensity by dividing the CH4 production by the provided ECM (kg/d) or MY (kg/d). In
the current database, the majority of the studies expressed CH4 production in g/d, thus, in
cases where it was reported in other units such as MJ/d or L/d, it was then converted as
follows: 22.4 L CH4 = 16.0 g (1 L CH4 = 0.716 g CH4) and 1 g CH4 = 55.6 KJ (0.0556 MJ).

2.3. Statistical Analyses

All data analyses were carried out using R Statistical language (version 4.1.2 (1 Novem-
ber 2021, R Foundation for Statistical Computing, Vienna, Austria)) in RStudio version
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2022.7.1.554 [75]. The data were analyzed using a linear mixed model fitted with lmer
(lme4 package) [76] using this model:

Y = β0 + β1 X1 + β2X2+ . . . . . . + βnXn + Si + eij (1)

where Y denotes the expected outcome of the dependent variables of CH4 production
(g/d), CH4 yield (g/kg DMI), or CH4 intensity (g/kg ECM). β0 denotes the fixed effect of
the random intercept, X1 to Xn denote the fixed effects of the independent variables, β1 to
βn denote their corresponding slopes, Si denotes the random effect of the studies, and eij
denotes the random error.

2.3.1. Effects of Monensin on CH4 Emissions

To investigate the inhibitory effects of monensin on CH4 emissions, only the studies
that had taken measurements ≥21 days after monensin feeding were considered in the
analyses. As a result, a total of 3 studies (n = 6) were retained in this dataset.

2.3.2. Model Variable Selection and Model Development

The CH4 emission regression equations were developed and evaluated on the COM
and subset LAC datasets. Furthermore, in order to investigate the lactation performance
variables (MY, MFY, MPY, and ECM) on CH4 emissions, additional categories of CH4
production and yield models were developed using only the LAC dataset (n = 48).

Simple and multiple linear mixed models to predict CH4 emissions were developed
with data weighted by the number of animals associated with each treatment mean in order
to account for the accuracy of the reported treatment means using the WEIGHT statement
in the lmer function [77]. In the overall dataset, CH4 production was quantified using
respiration chamber data in 11 studies, hood calorimetry in 2 studies, and SF6 in 5 studies.
Data from Hammond et al. [78] observed a lack of concordance between the CH4 emission
measurement techniques (respiration chamber, SF6, and GreenFeed System, C-Lock, Inc.,
Rapid City, SD, USA); accordingly, prior to the final development of the model, the effect of
CH4 production measurement techniques on the CH4 emissions (enteric CH4 production
and yield) was assessed but was not significant (p > 0.05), thus they were excluded in the
model developments as fixed effects.

For the COM database, seven CH4 production model categories were developed that
included DMI only (DMI_S), IE only (IE_S), MEI only (MEI_S), DMI and dietary forage
proportion (DMI_For_M), DMI, dietary forage proportion and quadratic term of dietary
forage proportion (DMI_For_nl), DMI and dietary components variables (DMI_diet_M),
and DMI and other dietary composition variables except for dietary forage proportion
(noForage_diet_M). Model variable selection for the DMI_diet_M and noForage_diet_M
was done using the COM data and evaluated the same retained variables on LAC data.

For the LAC data, the lactation performance variables in addition to animal and dietary
input variables on CH4 emissions were incorporated into the models, whereby an additional
seven CH4 production model categories were developed from one or more predictor vari-
ables that included: MY only (MY_S), ECM only (ECM_S), DMI and NDF (DMI_NDF_M),
DMI and ADF (DMI_ADF_M), DMI, dietary components, and lactation performance vari-
ables (DMI_diet_lac_M), all dietary composition except DMI (noDMI_diet_M), and NDFd,
dietary components, and lactation performance variables (NDFd_diet_lac_M). The DMI
was used to calculate the CH4 yield; therefore, it was not used in the development of all
CH4 yield models [16]. The CH4 model categories were: NDF only (NDF_S), ADF_only
(ADF_S), dietary forage proportion only (Forage_S), dietary composition (diet_M), and
animal, dietary composition, and lactation performance variables (diet_lac_M). Model
variable selection for the diet_lac_M model category was performed using LAC data only.

Factors that predicted CH4 production were chosen using the backward elimination
approach using the Akaike information criterion corrected for the sample size (AICc) in the
MuMIn package [79] in models with an increased complexity (i.e., more variables); then,
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the model with the lowest AICc value was selected. With a small sample size, the AICc
function prevents model overfitting or complexity [80,81].

Multicollinearity amongst the variables was assessed using the variance inflation
factor (VIF) with a threshold of 5. A VIF greater than 5 was regarded as a signal of
multicollinearity; therefore, the variable with the largest VIF was removed then the model
was refit and evaluated again. To ensure the stability of the coefficients in the models, all
the retained input variables in the newly developed models were significant at p ≤ 0.05 [82].
In order to maximize the use of the number of observations for model development, due to
the limited number of observations for NDF digestibility (NDFd), the model selection was
performed with the reduced dataset (COM: n = 43; LAC: n = 30) and if the model selection
excluded NDFd, then the final model was refitted with the full dataset.

In the case where slope biases were found in the proposed and published models,
biases were assessed using the residuals and the predicted values (mean-centered) as
described by St-Pierre [83]. The models’ residual diagnostics and influential observations
were also assessed [84].

2.3.3. Proposed Models’ Evaluation and Cross-Validation

The leave-one-out cross-validation procedure (LOOCV) was used to evaluate the
predictive ability of the developed proposed models, whereby studies were regarded as
the folds. In each iteration, one study was used as the validation and the remaining studies
were used as the training dataset [85]. The models developed were evaluated on COM
(n = 61) and LAC (n = 48) data. The model performance metrics were calculated from
the model predictions generated from the cross-validation process and published CH4
emissions models were also evaluated in the current study [16–20,72,86–92] on COM and
LAC data only. These published models were selected based on the availability of the
input variables in our database and are commonly used to predict CH4 production. The
Nielsen et al. [91] model utilized dietary digestible NDF (dNDF, % of DM) and fatty acids
(FAs) contents, which were not reported in some cases in our databases. Therefore, dNDF
was then calculated as dNDF (% of DM) = [(NDFd × NDF (% of DM))/100], while FAs were
replaced with EE instead. Lin’s concordance correlation coefficient (CCC) was calculated
using the epiR package [93]. The CCC is the product of precision (r) or Pearson’s correlation
coefficient and accuracy or bias correction factor (Cb); a greater coefficient is an indication
of a better model performance. The Cb specifies how far the regression line deviates from a
line at 45 degrees, and the value closer to 1 implies a better fit.

The total mean square prediction (MSPE) was calculated following the recommenda-
tion of Bibby and Toutenburg [94] using the equation below to identify systematic biases.
The total MSPE was decomposed into mean bias (MB) and slope bias (SB). Both the MB and
SB were expressed as the percentage of the MSPE. The root mean squared prediction error
(RMSPE) was calculated and expressed as the fraction of the observed mean (expressed in
g/d or g/kg DMI), and a smaller value indicates a better overall model predictive ability. To
evaluate the model predictive ability given the data variability, the RMSPE-observations SD
ratio (RSR) was also calculated as the RMPSE divided by the observed standard deviations.

MSPE =
∑n

i=1(yi − ŷi)
2

n
(2)

where yi represents the observed value of the response variable for the ith observation and
ŷi represents the predicted value of the response variable for the ith observation.

MB = (P − O)
2 (3)

SB = (Sp − r × So)2 (4)

where P and O represent the predicted and observed means, respectively, Sp and So
represent predicted and observed standard deviations, respectively, and r represents the
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Pearson correlation coefficient. The best models were selected based on the lowest RMSPE
and highest CCC values.

3. Results
3.1. Database Description

The COM and LAC datasets description for the dietary composition and lactation
performance variables and their summary statistics are shown in Table 2. On average, DMI,
IE, and MEI were greater for the lactating cows, but a greater variability was found in both
lactating and non-lactating cows than in LAC data. The COM data were mostly comprised
of lactating cows (LAC database; 78.7%, n = 48 from 14 studies) than non-lactating cows
(NLAC database; 21.3%, n = 13 from 4 studies). The range of the forage proportion in the
experimental diets fed to both lactating (LAC) and combined (COM) cows was similar (40
to 100%). In the COM and LAC databases, 43 of 61 (12 studies; 70.5%) and 30 of 48 treatment
means (8 studies; 62.5%) had reported NDFd. The mean NDFd was slightly greater in the
combined cows (COM) than in lactating cows (LAC) (48.8 vs. 47.7%). Most of the studies
used respiration chambers to measure CH4 production (61.1%, n = 44); five studies utilized
SF6 (27.8%, n = 9), and two studies used hood calorimetry (11.1%, n = 6). In the entire
database, the total dietary IE lost as CH4 (Ym) ranged from 3.2 to 7.9% of gross energy.

In the LAC subset, MY, MFY, and MPY ranged from 10.0 to 46.3 kg/d, 490 to 1780 g/d,
and 370 to 1430 g/d, respectively. On average, LAC emitted a greater daily CH4 production
of 389.7 g/d (SD ± 102.68) than combined cows (346.4 ± 127.13 g/d). However, it was
more variable in combined cows ranging from 147.4 to 631.2 g/d. The methane yield
(g/kg DMI) was much more variable (ranging from 13.5 to 27.0) in combined cows than
in lactating cows (15.2 to 25.9). On average, the CH4 intensities, expressed as both g/kg
MY and g/kg ECM, were 16.1 (SD ± 2.83) and 14.97 (SD ± 1.97), respectively. The CH4
conversion factor (CH4, % of IE) of all cows was slightly greater (6.2 vs. 6.0 %) than that of
lactating cows. There was no difference observed in the CH4 production between the CH4
collection techniques (p > 0.05).

3.2. Effects of Monensin on CH4 Emissions

We were unable to construct robust dairy cattle enteric CH4 production prediction
models because the monensin database had too few observations overall (n = 14 treatment
means). However, we were able to investigate the effects of monensin on CH4 emission con-
sidering studies (n = 6 treatment means from 3 studies) that had taken CH4 measurements
≥ 21 days following monensin feeding.

We found a significant decrease in CH4 production at 24 mg/kg DM monensin in
the diet (β = −25.33 ± 2.91, t = −8.72, F = 76.00, p = 0.013) compared to the control
treatment, with the control emitting higher CH4 production (g/d) (M = 480.9, SEM = 12.8)
than the monensin-supplemented group (M = 455.6, SEM = 12.8). Similarly, a significant
decrease in the average CH4 yield (g/kg DMI) was found in the monensin treatment group
(β = −0.87 ± 0.176, t = −4.91, F = 24.14, p = 0.04) compared to the control group. A greater
CH4 yield was found in the control group (M = 22.2, SEM = 0.66) than the monensin group
(M = 21.4, SEM = 0.66). However, no significant difference in CH4 intensity (g/kg ECM)
was found between the monensin and control group (F = 1.24, p = 0.22).

3.3. Methane Production (g/d) and CH4 Yield (g/kg DMI) Models
3.3.1. Methane Production Equations

The newly developed CH4 production (g/d) equations, as well as the models pub-
lished in the literature and their metrics, are in Tables 3 and 4, respectively (illustrated in
Figures 1 and 2). The RSR values were used to evaluate the model’s predictive ability given
the data variability [95]. The lactation performance and dietary variables were included
in the model development using the LAC database, but for the COM database, only DMI,
IE, MEI, and dietary composition variables were considered. Model variable selection in
DMI_diet_M (Eqs. 6, and 13) and noForage_diet_M (Eqs. 7, and 14) was performed with
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COM data and we evaluated the models also using the LAC database. For the CH4 produc-
tion regression equation development using both COM and LAC databases, collinearity
was found between DMI and IE (COM: r = 0.80, p < 0.001; LAC: r = 0.99, p < 0.001) and
DMI and MEI (COM: r = 0.97, p < 0.001; LAC: r = 0.94, p < 0.001); therefore, the models
were developed only with DMI due to its effectiveness in predicting CH4 production and
ease of application on the farm. Moreover, this was also supported by the lowest RMSPE
values (Table 3), and models with DMI showed a better prediction compared to the models
fitted with either IE or MEI (results not shown).

Table 2. Summary descriptive statistics of the dataset used to develop the proposed methane
emission models.

Combined Database (n = 61) Lactating Database (n = 48)

Input Variable a Mean SD b Min b Max b Mean SD b Min b Max b

Animal variables
DMI, kg/d 16.7 5.83 6.3 29.2 18.9 4.16 12.8 29.2
IE, MJ/d 312.8 107.83 113.7 546.0 353.3 75.94 243.3 546.0

MEI, MJ/d 117.5 67.35 48.6 313.8 200.5 49.41 129.3 313.8
Dietary nutrient content (% of DM), unless stated otherwise

CP 15.7 3.18 5.1 22.5 16.2 2.41 6.7 20.2
NDF 35.3 8.01 24.7 69.6 34.7 6.9 24.7 56.4
ADF 21.5 5.59 13.7 42.9 21.2 4.67 13.7 35.2

Lignin, %NDF 11.6 4.05 3.3 18.5 11.2 4.18 3.3 18.5
Lignin 3.9 1.42 1.4 9.2 3.7 1.18 1.4 5.8

EE 3.4 1.06 1.8 7.0 3.4 1.12 1.8 7.0
Ash 6.7 1.51 4.1 11.5 6.7 1.40 4.1 9.9

Hemicellulose 13.8 4.23 5.5 26.7 13.4 4.1 5.5 24.4
Cellulose 17.6 5.2 10.3 33.7 17.6 4.67 10.3 30.1
H:C ratio 0.83 0.26 0.18 1.47 0.80 0.25 0.18 1.47

NFC c 39.0 8.73 18.2 52.9 39.0 8.11 19.3 52.9
Forage, % 57.1 17.66 40.0 100.0 57.3 15.99 40.0 100.0

Performance variables
MY, kg/d - - - - 25.6 8.47 10.0 46.3
MFY, g/d - - - - 1003.9 294.98 490.0 1780.0
MPY, g/d - - - - 845.4 244.54 370 1430.0

ECM, kg/dd - - - - 26.6 7.35 12.4 44.8
Nutrient digestibility, %

NDFd 48.5 18.15 12.1 76.9 47.7 19.84 12.1 76.9
CH4 emissions

CH4, g/d 346.4 127.13 147.4 631.2 389.7 102.68 189.5 632.2
CH4/DMI, g/kg 20.8 2.86 13.5 27.0 20.7 2.64 15.2 25.9
CH4/MY, g/kg - - - - 16.1 2.83 11.4 23.3

CH4/ECM, g/kg - - - - 15.0 1.97 11.3 19.3
Ym (CH4/IE), % 6.2 0.84 4.0 7.8 6.0 0.83 4.00 7.6

a CH4 = methane; DMI = dry matter intake; IE= dietary intake energy; MEI = metabolizable energy intake;
CP = dietary crude protein; NDF = neutral detergent fiber, ADF = acid detergent fiber; Lig.%NDF = lignin as a
percent of neutral detergent fiber; EE = ether extract; H:C ratio = hemicellulose to cellulose ratio; NFC = non-
fiber carbohydrates; MY = milk yield (kg/d); MFY = milk fat yield (g/d); MPY = milk protein yield (g/d);
ECM = energy-corrected milk; NDFd = dietary neutral detergent fiber digestibility (%); Ym = methane con-
version factor representing total energy (IE) loss as methane gas. b SD = standard deviation; Min = mini-
mum; Max = maximum. c NFC (%) = 100 − (NDF + CP + EE + Ash). d ECM (kg/d) = 12.95 × milk fat yield
(kg/d) + 7.65 × milk protein yield (kg/d) + 0.327 × milk yield (kg/d) Tyrrell and Reid [70].
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Table 3. Methane production (g/d) developed prediction equations and model performance evaluation using combined (COM) and lactating cows (LAC) databases.

Model Performance d

Categories a Prediction Equation b n c RMSPE, % RSR MB, % SB, % CCC

Combined (COM)

(1) DMI_S 65.57 (50.53) + 16.77 (0.99) × DMI 61 14.7 0.40 0.07 17.57 0.90

(2) IE_S 66.96 (21.07) + 0.890 (0.054) × IE 61 15.1 0.41 0.05 18.61 0.89

(3) MEI_S 65.82 (24.91) + 1.55 (0.11) × MEI 61 17.8 0.49 0.99 2.44 0.86

(4) DMI_For_M 9.00 (28.39) + 17.62 (0.99) × DMI + 0.73 (0.31) × forage 61 12.8 0.35 0.40 14.44 0.93

(5) DMI_For_nl
−73.74 (27.95) + 17.08 (0.88) × DMI + 2.64 (0.47) × forage − 0.06

(0.01) × forage2 (centered) 61 10.7 0.29 1.92 1.75 0.95

(6) DMI_diet_M 45.84 (31.20) + 0.85 (0.29) × forage + 17.84 (0.93) × DMI − 4.26 (1.55) × Lig.%NDF 61 11.5 0.31 0.89 6.40 0.94

(7) noForage_diet_M
169.25 (37.16) + 17.04 (0.94) × DMI − 5.88 (1.73) × Lig.%NDF − 52.19

(19.93) × H:C ratio 61 10.9 0.30 1.04 5.12 0.95

Lactating cows (LAC)

(8) DMI_S 37.67 (42.54) + 18.38 (2.16) × DMI 48 14.1 0.53 1.69 8.22 0.81

(9) IE_S 39.88 (44.03) + 0.98 (0.12) × IE 48 14.5 0.55 1.57 9.64 0.79

(10) MEI_S 128.81 (44.77) + 1.26 (0.21) × MEI 48 18.3 0.69 2.13 6.09 0.63

(11) DMI_For_M −129.56 (42.51) + 22.63 (1.73) × DMI + 1.56 (0.33) × forage 48 9.5 0.36 0.18 0.00 0.93

(12) DMI_For_nl
−128.95 (37.06) + 19.78 (1.84) × DMI + 2.73 (0.49) × forage − 0.05

(0.02) × forage2 (centered) 48 9.1 0.34 1.64 0.00 0.94

(13) DMI_diet_M −90.73 (56.97) + 1.44 (0.35) × forage + 22.16 (1.77) × DMI − 2.07 (2.00) × Lig.%NDF 48 9.3 0.35 0.43 0.00 0.93

(14) noForage_diet_M
149.04 (53.40) + 18.61 (1.86) × DMI − 5.55 (2.12) × Lig.%NDF − 65.50

(24.37) × H:C ratio 48 10.0 0.38 1.27 1.96 0.92

(15) MY_S 201.58 (33.18) + 7.51 (1.16) × MY 46 16.0 0.66 1.47 3.63 0.68

(16) ECM_S 186.96 (32.43) + 7.86 (1.11) × ECM 46 15.7 0.65 0.59 0.59 0.68

(17) DMI_NDF_M −93.23 (58.93) + 20.63 (2.02) × DMI + 2.60 (1.05) × NDF 48 11.1 0.42 1.13 7.04 0.89

(18) DMI_ADF_M −62.91 (51.62) + 20.51(2.01) × DMI + 2.91 (1.29) × ADF 48 11.2 0.42 0.90 3.01 0.89

(19) DMI_diet_lac_M 34.52 (36.51) + 16.64 (3.84) × DMI + 0.225 (0.050) × MFY − 0.214 (0.079) × MPY 46 9.8 0.40 0.08 6.64 0.90
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Table 3. Cont.

Model Performance d

Categories a Prediction Equation b n c RMSPE, % RSR MB, % SB, % CCC

(20) noDMI_diet_lac_M
62.74 (40.32) + 0.162 (0.052) × MFY − 15.52 (6.02) × EE + 4.71 (2.17) × MY + 5.95

(1.68) × cellulose 46 10.1 0.42 0.00 0.37 0.90

(21) NDFd_diet_lac_M −60.54 (50.81) + 20.13 (2.74) × DMI + 1.35 (0.44) × NDFd 30 11.2 0.49 0.00 3.29 0.87

a Developed model categories: simple models are DMI only (DMI_S); IE_only (IE_S); MEI only (MEI_S); MY only (MY_S); ECM only (ECM_S) and multiple linear models are DMI
and dietary forage proportion (DMI_For_M); DMI, dietary forage proportion and quadratic term of dietary forage proportion (DMI_For_nl); DMI and dietary composition variables
(DMI_diet_M) and no dietary forage proportion variable but included DMI and dietary nutrient composition variables (noForage_diet_M), DMI and NDF (DMI_NDF_M); DMI and ADF
(DMI_ADF_M); DMI, dietary composition and lactation performance variables (DMI_diet_lac_M); no DMI but included dietary and lactation performance variables (noDMI_diet_lac_M)
and all variables and NDFd (NDFd_diet_lac_M). b DMI = dry matter intake (kg/d); IE = intake energy (MJ/d); MEI = metabolizable energy intake (MJ/d); Lig.%NDF = lignin as a
percentage of neutral detergent fiber (NDF); MY = milk yield (kg/d); ECM = energy-corrected milk (kg/d); NDF = neutral detergent fiber (%DM); ADF = acid detergent fiber (%DM);
MFY = milk fat yield (g/d); MPY = milk protein yield (g/d); NDFd = neutral detergent fiber digestibility (%). In parentheses are the standard errors (SE). c n = is the number of
observations in the combined (COM) and lactating data (LAC) used to develop the models. d RMSPE = root mean square prediction error expressed as the percentage of the observed
mean daily methane production (g/d); RSR = RMSPE-observations standard deviation ratio; MB = mean bias expressed as the percentage of the total mean square prediction error;
SB = slope bias expressed as the percentage of the total mean square prediction error; CCC = concordance correlation coefficient. Figures 1 and 2 illustrate the performance of these
newly developed models.
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Figure 1. Plots of observed vs. predicted methane (CH4) production (g/d) (illustrated by circles),
and residuals (diamond: observed—predicted values) vs. predicted methane production (g/d)
(illustrated by diamond shapes) generated from the combined (COM) database (n = 61) from different
model categories and extant equations presented in accordance with Tables 3 and 4. The references
interpretations are stated in Table 4. The solid blue lines indicate the relationship between predicted
and observed methane production and predicted values and the residuals. The solid black lines
represent the line of unity, where y = x (1:1)[16–20,72,86–92].
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Figure 2. Plots of observed vs. predicted methane (CH4) production (g/d) (illustrated by circles),
and residuals (diamonds: observed—predicted values) vs. predicted methane production (g/d)
(illustrated by diamond shapes) generated from the lactating cows (LAC) database (n = 48) from
different model categories and extant equations presented in accordance with Tables 3 and 4. The
references interpretations are stated in Table 4. The solid blue lines indicate the relationship between
predicted and observed methane production, and predicted values and the residuals. The solid black
lines represent the line of unity, where y = x (1:1) [16–19,72,86–92].

As expected, DMI (Eqs. 1, 4–8, 11–12, 14–16, 18–19, and 21), IE (Eqs. 2, and 9), MEI
(Eqs. 3, and 10), forage proportion (Eqs. 4–6, and 11–13), MY (Eq. 15), ECM (Eq. 16), MFY
(Eqs. 18, and 19), NDF (Eq. 17), ADF (Eq. 18), cellulose (Eq. 20), and NDFd (Eq. 21) were
positively correlated with CH4 production, while Lig.%NDF (expressed as lignin as a % of
NDF, Eqs. 6–7, and 13–14), H:C ratio (Eqs. 7, and 14), MPY (Eqs. 19), and the EE (Eq. 20)
showed a negative relationship to CH4 production with both the COM and LAC databases
(Table 3).

Models with DMI as the only predictor variable (Eqs. 1, and 8) did not perform
better compared to multiple regression equations 4–7, 11–14, 17–19, and 21 (Table 3) based
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on COM and LAC databases with the highest RMPSE (>14.0%) and lowest CCC (<0.90).
However, this DMI_S model did not demonstrate a low mean bias (MB = 0.07 to 1.69%)
with both COM and LAC databases but showed a high slope bias on COM (SB = 17.6%).
The DMI simple regression model (DMI_S) on COM and LAC databases outperformed the
IE_S model (Eqs. 2, and 9: highest RMPSE = 15.1 and 14.5%; and lowest CCC value = 0.89
and 0.79, respectively) and the MEI-only model (Eqs. 3, and 10: highest RMPSE = 17.8 and
18.3%; lowest CCC value = 0.86 and 0.63, respectively). An increase in model complexity
by the addition of dietary variables to the model with DMI (DMI_S: Eqs. 1, and 8) showed
an improvement in the prediction performance for both databases. For the COM database,
based on the lowest RMSPE and highest CCC values, the overall best model included DMI,
dietary forage proportion, and the quadratic term of dietary forage proportion (DMI_For_nl
(Eq. 5): RMSPE = 10.7%; CCC = 0.95) and the second best-ranked model included DMI,
Lig.%NDF, and H:C ratio (noForage_diet_M (Eq. 7): RMSPE = 10.9%; CCC = 0.95), with
both models revealing no systematic biases (Figure 1). The noForage_diet_M (Eq. 7) is the
model that resulted when DMI and all other dietary variables were included except forage
proportion, and it was first generated with the reduced dataset (n = 43) with NDFd included
to maximize the use of the data. However, the NDFd fell out of the model selection, and
the model was refitted with the full dataset.

For the LAC database, simple regression models of milk yield (MY_S; Eq.15) and
ECM (ECM_S; Eq. 16) had a similar predictive ability with RMSPEs of 16.0 and 15.7%,
respectively, and greater RSR (≥0.65), with the tendency to underpredict at the upper
end of CH4 production, and they had a lower precision (or accuracy) than Eq. 8 (DMI_S,
Table 3). However, an improvement in the model performance was observed when DMI,
MFY, and MPY were retained in the DMI_diet_lac_M model (Eq. 19), and this is supported
by the lowest RMSPE and greater CCC values (9.8% and 0.90, respectively) (Figure 2).

In contrast to Eq. 19 (DMI_diet_lac_M), a slight increase in the prediction error
of 10.1% was observed when DMI was excluded in the model development (in Eq. 20;
noDMI_diet_lac_M). Overall, based on the lowest RMSPE (9.8%) and highest CCC (0.90)
values, Eq. 19 (DMI_diet_lac_M) with 93.3% error to random variation demonstrated a
better precision than other models generated on the LAC database (Table 3) with no system
biases. This model was outperformed by Eq. 12, which parameterized the DMI, dietary
forage proportion, and quadratic term of dietary forage proportion, and was also supported
by the highest CCC = 0.94. For the LAC database, Equation 12 based on DMI and dietary
components, and Eq. 19 based on DMI, dietary components, and lactation performance
variables, outperformed all the newly developed models from this database.

Although the model variable selection in Table 3 was developed with COM data
for DMI_diet_M (Eq. 6) and noForage_diet_M (Eq. 7) models, these models showed a
better prediction accuracy on the LAC database (Eqs. 13, and 14) with no evidence of
systematic biases.

Published model evaluation. All extant models were selected based on the availability
of the input/predictor variables in our database, their frequency of use, and some of the
recommendations provided by NASEM [35]. The performance of the published models on
the COM and LAC databases is demonstrated in Table 4 and the observed and predicted
CH4 production (g/d) values are illustrated in Figures 1 and 2. Overall, for the COM
database, all the equations had RMSPE, RSR, and CCC values ranging between 12.2–30.0%,
0.34–0.82, and 0.71–0.94, respectively, while for the LAC database, these values ranged from
9.7 to 26.9%, 0.43 to 1.02, and 0.56 to 0.89, respectively. Among the extant models evaluated,
the equations of Ellis et al. [18], Mills et al. [20], Ramin and Huhtanen [72], Patra [87],
Storlien et al. [89], Moraes et al. [90] revealed systematic biases (SB and MB, p < 0.05) with
a greater RMSPE ranging from 17.6 to 30.0% for the COM database and 15.2 to 26.9% for
the LAC database (Figure 2). The equation of Storlien et al. [89] exhibited a low precision
among all the published equations, with RMSPE >26% (higher RSR) and a lower accuracy,
as evidenced by CCC values below 0.71 for both databases. The equations of Ellis et al. [18],
Patra [87], Moraes et al. [90] underpredicted CH4 production on COM and LAC databases
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at the upper values (Figures 1 and 2), with both systematic biases and greater RMSPE
(20.6 and 20.5%, respectively; Figure 1). In contrast, the IPCC [19] and IPCC [86] Eq. 1
models revealed no slope biases on COM (SB = 1.93 and 2.71%, respectively) and LAC
(SB = 0.07 and 5.04%, respectively) databases; however, they showed a significant mean
bias on both databases (MB > 14%). Moreover, these equations exhibited an overestimation
or underestimation of CH4 production at the upper values (Figures 1 and 2). In contrast,
the Niu et al. [16] equation did slightly better with no mean bias but showed significant
slope biases on COM (SB = 56.84%) and LAC (SB = 45.57%) databases. The Niu et al. [16]
equation underpredicted CH4 production on COM and LAC databases with a maximum
bias of 96.3 g/d and 109.1 g/d, but this bias was greater than 39.11 and 39.02 g/d predicted
standard errors, respectively. The models of IPCC [19], Yan et al. [88], Hristov et al. [92]
had similar RMSPEs of 14.2, 14.5, and 14.4%, respectively, and they also exhibited mean
biases ranging from 13.66 to 25.12% (p < 0.05) but showed no slope biases (p > 0.05).
Similarly, on the LAC database, the same models resulted in similar prediction errors and
CCC values (RMSPE = 16.6 − 14.0; CCC = 0.82 − 0.83) associated with the mean bias. In
contrast, the models of Charmley et al. [17], IPCC [86] were ranked second among all the
extant models evaluated on both COM and LAC databases. These models demonstrated a
comparable predictive performance and accuracy without any systematic errors (Table 4,
Figures 1 and 2).

Among the 15 chosen extant models evaluated with both COM and LAC databases, the
equation of Nielsen et al. [91] had the best precision and accuracy (Table 4, Figures 1 and 2)
with the lowest RMSPE (<12%) and greater CCC (>0.89) but did not outperform the newly
developed models in the present study. Despite the observation that the Nielsen et al. [91]
model demonstrated an identical prediction error to our best-performed model evaluated
with the LAC database, the CCC analysis showed that our model had a better prediction
accuracy (0.94 vs. 0.89). These results suggest that given the available data, there are no
benefits of including additional dietary variables such as EE and dNDF, as done in the
Nielsen et al. [91] model, compared to our model that incorporates DMI, dietary forage
proportion, and a quadratic term of dietary forage proportion.

These results demonstrate that an increase in model complexity by the inclusion of
the dietary components could enhance the ability to forecast CH4 production because
systematic bias was observed when DMI was the sole predictor, leaving much variabil-
ity unexplained.

3.3.2. Methane Yield (g/kg DMI) Equations

The CH4 yield regression equations were developed on COM (Eqs. 1–4) and LAC
(Eqs. 5–9) databases, and their performances are presented in Table 5 (Figure S2). Lactation
performance variables were also evaluated using the LAC database and resulted in model 9
(diet_lac_M). The methane yield had a negative relationship with dietary CP (Eq. 4), NFC
(Eq. 8), and MPY (Eq. 9) and was positively related to NDF (Eqs. 1, and 5), ADF (Eqs. 2,
and 6), dietary forage proportion (Eqs. 3, and 7), and MFY (Eq. 9).

All the models’ predictions show variability among the data. Both NDF_S and ADF_S
had a similar prediction performance with RMSPEs of 11.7 and 11.8%, respectively, on
the LAC database. However, Eq. 2 (ADF_S) showed a slightly greater RMSPE of 12.1%
and a lower CCC of 0.30 compared to Eq. 1 (NDF_S) with prediction errors of 11.5%
and a greater CCC of 0.49 with the COM database. For the LAC database, the forage
proportion-only predictor (Forage_S; Eq. 7) model showed a better prediction accuracy
than NDF_S (Eq. 5) and ADF_S (Eq. 6), with the lowest RSR and greater CCC values
(RSR = 0.73, CCC = 0.61), but that was not the case on the COM database (RSR = 0.82,
CCC = 0.46). Model variable selection in diet_M (Eq. 4) fitted on COM and LAC databases
resulted in different predictor variables. The model developed using the COM database
resulted in the parameterization of dietary forage proportion and CP, whereas the LAC
database model resulted in dietary forage proportion and NFC. However, all these models
also retained the dietary forage proportion variable. Diet_M on COM data showed a
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slightly greater RMSPE (12.6%) compared to the dietary forage proportion-only predictor
model (Forage_S) with an RMSPE of 11.4%, and this model overpredicted CH4 yield
at the upper end. A similar pattern was found in the LAC database (RMSPE = 10.4%),
but this tended to underpredict the CH4 yield at the upper end. Overall, among all the
models developed on the LAC database, the best model was identified with the variable
selection that resulted in dietary forage proportion, MFY, and MPY. This model had the
lowest prediction error (RMSPE = 7.4%) and greatest CCC (0.77) with a 99.99% error due to
random sources. For COM data, the simple regression models of dietary forage proportion
(Forage_S) and neutral detergent fiber (NDF_S) showed a better prediction accuracy on
CH4 yield compared to other models.

Although the extant models on both databases demonstrated negligible slope biases
and had comparable prediction errors (RMSPE > 11.0%; Eqs. 1, 2 and 3; Table 5) and
CCC values (ranged from 0.39 to 0.44), Eq. 3 of Niu et al. [16] had a lower prediction
accuracy (CCC = 0.25) and greater RSR (0.93). Among all the published models in Table 5,
Niu et al. [16] Eq. 1 fitted with an NDF-only predictor was ranked the highest based on the
slightly lower RMSPE, RSR, and slightly greater CCC value.

All newly developed models showed negligible mean and slope biases to extant equations.
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Table 4. Published methane production (g/d) equations evaluation using combined (COM; n = 61) and lactating cows (LAC; n = 48) databases.

Model Performance b

Extant Models Equations a RMSPE, % RSR MB, % SB, % CCC

Combined (COM)
Yan et al. [88] 3.23 (0.523) + 0.055 (0.0018) × IE 14.5 0.40 17.08 6.05 0.91

Mills et al. [20] 5.93 (1.60) + 0.92 (0.08) × DMI 17.6 0.48 35.92 13.88 0.86
IPCC [19] Tier 2 (0.065 × IE)/0.05565 14.2 0.39 13.66 1.93 0.92
Ellis et al. [18] 3.23 (1.12) + 0.809 (0.0862) × DMI 20.6 0.56 40.14 23.09 0.80

Hristov et al. [92] 2.54 (4.89) + 19.14 (0.43) × DMI 14.4 0.39 22.60 2.36 0.91
Nielsen et al. [91] c 1.23 × DMI − 1.45 × EE + 0.171 × dNDF 12.2 0.34 4.37 7.60 0.94

Ramin and Huhtanen [72] 20 (12.1) + 35.8 (2.87) × DMI − 0.50 (0.132) × DMI2 18.1 0.49 6.87 29.14 0.83
Moraes et al. [90] −0.163 + 0.051 × IE + 0.038 × NDF 17.6 0.48 40.09 13.24 0.86
Storlien et al. [89] 6.80 + 1.09 × DMI − 0.15 × EE 30.0 0.82 82.05 0.33 0.71

Charmley et al. [17] 38.0 (29.03) + 19.22 (1.40) × DMI 13.2 0.36 8.10 2.49 0.93
Patra [87] 1.29 (0.906) + 0.878 (0.125) × DMI 22.6 0.62 57.44 12.00 0.78
Patra [87] 71.47 (22.14)× (1 − exp (−0.0156 (0.0051) × DMI) 22.0 0.60 52.96 13.19 0.79

Niu et al. [16] 33.2 (13.54) + 13.6 (0.33) × DMI + 2.43 (0.245) × NDF 16.9 0.46 0.00 56.84 0.84
IPCC [86] Eq. 1 (0.057 × IE)/0.05565 15.0 0.41 25.12 2.71 0.91
IPCC [86] Eq. 2 (0.060 × IE)/0.05565 13.1 0.36 4.14 0.38 0.93

Lactating (LAC)
Yan et al. [88] 3.23 (0.523) + 0.055 (0.0018) × IE 13.6 0.58 10.90 8.43 0.83

Mills et al. [20] 5.93 (1.60) + 0.92 (0.08) × DMI 15.2 0.58 23.98 14.21 0.78
IPCC [19] Tier 2 (0.065 × IE)/0.05565 13.8 0.52 16.72 0.07 0.84
Ellis et al. [18] 3.23 (1.12) + 0.809 (0.0862) × DMI 20.5 0.78 51.40 14.62 0.63

Hristov et al. [92] 2.54 (4.89) + 19.14 (0.43) × DMI 14.0 0.53 22.48 4.51 0.83
Nielsen et al. [91] c 1.23 × DMI − 1.45 × EE + 0.171 × dNDF 9.7 0.43 0.31 4.22 0.89

Ramin and Huhtanen [72] 20 (12.1) + 35.8 (2.87) × DMI − 0.50 (0.132) × DMI2 17.7 0.63 14.32 41.54 0.64
Moraes et al. [90] −0.163 + 0.051 × IE + 0.038 × NDF 17.3 0.66 44.76 11.26 0.73
Storlien et al. [89] 6.80 + 1.09 × DMI − 0.15 × EE 26.9 1.02 78.91 1.14 0.56

Charmley et al. [17] 38.0 (29.03) + 19.22 (1.40) × DMI 12.6 0.48 5.16 5.23 0.86
Patra [87] 1.29 (0.906) + 0.878 (0.125) × DMI 22.3 0.85 62.7 8.58 0.61
Patra [87] 71.47 (22.14)× (1 − exp{−0.0156 (0.0051) × DMI 21.7 0.82 57.48 13.00 0.61

Niu et al. [16] 33.2 (13.54) + 13.6 (0.33) × DMI + 2.43 (0.245) × NDF 14.3 0.54 7.64 45.57 0.77
IPCC [86] Eq. 1 (0.057 × IE)/0.05565 14.6 0.55 24.14 5.04 0.81
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Table 4. Cont.

Model Performance b

Extant Models Equations a RMSPE, % RSR MB, % SB, % CCC

IPCC [86] Eq. 2 (0.060 × IE)/0.05565 12.7 0.48 3.20 3.10 0.86
a DMI = dry matter intake (kg/d); IE = intake energy (MJ/d); NDF = neutral detergent fiber (% of DM); EE = ether extract (% of DM); dNDF = digestible neutral detergent fiber (% of
DM). In parentheses are the standard errors (SE). b RMSPE = root mean square prediction error expressed as the percentage of the observed mean daily methane production (g/d);
RSR = RMSPE-observations standard deviation ratio; MB = mean bias expressed as the percentage of the total mean square prediction error; SB = slope bias expressed as the percentage
of the total mean square prediction error; CCC = concordance correlation coefficient. Figures 1 and 2 illustrate the performance of the published models on combined cows (COM) and
lactating cows (LAC) data. c Nielsen et al. [91] model was fitted with 43 and 30 observations on COM and LAC databases, respectively.

Table 5. Methane yield (g/kg DMI) prediction equations and literature published, and model performance evaluation for combined (COM) and lactating cows
(LAC) databases.

Model Performance d

Categories a Prediction Equation b n c RMSPE, % RSR MB, % SB, % CCC

Combined (COM)
(1) NDF_S 16.99 (1.41) + 0.11 (0.037) X NDF 60 11.5 0.83 0.00 0.80 0.49
(2) ADF_S 18.49 (1.24) + 0.10 (0.052) × ADF 60 12.1 0.88 0.11 3.06 0.30
(3) Forage_S 16.21 (1.31) + 0.08 (0.021) × forage 60 11.4 0.82 0.23 0.38 0.46
(4) diet_M 21.13 (0.84) + 0.09 (0.02) × forage − 0.35 (0.100) × CP 60 12.6 0.92 0.10 5.58 0.41

Niu et al. [16] Eq.1 13.8 (0.63) + 0.185 (0.0133) × NDF 60 11.5 0.83 6.21 4.58 0.43
Niu et al. [16] Eq. 2 15.4 (0.76) − 0.354 (0.0756) × EE + 0.173 (0.0145) × NDF 60 11.9 0.86 6.26 1.83 0.39
Lactating cows (LAC)

(5) NDF_S 12.24 (1.88) + 0.24 (0.05) × NDF 48 11.7 0.86 0.88 1.79 0.36
(6) ADF_S 14.37 (1.47) + 0.29 (0.07) × ADF 48 11.8 0.87 0.62 2.08 0.33
(7) Forage_S 14.75 (1.00) + 0.10 (0.02) × forage 48 9.9 0.73 0.39 1.28 0.61
(8) diet_M 19.87 (2.38) + 0.08 (0.02) × forage − 0.11 (0.04) × NFC 48 10.4 0.76 0.42 0.01 0.58
(9) diet_lac_M 15.05 (1.52) + 0.08(0.02) × forage + 0.0086 (0.0024) × MFY − 0.0089 (0.0030) × MPY 46 7.4 0.61 0.01 0.00 0.77

Niu et al. [16] Eq. 1 13.8 (0.63) + 0.185 (0.0133) × NDF 48 11.1 0.82 1.90 3.01 0.44
Niu et al. [16] Eq. 2 15.4 (0.76) − 0.354 (0.0756) × EE + 0.173 (0.0145) × NDF 48 11.7 0.86 1.95 0.33 0.39
Niu et al. [16] Eq. 3 21.1 (0.77) + 0.105 (0.0081) × ECM + 1.30 (0.077) × MFP − 0.952 (0.1667) × MPP 46 11.4 0.93 3.86 0.07 0.25

a Developed methane yield (g/kg DMI) model categories: simple models are NDF only (NDF_S); ADF only (ADF_S); dietary forage proportion only (Forage_S), and multiple linear
mixed models categories are dietary composition only (diet_M); dietary composition and lactation performance variables (diet_lac_M). b NDF = neutral detergent fiber (%DM);
ADF = acid detergent fiber (%DM); forage = dietary forage proportion (%DM); EE = ether extract (%DM); NFC = non-fiber carbohydrates; MFY = milk fat yield (g/d); MPY = milk
protein yield (g/d); MFP = milk fat percent (%); MPP = milk protein percent (%). In parentheses are the standard errors (SE). c n = is the number of observations in the combined (COM:
lactating and non-lactating) and lactating data (LAC) used to develop the models. d RMSPE = root mean square prediction error expressed as the percentage of the observed mean daily
methane production (g/d); RSR = RMSPE-observations standard deviation ratio; MB = mean bias expressed as the percentage of the total mean square prediction error; SB = slope bias
expressed as the percentage of the total mean square prediction error; CCC = concordance correlation coefficient.
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4. Discussion

The first objective of this study was to investigate the effects of monensin on CH4
emissions while also developing predictive enteric CH4 emission models; however, with
the paper’s inclusion/exclusion criteria for the monensin database, no robust model was de-
veloped due to insufficient observations. The third objective was achieved using a database
comprised both of lactating and non-lactating cows (i.e., heifers and dry cows), and we did
not observe differences in the relationship between CH4 emissions (g/d or g/kg of DMI)
and input variables when assessed on separate datasets as either lactating or non-lactating
cows. As a result, the final statistical data analysis was performed using the combined data.
This approach is similar to that of Moe and Tyrrell [96] who developed predictive enteric
CH4 production models using combined data from lactating and dry cows.

4.1. Effects of Monensin on Methane Emissions

Grazing studies that evaluated the effects of monensin on CH4 production were elimi-
nated from the database for several reasons. After careful reading of the papers, there was
no analysis and statement of the monensin concentration in the diet or what was consumed,
thus there was no way to verify the monensin concentration. More mechanistically, there
are concerns with the dosing of the monensin in several published studies as monensin
was fed once or twice daily in what could be considered bolus dosing due to how grazing
cows are supplemented at milking times. This contrasts with cattle consuming total mixed
rations (TMR) where the monensin is thoroughly mixed and cattle consume some monensin
with every feeding bout. Additionally, the solubility of monensin is approximately 20% [97],
so with a once- or twice-a-day intake, the ability to distribute the monensin uniformly in
the rumen is likely reduced. This is likely compounded by the liquid passage rate and
turnover in grazing cattle consuming high-quality pasture grass. In the grazing study of
Dineen et al. [98], the liquid passage rate was approximately 0.21 per hour. This suggests
the rumen turnover rate for the liquid fraction in grazing cattle is approximately 5 h, a very
rapid turnover compared to TMR-fed cattle where it would be about half that rate. Thus,
with no verified monensin intake, a low solubility, non-uniform intake, and rapid rates of
liquid passage, the data were not considered in the evaluation of monensin effects on CH4
production and might explain why the results from those studies are so varied.

Regardless of the issue encountered related to the limited number of observations in
the monensin database, in vivo studies that had measured daily CH4 production longer
than 21 days following monensin supplementation were used to evaluate the impact
of monensin on enteric CH4 emissions. Unexpectedly, all the remaining studies (n = 6)
in the monensin database had supplemented monensin at 24 mg/kg DM of feed. The
present study observed a significant reduction in daily enteric CH4 production (g/d) of
5.4% and CH4 yield (g/kg DMI) of 4.0%, with monensin supplementation at 24 mg/kg
DM. These values are within the range reported by the reviews of Beauchemin et al. [27],
Beauchemin et al. [99], which showed that monensin at 24 mg/kg can reduce CH4 pro-
duction (g/d) by 4–10% and CH4 yield (g/kg DMI) by 3–8% in dairy cows, and this also
supports the findings that the monensin effects on methanogenesis are dose-dependent [99].
In addition, NASEM [35] reported a 5% reduction in CH4 production with monensin
inclusion in the diet. Furthermore, the current study suggests the timing of taking CH4
measurements after the initiation of monensin feeding is crucial to obtain clear effects of
monensin on methanogenesis in dairy cattle. Thus, the absence of consistent findings in
earlier research and the lack of significant CH4 reduction in monensin-fed dairy cattle point
to insufficient time being given to the ruminal microorganisms to be exposed to monensin.
This is supported by the data of Odongo et al. [30], who observed a significant decrease in
CH4 production after 30 days when evaluating the long-term feeding (i.e., 6 months) of
dairy cattle with monensin at a dose of 24 mg/kg DM. This indicates that the timing of the
CH4 measurement after monensin feeding has been overlooked in recent research.
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4.2. Key Predictors of Methane Production and Yield

In the present study, the key significant predictors of CH4 production (g/d) and CH4
yield (g/kg DMI) were identified using different model categories fitted in a linear mixed
model procedure. Similar to earlier studies [15–17,22,72], DMI was the significant predictor
of enteric CH4 production in dairy cattle for COM and LAC databases and was positively
related to daily enteric CH4 production on both databases (r = 0.94, p < 0.001 and r = 0.89,
p < 0.001 for COM and LAC, respectively). Greater DMI results in more CH4 production
due to the increased availability of substrates for digestion and related byproducts, i.e.,
hydrogen ion (H2) for rumen microbial fermentation. The slope of DMI corresponding with
CH4 production in COM and LAC databases ranged from 16.8 to 17.8 and 16.6 to 20.6 g/kg
of DMI, respectively. These ranges are greater than the range of 13.0 to 15.3 g/kg DMI
reported by Niu et al. [16] for European dairy cows. In a simple model of DMI (DMI_S,
Table 3) for the COM database (R2 = 0.87), every additional kg of DMI was associated with
an increase of 16.8 g in CH4 production, whereas on the lactating database (LAC), it was
18.4 g/kg DMI (R2 = 0.74) on average. This slope for lactating cows (18.4 g/kg DMI) was
similar to that reported by Congio et al. [15] but lower than that of Charmley et al. [17]
(20.7 g/kg DMI) for the universal equation developed from beef and dairy cattle records
(n = 1034) fed tropical and temperate forages. These differences could be a result of the
differences and variability in dietary composition and forage digestibility. In addition, IE
and MEI showed a strong significant positive correlation to CH4 production (g/d), and
these results are in agreement with other studies [14,18].

It has been estimated that enteric CH4 loss accounts for a significant portion of feed
energy loss from 2 to 12% [3], and the values from the present analysis fall within these
ranges, showing CH4 loss as a percentage of IE (Ym) ranging from 4.0 to 7.8% with an aver-
age of 6.2% (SD = 0.84) and 6.0% (SD = 0.83) for the COM and LAC datasets, respectively
(Table 2). However, these values are slightly lower than that reported by the IPCC [19] of
6.5% but are similar to that of IPCC [86] Eq. 2 (6.0%). The [19] slope-only model showed
an overprediction of CH4 production in the current study with a significant mean bias as
assessed according to St-Pierre [83] (−18.9 g/d, p = 0.002), and these findings are consistent
to those reported by others [16,22,100]. In contrast to our results, Appuhamy et al. [22]
observed 5.7% Ym in North American lactating dairy cows. In ruminants, forage preser-
vation methods have been shown to modify CH4 production in forage-based diets [13],
with a lower CH4 loss as a percent of IE with silage-based diets than hay in vitro [101],
while others did not observe any differences in vivo [102]. Therefore, slightly lower Ym
values in our study might be related to the non-structural carbohydrates associated with
feeding silages as the majority of the studies in our database (78%) were fed silages as
forage sources or sole-forage sources in the diets than they did dry hay (22%).

The NDF fraction represents the majority of the cell wall content of forage, and the
structural polysaccharides hemicellulose and cellulose, with the greater content being
cellulose, followed by hemicellulose [103]. This chemical fraction varies among forage
species [103], and fiber digestibility is crucial for enteric CH4 production. A diet high
in NDF results in a longer ruminal retention time, which encourages an increase in the
availability of the methanogenic substrate, H2, from the acetate and butyrate production
for CH4 synthesis [3]. This could explain the positive relationships found between CH4
production and dietary forage proportion and the CH4 yield and NDF or ADF content found
in the regression analysis in the present study. For the COM and LAC databases, the Pearson
correlation analysis between dietary forage proportion and CH4 production showed a
tendency not to be significantly related (results not shown); however, the dietary forage
proportion variable showed a better CH4 emission prediction accuracy in the regression
analysis. A nonlinear relationship between dietary forage proportion and CH4 production
with a dietary forage proportion range of 40–100% was observed in this study, and the
results are similar to that suggested by Lovett et al. [104], Benchaar et al. [105]. We observed
a decline in CH4 production at higher dietary forage proportion inclusion levels, and this
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depressed CH4 production observed at a higher forage might be related to the greater
digestibility of the forage sources fed.

In contrast to greater CH4 emissions from the fibrous CHO, less CH4 emissions in
dairy cattle have been observed with higher DMI of NFC. A negative effect of NFC on
CH4 yield was observed in the current study. An increase in the prediction error from
9.9 to 10.4% in the CH4 yield model when adding NFC along with forage proportion was
observed in our analysis, but this model was outperformed by the simple model of forage
proportion. This agrees with the observations of Ramin and Huhtanen [72] who observed a
minor contribution of dietary carbohydrates (NFC/NDF and NDF) to the CH4 prediction
accuracy. Moreover, the NFC measurement could be unreliable to use to predict CH4
emissions because it is calculated using the other dietary component variables.

Contrary to other studies [16,18], no obvious relationship was observed between CH4
production and NDF on both combined and lactating cow databases (r = 0.04 and 0.15, re-
spectively), but CH4 production was positively correlated with NDFd for LAC as expected.
This result shows that NDFd can be a better predictor of CH4 production in lactating dairy
cows. Furthermore, CH4 yield (g/kg DMI) was positively related to NDF and ADF on
combined and lactating cows’ databases, and this is similar to Hammond et al. [106]. Con-
sistent with the recent studies [107,108], less CH4 production was observed in our study
with the increase in the H:C ratio (COM: r = −0.50, p < 0.001; LAC: r = −0.59, p < 0.001).
Hemicellulose is highly digestible and it hydrolyzes at a faster rate than cellulose, yielding
less CH4 production if available to the bacteria. However, in grasses, one other observation
is that the concept of lignification includes the para-coumaric and ferulic ester and ether
linkages between lignin and hemicellulose [109], and these linkages can impact the rate
and extent of the digestion of hemicellulose and cellulose [110]. This supports the increase
in enteric daily CH4 production with an increase in the cellulose concentration observed
in our study, and these results are similar to that of Ma et al. [107]. Moe and Tyrrell [96]
reported a 37% reduction in CH4 production with an increase in digested hemicellulose
compared to the digestion of cellulose.

Similar to other studies, positive model coefficients were observed between CH4 emis-
sions, MY, and MFY in lactating cows. The positive association between CH4 production
and MY or ECM is the result of the dilution effect of an increase in DMI, as observed by the
positive relationship between DMI and MY (r = 0.94, p < 0.001) or DMI and ECM (r = 0.91,
p < 0.001). In the current study, MPY was associated with a decrease in CH4 emissions, and
this agrees with Velarde-Guillén et al. [100]. This is likely related to a greater propionate
production yielding more glucose, microbial protein, and mammary protein synthesis
signaling. On the contrary, the fermentation of NDF in dairy cattle diets encourages the
production of acetate, resulting in mammary fatty acid synthesis and elongation [111]. This
observation supports the positive relationship found between CH4 production or CH4
yield (g/kg of DMI) and MFY.

4.3. Newly Developed and Extant Model Performance for Methane Production (g/d)

To account for the accuracy of the reported CH4 production in studies, the models
developed were weighted by the number of animals in the study, and if the regression
slope bias was found to be significant at p < 0.05, then the magnitude of bias was quantified
following the recommendation of St-Pierre [83]. The models developed from the COM
database included animal input variables such as DMI/IE/MEI and dietary components
only, while the LAC database also included the lactation performance variables such as
ECM, MY, and milk composition. The models developed in the current study indicated
that DMI, as the only predictor on the COM and LAC databases, had a similar predictive
accuracy in terms of CH4 production with RMSPEs of 14.7 and 14.1 %, accounting for 87 and
74%, respectively, in CH4 production. Previous studies developed empirical prediction CH4
production models in dairy cattle, though their findings contradict our study, suggesting
the simple models of DMI or IE can be sufficient to predict CH4 production in dairy cattle
with the lowest RMSPE values [15,18]. For example, the simple regression DMI models
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have proven to better predict enteric CH4 production in beef cattle [21], dairy cattle [16],
and both dairy and beef cattle [18]. For the COM database in the current analysis, the
DMI-only model (DMI_S) exhibited no mean bias but a significant slope error of 17.6%
(p < 0.001; Figure 1) with overprediction at the lower end and underprediction at the upper
end. This model had a maximum bias of 45.8 g/d at the upper end; however, its biases
are smaller than the standard error of prediction (46.9 g/d). A slight underprediction with
this equation was observed on the LAC database, but with the absence of mean and slope
biases found (Figure 2), and this supports the results of Congio et al. [15].

For the COM database, all the models were developed with the DMI because models
without the use of DMI showed a poor accuracy and precision (results not shown, no
significant dietary component variables); therefore, this could be an indication that DMI
cannot be assumed to be constant across treatment means or studies and it has been stated
that it represents both animal and plant characteristics which affect rumen fermentation [17].
This is not surprising because DMI explained 87% of the variation in enteric CH4 production
in the present study. Similarly, Niu et al. [16] observed the poorest prediction accuracy of
the model (Eq. 24) when DMI was taken out of the models as supported by an increase in
the RMSPE of 15.8% on the EU database compared to the model that used DMI and NDF
(RMSPE = 14.7%).

The best CH4 production prediction models for both COM and LAC databases, ranked
by the lowest RSMPE (10.7 and 9.1%, respectively) and RSR values (0.29 and 0.34, respec-
tively) required DMI, dietary forage proportion, and a quadratic term of dietary forage
proportion (DMI_For_nl). The observed nonlinear relationship between dietary forage pro-
portion and CH4 production demonstrated a reduction in CH4 production at higher dietary
forage proportion inclusion, and this might be explained by the fact that our databases
were not constrained to any forage-inclusion levels, and ranged from 40 to 100%, and with
greater forage intake, forage digestibility usually increases.

In contrast to our findings, the study of Ellis et al. [18] did not find an improvement
in the model performance with dietary forage proportion and CH4 production in the
combined database of beef and dairy cattle, but other previous studies have [104,105],
including the present study. The current analysis showed the existence of a curvilinear
relationship between dietary forage proportion and CH4 production at higher dietary
forage proportion inclusion. Patel et al. [66] revealed lower enteric CH4 production with
feeding grass silage at greater than 50% of total DMI with NDF values less than 400 g/kg
DM in the diets. This could explain the depressed enteric CH4 production with an increase
in dietary forage proportion in the present study, with the lower average dietary NDF
values of 35.3 and 34.7% of DM for COM and LAC databases, respectively.

When dietary forage proportion was excluded in the model development process, the
second-ranked model based on the lowest RMSPE on the COM database, resulting in DMI,
Lig.%NDF, and H:C ratio (noForage_diet_M: RMSPE = 10.9%). This model was comparable
to the best-selected model that required DMI, dietary forage proportion, and the quadratic
response of dietary forage proportion to CH4 production (DMI_For_nl: RMSPE = 10.7%;
Table 3). As a result, it can be challenging to identify the most accurate and precise model;
however, based on the availability of input variables on the farm, dietary forage proportion
(% DM) and DMI might be sufficient for accurate predictions.

The use of the lactation performance variables has been reported to improve CH4
emissions predictions [16]. Even though the model that included the DMI, MPY, and MFY
outperformed other models developed using the LAC database in terms of the lowest
RMSPE and RSR values (RMSPE = 9.8%; RSR = 0.40), it did not outperform models with
input variables selected using the combined data and evaluated on the LAC database, i.e.,
models that used DMI, dietary forage proportion, and the quadratic response of dietary
forage proportion (DMI_For_nl: RMSPE = 9.1%, RSR = 0.34; Table 3) or DMI, dietary lignin
(% NDF), and dietary forage proportion (RMSPE = 9.3%; RSR = 0.35). Therefore, the use of
dietary components can be sufficient to use for enteric CH4 prediction in lactating cows
as well.
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In the current study, the equation of Nielsen et al. [91] outperformed all the published
models on both COM and LAC databases (RSR = 0.34 and 0.43; RMSPE = 12.2 and 9.7%;
CCC = 0.94 and 0.89, respectively) with error due to random sources of greater than 88%,
and the least prediction accuracy was observed with the Storlien et al. [89] equation. These
findings are consistent with those reported by Appuhamy et al. [22], who found the best
CH4 emissions predictions for North American cows using Nielsen et al. [91] equation. It is
worth noting that this model requires predictor variables such as DMI, dietary fatty acids
(FAs), and dNDF contents, of which we did not have the FAs in our database. As a solution,
we initially estimated the FAs using the equation of Giger-Reverdin et al. [112] as cited by
Appuhamy et al. [22]. However, the model’s prediction performance was poor (results not
shown). We then replaced the FAs with the EE from our database, the model exhibited
the best performance among all the chosen published models in the present study. These
results suggest that the use of an easily accessible dietary variable such as EE may be used
instead of FAs.

The second-ranked updated published equation of IPCC [86] (Eq. 2, Table 4) demon-
strated no systematic biases with a better prediction performance of CH4 production, and
this agrees with a recent study that reported that the equation adequately predicted CH4
emission from lactating cows who were fed Mediterranean diets [113]. Despite some
slight underestimation of CH4 emissions with the IPCC [86] at the upper values, our study
demonstrated that the refined factors in this model had improved CH4 production predic-
tions compared to the IPCC [19] model, which tended to overpredict at higher values. A
better CH4 prediction performance observed with the IPCC [86] given our databases could
be explained by the identical average Ym values (COM: 6.2 ± 0.84%; LAC: 6.0 ± 0.83%).
Furthermore, the model of Charmley et al. [17], which was developed only based on the
CH4 measurements from Australian cows, exhibited a better prediction and was compara-
ble to the IPCC [86]. In agreement with the study of van Lingen et al. [21], the equation
of Charmley et al. [17] also outperformed the simple regression of DMI developed in the
present study with slightly lower RMSPE and RSR values of 13.2% and 0.36, respectively.
The discrepancy in performance is likely caused by ranges in stages of the lactation and
maturity of cattle in our databases linked to ranges in DMI. An improved CH4 prediction
performance of the equation of Charmley et al. [17] given our database could be attributed
to the fact that their database for model development included Australian studies that fed
high-forage-based diets (>70%), which is consistent with the database employed in the
present investigation.

Overall, the analysis demonstrated a better CH4 prediction accuracy with extreme
values of dietary forage proportion (40–100%) along with DMI, revealing a nonlinear re-
lationship with CH4 production, supporting the results of Mills et al. [20] who suggested
an improvement in the prediction at extreme values under the practical application. Even
though we were unable to develop a robust CH4 production predictive model from the
monensin-only database, our preliminary analysis indicated that the same predictor vari-
ables, such as Lig.%NDF, cellulose, and the H:C ratio, have shown to be the key predictors
of CH4 production, which is similar to the current analysis.

4.4. Methane Yield (g/kg DMI) Model Performance

In contrast to the CH4 production model findings in the present study, the simple
regression of NDF was significant (g CH4/kg of DMI = 16.99 (1.41) + 0.11 (0.037) × NDF (%
of DM); RMSPE = 13.1%; R2 = 0.09) from the COM database (Table 5). However, this model
is outperformed by the dietary forage proportion-only predictor model with an RMSPE of
11.5% from the COM database, and our results corroborate earlier work [114] in sheep.

For the LAC database, an improvement in the CH4 yield prediction was observed
with the increase in model complexity (diet_lac_M), including dietary forage proportion
(% of DM), milk fat yield, and milk protein yield variables (RMSPE = 7.4%; CCC = 0.77).
Consistent with our study, Niu et al. [16] observed a better CH4 yield prediction with milk
composition with an RMSPE value of 16.1%. The published equation by Niu et al. [16]
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using a NDF-only predictor was ranked high compared to other extant models, with the
lowest RMSPE and highest CCC on both databases.

In the current study, we developed robust models for an enteric CH4 production
and yield for both lactating and non-lactating cows, with easily accessible input variables.
Dietary laboratory analysis and CH4 emission measurement techniques can be very ex-
pensive; therefore, the use of these empirical CH4 prediction equations developed in the
present study can be used with easily available inputs.

5. Conclusions

The databases of COM and LAC were compiled to develop the models for enteric
CH4 production from dairy cattle. This study revealed that DMI is the primary predictor
of CH4 production in dairy cattle; however, an improvement in the CH4 production
prediction accuracy was found with an increase in the model complexity by the inclusion
of the dietary components. The current best-developed models have shown a better
CH4 prediction performance than the selected extant models. Among all the published
models, the Nielsen et al. [91] model recommended by NASEM [35] improved the CH4
emission predictions evaluated on both databases. The present study demonstrated that an
enteric CH4 production and yield can be predicted by factors such as DMI, dietary forage
proportion, and lactation performance variables. These newly developed CH4 production
equations can be used to estimate CH4 emissions with easily accessible input variables.

Furthermore, monensin supplementation reduced enteric CH4 production and yield,
and this study has shown that the timing of CH4 measurements following monensin
supplementation is crucial. Thus, long-term in vivo studies with fully adapted rumen
microbial populations are needed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13081392/s1, Figure S1: Flowchart illustrating the data searching,
screening, and selection process used in the current study analysis. Figure S2: Plots of observed
vs. predicted methane (CH4) yield (g/kg DMI) (illustrated by circles), and residuals (diamond:
observed—predicted values) vs. predicted methane yield (g/kg DMI) (illustrated by diamond
shapes) generated from the combined (COM) (n = 60) and lactating cows (LAC) databases (n = 48)
from different model categories and extant equations presented in accordance with Table 5. The
references interpretations are stated in Table 5. The solid blue lines indicate the relationship between
predicted and observed methane production and predicted values and the residuals. The solid black
lines represent the line of unity, where y = x (1:1).
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